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Abstract

We prove the existence of three distinct nontrivial solutions for a class of semilinear elliptic vari-
ational inequalities involving a superlinear nonlinearity. The approach is variational and is based on
linking and ∇-theorems. Some nonstandard adaptations are required to overcome the lack of the
Palais–Smale condition.
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1. Introduction

In this paper we will give a multiplicity result for solutions of the following class of
semilinear elliptic variational inequalities:
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⎧⎪⎨⎪⎩
u ∈ H 1

0 (Ω), ψ1 � u � ψ2 in Ω,

〈Au,v − u〉 − λ
∫
Ω

u(v − u)dx �
∫
Ω

p(x,u)(v − u)dx, ∀v ∈ H 1
0 (Ω)

with ψ1 � v � ψ2 in Ω,

(P)

where A is a uniformly elliptic operator, λ is a real parameter, Ω is a bounded open subset
of R

N , N � 1, ψ1 and ψ2 are the “obstacles” and p :Ω ×R → R is superlinear at zero and
infinity in the second variable (see Section 2 for the precise assumptions on ψ1,ψ2 and p).

In the case of equations, namely for ψ1 ≡ −∞ and ψ2 ≡ +∞, the existence of multiple
solutions for (P) has been extensively treated in the literature, starting from the pioneer-
ing paper of Ambrosetti and Rabinowitz [1] (see, e.g., [23] and references therein). More
recently, new multiplicity results for semilinear elliptic equations have been obtained by
means of the so-called “theorems of mixed type” or “∇-theorems” introduced by Marino
and Saccon in [16] (see also [15,19,20]).

On the other hand, multiple solutions for the obstacle problem (P) have been obtained
by several authors (see [15,20–22,25–27]). In [9] the existence of two solution for a fully
nonlinear variational inequality is achieved by means of the nonsmooth critical point theory
introduced in [6,7]. Mainly this problem was studied in the case in which the nonlinearity p

has linear growth at infinity in the second variable. Here we are interested in the case of
superlinear nonlinearities, already considered in [8,14,18]. In particular, our results should
be compared with those of [8,18], where the existence of a nontrivial solution to (P) is
proved by a mountain pass and a linking argument, respectively. Let us stress that, in order
to prove the boundedness of Palais–Smale sequences, in [8,18] the obstacles ψ1 and ψ2
are assumed to belong to H 1

0 (Ω).
The purpose of our paper is that of proving the existence of three solutions to (P) (see

Theorem 2.1) by combining the linking technique with that of ∇-theorems. An important
feature is that, in our setting, it is not clear whether Palais–Smale sequences are bounded or
not. For the application of the linking theorem, this is related to the fact that the obstacles
ψ1 and ψ2 are here just Borel functions, while for the application of the ∇-theorems the
problem would arise also for smooth obstacles. To overcome this difficulty, we adapt both
the linking and the ∇-theorem to a situation in which the global Palais–Smale condition
is substituted by a local Palais–Smale condition combined with a quantitative gradient
estimate on a suitable bounded set. In Section 3 (see Theorems 3.10 and 3.11) we will
prove such adaptations in the setting of the metric critical point theory developed in [6,7,
11,13].

The variational approach we use to treat problem (P) is described in Section 4. In
Section 5 we will get the existence of at least two solutions for problem (P) by a suitable
∇-theorem (see Theorem 5.1), while in Section 6 we will find a third solution of higher
energy, by a linking argument (see Theorem 6.2).

2. The main result

Let Ω be a bounded open subset of R
N , N � 1, and let H 1

0 (Ω) be the usual Sobolev
space, i.e. the closure of C∞

0 (Ω) in H 1(Ω). We denote by 〈· , ·〉 the pairing between
H 1(Ω) and its dual space H−1(Ω).
0
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We are interested in the existence and multiplicity of solutions u of semilinear elliptic
variational inequalities of the form{

u ∈ Kψ,

〈Au,v − u〉 − λ
∫
Ω

u(v − u)dx �
∫
Ω

p(x,u)(v − u)dx, ∀v ∈ Kψ.
(P)

Here A denotes a uniformly elliptic operator of the form

A = −
N∑

i,j=1

Di

(
aij (x)Dj

)
with aij :Ω → R, i, j = 1, . . . ,N, satisfying the following conditions:

(A1) aij ∈ L∞(Ω);
(A2) aij (x) = aji(x) a.e. x in Ω , ∀i, j = 1, . . . ,N ;
(A3) ∃c1, c2 > 0 such that

c1|ξ |2 �
N∑

i,j=1

aij (x)ξiξj � c2|ξ |2, ∀ξ ∈ R
N, a.e. x in Ω.

Moreover, λ is a real parameter, ψ1 :Ω → [−∞,0] and ψ2 :Ω → [0,+∞] are Borel
functions, Kψ = {v ∈ H 1

0 (Ω): ψ1 � ṽ � ψ2 cap. q.e. in Ω}, where ṽ is a quasicontinuous
representative of v, and p :Ω × R → R is a function such that:

(P1) p(x, ξ) is measurable in x for every ξ ∈ R and continuous in ξ for a.e. x ∈ Ω ;
(P2) |p(x, ξ)| � a1|ξ | + a2|ξ |s for some a1, a2 > 0, ∀ξ ∈ R, a.e. x in Ω , with

s > 1, if N = 1,2, and 1 < s <
N + 2

N − 2
, if N � 3;

(P3) for a.e. x ∈ Ω , we have p(x, ξ) = o(|ξ |) as ξ → 0;
(P4) there exists μ > 2 such that

0 < μP(x, ξ) � ξp(x, ξ), ∀ξ ∈ R \ {0}, a.e. x in Ω,

where P(x, ξ) :=
ξ∫

0

p(x, t) dt, ∀ξ ∈ R, a.e. x in Ω.

Given a positive real number R and a compact subset C of Ω , we will also consider the
condition:

(ψR,C ) ψ1(x) � −R < R � ψ2(x) cap. q.e. in C .
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Let λ1 < λ2 � · · · be the sequence of the eigenvalues of the problem

{
Au = λu in Ω,

u = 0 on ∂Ω,

repeated according to their multiplicity, and let us set λ0 = −∞.
Let Jλ :H 1

0 (Ω) → R be the functional defined as

Jλ(u) = 1

2
〈Au,u〉 − λ

2

∫
Ω

u2 dx −
∫
Ω

P(x,u)dx.

From the assumptions on p, ψ1 and ψ2 it follows that u ≡ 0 is a solution of (P).
Our main result is the following:

Theorem 2.1. Let 1 � k � j be such that λk−1 < λk = · · · = λj < λj+1. Then, there exist
η > 0, R > 0 and a compact set C ⊂ Ω such that, if λk − η � λ < λk and ψ1, ψ2 satisfy
(ψR,C), problem (P) admits at least three nontrivial solutions.

The proof will be given in Section 6.

Remark 2.2. In general, the solutions of problem (P) given by Theorem 2.1 do not solve
the corresponding equation. Indeed, suppose that Ω has smooth boundary, that A = −Δ

and that p(x, ξ) = |ξ |s−1ξ . Let ϕ : RN → R be a function of class C∞ with ϕ = 0 in
R

N \ Ω and ϕ > 0 in Ω .
From Theorem 2.1 it follows that, if λk − η � λ < λk with η small enough and ψ1 =

−Rϕ, ψ2 = Rϕ with R large enough, then problem (P) has at least three solutions.
On the other hand, if u is a solution of (P) which also solves −Δu−λu = |u|s−1u, then

we have that u is identically zero. To see it, observe that u ∈ C1(Ω) by regularity theory.
Since −Rϕ � u � Rϕ, it follows that also the normal derivative of u vanishes on ∂Ω .
Therefore we have∫

Ω

∇u · ∇v dx − λ

∫
Ω

uv dx =
∫
Ω

|u|s−1uv dx, ∀v ∈ H 1(Ω).

Let B be an open ball such that Ω ⊂ B . If we extend u to B with value 0 outside Ω , then u

is a solution in B of the equation −Δu = V u, where V = λ+|u|s−1. Since u is identically
zero on the open set B \ Ω , from [12, Theorem 6.3] it follows that u is identically zero
on B .

Remark 2.3. Let us observe that, since we can allow ψ1 ≡ −∞ and ψ2 ≡ +∞, Theo-
rem 2.1 gives a multiplicity result for the associated equation too, as proved in [19].
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3. Critical point theorems

Let X be a metric space endowed with the metric d and let J :X → R ∪ {+∞} be a
function. We set

J c = {
u ∈ X: J (u) � c

}
, c ∈ R,

epi(J ) = {
(u, s) ∈ X × R: J (u) � s

}
,

and denote by Br (u) the open ball of center u and radius r .
The next definition is taken from [2, Definition 2.1]. For an equivalent approach, see

[6,7] and, when J is continuous, [13].

Definition 3.1. For every u ∈ X with J (u) < +∞, we denote by |dJ |(u) the supremum of
the σ ’s in [0,+∞[ such that there exist a neighborhood W of (u, J (u)) in epi(J ), δ > 0
and a continuous map H :W × [0, δ] → X satisfying

d
(
H

(
(z, s), t

)
, z

)
� t, J

(
H

(
(z, s), t

))
� s − σ t,

whenever (z, s) ∈ W and t ∈ [0, δ].
The extended real number |dJ |(u) is called the weak slope of J at u. If u ∈ X,

J (u) < +∞ and |dJ |(u) = 0, we say that u is a (lower) critical point of J . If c ∈ R

and there exists a critical point u of J with J (u) = c, we say that c is a critical value of J .

Remark 3.2. Let (un)n be a sequence in X. If un → u with J (u) < +∞ and J (un) →
J (u) as n → ∞, then lim infn→∞ |dJ |(un) � |dJ |(u).

According to [2, Proposition 2.2], the above definition can be simplified when J is
real-valued and continuous. Indeed we have the following

Proposition 3.3. Let J :X → R be a continuous function. Then |dJ |(u) is the supremum
of the σ ’s in [0,+∞[ such that there exist a neighborhood U of u in X, δ > 0 and a
continuous map H :U × [0, δ] → X satisfying

d
(
H(z, t), z

)
� t, J

(
H(z, t)

)
� J (z) − σ t,

whenever z ∈ U and t ∈ [0, δ].
Coming back to the general setting, now consider the continuous function GJ :

epi(J ) → R defined as GJ (u, s) = s. The main feature of GJ is that it allows to reduce, at
a certain extent, the study of general functions to that of continuous functions. According
to [2, Proposition 2.3], the key connection is given by the next

Proposition 3.4. Consider in epi(J ) the metric

d
(
(u, s), (v, t)

) =
√

d(u, v)2 + (s − t)2, (3.1)

so that the function GJ is Lipschitz continuous of constant 1.
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Then, for every u ∈ X with J (u) < +∞, we have

|dJ |(u) =
⎧⎨⎩

|dGJ |(u, J (u))√
1 − |dGJ |(u, J (u))2

if |dGJ |(u, J (u)) < 1,

+∞ if |dGJ |(u, J (u)) = 1.

Definition 3.5. Let c ∈ R. A sequence (un)n in X is said to be a Palais–Smale sequence at
level c ((PS)c-sequence, for short) for J , if J (un) → c and |dJ |(un) → 0.

Given a closed subset A of X, we say that J satisfies the Palais–Smale condition on A

at level c ((PS)c on A, for short), if every (PS)c-sequence (un)n for J , with un ∈ A for any
n ∈ N, admits a convergent subsequence. In the case A = X, we omit the indication of A.

For the next critical point theorem we need the notion of relative category, which was
introduced in [24] and then reconsidered, with minor variants, by several authors. Here we
follow the approach of [3].

Definition 3.6. Let X be a metric space and Y a closed subset of X. For every closed
subset A of X, we define the relative category of A in (X,Y ), denoted by catX,Y A, as the
least integer n � 0 such that A can be covered by n+ 1 open subsets U0, . . . ,Un of X with
the following properties:

(a) there exists a deformation K :X×[0,1] → X with K(Y ×[0,1]) ⊂ Y and K(U0 ×{1})
⊂ Y (if Y = ∅, we mean that U0 must be empty);

(b) for 1 � k � n, each Uk is contractible in X.

If no such integer n exists, we set catX,Y A = ∞.
Finally, the category of A in X, denoted by catX A, is defined as the category of A

in (X,∅).

The next result is an adaptation to our setting of one of the “∇-theorems” proved in [17].

Theorem 3.7. Let E be a Banach space such that E = E1 ⊕ E2 ⊕ E3, with dim(E1) < ∞,
1 � dim(E2) < ∞ and E3 closed in E, let X be a closed subset of E and let J :X → R be
a continuous function satisfying the following assumptions:

(a) there exist α,β ∈ R, 0 < r1 < r2 < r3 and a bounded, convex, open neighborhood B

of 0 in E2 such that

Δ := {
u ∈ E1 ⊕ E2: ‖P1u‖ � r3, r1 � ‖P2u‖ � r3

} ⊂ X,

sup
{
J (u): u ∈ ∂E1⊕E2Δ

}
< α < inf

{
J (u): u ∈ X ∩ (E2 ⊕ E3), ‖u‖ = r2

}
,

sup
{
J (u): u ∈ Δ

}
< β,

Δ ⊂ M := {
u ∈ E: P2u /∈ B

};
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(b) J satisfies (PS)c for every c ∈ [α,β] and we have

inf
{∣∣d(J |X∩M)

∣∣(u): u ∈ X, P2u ∈ ∂B, α � J (u) � β
}

> 0.

Then, either

(i) there exist two distinct critical values c1, c2 ∈ [α,β] of J

or

(ii) there exists a critical value c ∈ [α,β] of J and a compact subset of{
u ∈ X: |dJ |(u) = 0, J (u) = c, P2u /∈ B

}
having at least category 2 in {u ∈ X: P2u /∈ B}.

Proof. Let us consider the restricted function Ĵ := J |X∩M defined on the closed subset
X ∩ M of E. Moreover, let α′, β ′ be such that

α < α′ < inf
{
J (u): u ∈ X ∩ (E2 ⊕ E3), ‖u‖ = r2

}
,

sup
{
J (u): u ∈ Δ

}
< β ′ < β.

First of all, let us prove that

cat
X∩M,Ĵ α′ Ĵ β ′ � 2. (3.2)

Indeed, by assumption (a) we can consider the inclusion map

i : (Δ, ∂E1⊕E2Δ) → (X ∩ M, Ĵ α′
).

If we define π1 :M → Δ by

π1(u) = min

{
r3

‖P1u‖ ,1

}
P1u + min

{
max

{‖P2u + P3u‖, r1
}
, r3

} P2u

‖P2u‖ ,

we have that π1 is a retraction satisfying

π1
(
M \ {

u ∈ E2 ⊕ E3: ‖u‖ = r2
}) ⊂ Δ \ {

u ∈ E2: ‖u‖ = r2
}
.

On the other hand, it is easy to find a retraction π2 :Δ \ {u ∈ E2: ‖u‖ = r2} → ∂E1⊕E2Δ

such that (1 − t)u + tπ2(u) ∈ Δ for every t ∈ [0,1]. By the choice of α′, we have that Jα′

is disjoint from {u ∈ E2 ⊕E3: ‖u‖ = r2}. Let ϑ :E → [0,1] be a continuous function with
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ϑ = 1 on Jα′
and ϑ = 0 in a neighborhood of {u ∈ E2 ⊕ E3: ‖u‖ = r2}. Then the map

g :X ∩ M → Δ defined as

g(u) =
{

π1(u) if u ∈ E2 ⊕ E3 and ‖u‖ = r2,

(1 − ϑ(u))π1(u) + ϑ(u)π2(π1(u)) otherwise,

is continuous and satisfies g(Ĵ α′
) ⊂ ∂E1⊕E2Δ. Moreover, H :Δ × [0,1] → Δ defined as

H(u, t) = (1 − t)u + tg(u) is a homotopy between the identity map of (Δ, ∂E1⊕E2Δ) and
g ◦ i.

Since Δ ⊂ Ĵ β ′
, we have Δ = i−1(Ĵ β ′

), hence by [3, Theorem 1.4.5]

catΔ,∂E1⊕E2Δ Δ � cat
X∩M,Ĵ α′ Ĵ β ′

.

On the other hand, it is well known (see, e.g., [17, Lemma 2.3]) that

catΔ,∂E1⊕E2Δ Δ = 2.

Then (3.2) follows.
Now let us observe that, thanks to (b), the function Ĵ satisfies (PS)c for every c ∈

[α′, β ′]. Indeed, if (un)n is a (PS)c-sequence for Ĵ , then J (un) ∈ [α,β] and P2un /∈ B

eventually as n → ∞. It follows that |dĴ |(un) = |dJ |(un), whence the fact that (un)n
admits a convergent subsequence by assumption (b).

By [3, Theorem 1.4.11] we can define α′ � c1 � c2 � β ′ such that each ci , i = 1,2,
is a critical value of Ĵ . Moreover, as in the proof of the Palais–Smale condition, we
have that each critical point u of Ĵ at level ci satisfies P2u /∈ B and is critical also
for J .

If c1 < c2, then assertion (i) immediately follows. Otherwise, set c := c1 = c2 and con-
sider C = {u ∈ X ∩ M: |dĴ |(u) = 0, Ĵ (u) = c}. Since Ĵ satisfies (PS)c , it is clear that C

is compact. Moreover, according to [3, Theorem 1.4.11], we have catX∩M C � 2. On the
other hand, we have that C ⊂ {u ∈ X: P2u /∈ B} and each u ∈ C is a critical point of J .
Since {u ∈ X: P2u /∈ B} is open in X ∩ M , it is easy to see that C has at least category 2
also in {u ∈ X: P2u /∈ B} and assertion (ii) follows. �
Definition 3.8. A metric space X is said to be locally contractible if, for every u ∈ X and
every neighborhood U of u, there exists a neighborhood V of u with V ⊂ U and V is
contractible in U .

Lemma 3.9. Let X be a metric space, J :X → R a continuous function, β ∈ R, σ,� > 0
and U an open subset of X. Assume that

∀u ∈ B�(U) \ U, β − σ� < J(u) � β ⇒ |dJ |(u) > σ. (3.3)

Then, if we set

Y = {
u ∈ X: J (u) � β − σd

(
u,J β ∩ U

)}
,
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we have ∣∣d(J |Y )
∣∣(u) � |dJ |(u), ∀u ∈ Y ∩ U, (3.4)

∀u ∈ Y \ U J(u) > β − σ� ⇒ ∣∣d(J |Y )
∣∣(u) > σ. (3.5)

Proof. To prove (3.4), consider u ∈ Y ∩ U . If |dJ |(u) = 0, then the assertion is trivial. So
let us suppose |dJ |(u) > 0 and take any σ ′ > 0 with σ ′ < |dJ |(u). By Proposition 3.3,
there exist δ and a continuous map H : Bδ(u) × [0, δ] → X such that

∀v ∈ Bδ(u), ∀t ∈ [0, δ], d
(
H(v, t), v

)
� t, J

(
H(v, t)

)
� J (v) − σ ′t. (3.6)

The first inequality easily yields H(u,0) = u, so, by the continuity of H and by the fact that
U is open, by possibly reducing δ, we may assume that H(Bδ(u) × [0, δ]) ⊂ U . Now, let
us consider v ∈ Bδ(u) ∩ Y . One has J (H(v, t)) � J (v) � β . So H(v, t) ∈ Jβ ∩ U , which
yields d(H(v, t), J β ∩ U) = 0. It follows

J
(
H(v, t)

)
� β − σ ′d

(
H(v, t), J β ∩ U

)
,

which yields H((Bδ(u) ∩ Y) × [0, δ]) ⊂ Y . By Proposition 3.3 we get |d(J |Y )|(u) � σ ′
and the assertion follows by the arbitrariness of σ ′ < |dJ |(u).

In order to prove (3.5), consider u ∈ Y \ U with J (u) > β − σ�. First of all, we have

β − σ� < J(u) � β − σd
(
u,J β ∩ U

)
,

whence � > d(u,J β ∩ U) � d(u,U). It follows that u ∈ B�(U) \ U which yields
|dJ |(u) > σ by (3.3). Let σ < σ ′ < |dJ (u)|, δ > 0 and H : Bδ(u) × [0, δ] → X be a con-
tinuous map satisfying (3.6). If we consider v ∈ Bδ(u) ∩ Y , we have

J
(
H(v, t)

)
� J (v) − σ ′t � β − σd(v, J β ∩ U) − σ ′t

� β − σd(v, J β ∩ U) − σ t � β − σd(v, J β ∩ U) − σd
(
H

(
(v, t), v

))
= β − σ

[
d
(
H(v, t), v

) + d(v, J β ∩ U)
]

� β − σ
[
d
(
H(v, t), J β ∩ U

)]
,

whence H(v, t) ∈ Y . It follows that H((Bδ(u)∩Y)×[0, δ]) ⊂ Y . Again, by Proposition 3.3
we get |d(J |Y )|(u) � σ ′ > σ and the assertion follows. �

In the next result we prove the “∇-theorem” we will actually use. With respect to Theo-
rem 3.7, the main difference is that the Palais–Smale condition is required to hold only on
the closure of a suitable open subset.

Theorem 3.10. Let E be a Banach space such that E = E1 ⊕E2 ⊕E3, with dim(E1) < ∞,
1 � dim(E2) < ∞ and E3 closed in E, let X be a closed subset of E and let J :X → R be
a continuous function satisfying the following assumptions:
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(a) there exist α,β ∈ R, 0 < r1 < r2 < r3 and a bounded, convex, open neighborhood B

of 0 in E2 such that

Δ := {
u ∈ E1 ⊕ E2: ‖P1u‖ � r3, r1 � ‖P2u‖ � r3

} ⊂ X,

sup
{
J (u): u ∈ ∂E1⊕E2Δ

}
< α < inf

{
J (u): u ∈ X ∩ (E2 ⊕ E3), ‖u‖ = r2

}
,

sup
{
J (u): u ∈ Δ

}
< β,

Δ ⊂ M := {u ∈ E: P2u /∈ B};

(b′) there exist an open subset U of X and � > 0 such that Δ ⊂ U and

J satisfies (PS)c on U for every c ∈ [α,β],
inf

{∣∣d(J |X∩M)
∣∣(u): u ∈ U, P2u ∈ ∂B, α � J (u) � β

}
> 0,

∀u ∈ B�(U) \ U α � J (u) � β ⇒ |dJ |(u) >
β − α

�
,

∀u ∈ B�(U) \ U α � J (u) � β, P2u ∈ ∂B ⇒ ∣∣d(J |X∩M)
∣∣(u) >

β − α

�
;

(c) X is locally contractible.

Then J admits at least two distinct critical points u1, u2 ∈ U with J (ui) ∈ [α,β], i = 1,2.

Proof. Let σ = β−α
�

and let Y be as in Lemma 3.9. Moreover, let α′, β ′ be such that

α < α′ < inf
{
J (u): u ∈ X ∩ (E2 ⊕ E3), ‖u‖ = r2

}
,

sup
{
J (u): u ∈ Δ

}
< β ′ < β.

We will show that the function J |Y satisfies the assumptions of Theorem 3.7 with α,β

replaced by α′, β ′. First of all, thanks to the continuity of J , we have that Y is closed in X,
hence in E. Moreover, we have Δ ⊂ Jβ ∩ U , whence d(u,J β ∩ U) = 0 for any u ∈ Δ.
This implies that Δ ⊂ Y . Then it is easy to see that J |Y satisfies (a) of Theorem 3.7 with
α,β replaced by α′, β ′.

Now let us look at condition (b). Let c ∈ [α′, β ′] and let (un)n be a (PS)c-sequence
for J |Y . Knowing that J (un) > α = β − σ� for n sufficiently large, we deduce by
(3.5) that un ∈ U eventually as n → ∞, and by (3.4) that |dJ |(un) → 0. Therefore
(un)n admits a converging subsequence, and this implies that J |Y satisfies (PS)c for
every c ∈ [α′, β ′].

As for the second condition of (b) in Theorem 3.7, let us apply again Lemma 3.9 with
X ∩ M in place of X and J |X∩M in place of J . Let u ∈ B�(U) \ U with α < J(u) � β .
If P2u ∈ ∂B , from the last condition in (b′) we directly see that |d(J |X∩M)|(u) > σ . If
P2u /∈ B , we have |d(J |X∩M)|(u) = |dJ |(u), hence again |d(J |X∩M)|(u) > σ by the third
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condition in (b′). From Lemma 3.9 we deduce that

∀u ∈ Y ∩ M ∩ U,
∣∣d(J |Y∩M)

∣∣(u) �
∣∣d(J |X∩M)

∣∣(u), (3.7)

∀u ∈ (Y ∩ M) \ U, J (u) > α ⇒ ∣∣d(J |Y∩M)
∣∣(u) > σ. (3.8)

Now, arguing by contradiction, assume that

inf
{∣∣d(J |Y∩M)

∣∣(u): u ∈ Y, P2u ∈ ∂B, α′ � J (u) � β ′} = 0

and consider a sequence (un)n in Y such that P2un ∈ ∂B , α′ � J (un) � β ′ and
|d(J |Y∩M)|(un) → 0. From (3.8) we see that un ∈ U eventually as n → ∞, and from
(3.7) that |d(J |X∩M)|(un) → 0. This fact contradicts the second condition in (b′). There-
fore J |Y satisfies also (b) of Theorem 3.7.

If c1, c2 are distinct critical values of J |Y in [α′, β ′] and u1, u2 ∈ Y are correspond-
ing critical points, from (3.5) we see that u1, u2 ∈ U and from (3.4) we conclude that
|dJ |(ui) = 0, i = 1,2.

Otherwise, there exists c ∈ [α′, β ′] and a compact subset C of{
u ∈ Y :

∣∣d(J |Y )
∣∣(u) = 0, J (u) = c, P2u /∈ B

}
having at least category 2 in {u ∈ Y : P2u /∈ B}. Again by (3.5), we have C ⊂ U . Therefore
C is actually contained in the set

V := {
u ∈ X: P2u /∈ B, J (u) < β − σd(u,J β ∩ U)

}
,

which is clearly open in X. A fortiori we have that C has at least category 2 in V . On
the other hand, being an open subset of a locally contractible space, V itself is locally
contractible (see, e.g., [10]). From [3, Theorem 1.4.11] it follows that C contains at least
two elements, which are free critical points of J by (3.4). �

Finally, for our purposes we need a variant of the linking theorem (see [23]) adapted to
a nonsmooth setting as in [6,7]. As in Theorem 3.10, the main feature is that the Palais–
Smale condition is required only on the closure of a suitable open set.

Theorem 3.11. Let E be a Banach space such that E = E− ⊕E+, with dim(E−) < ∞ and
E+ closed in E, and let J :E → R∪{+∞} be a lower semi-continuous function satisfying
the following assumptions:

(a) there exist α,β ∈ R, 0 < r < R and e ∈ E+ \ {0} such that

sup
{
J (u): u ∈ ∂E−⊕ReQ

}
< α,

inf
{
J (u): u ∈ E+, ‖u‖ = r

}
> α,

sup
{
J (u): u ∈ Q

}
< β,

where Q = {v + te: v ∈ E−, t � 0, ‖v + te‖ � R};
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(b) there exist an open subset U of E and � > 0 such that Q ⊂ U and

J satisfies (PS)c on U for every c ∈ [α,β], (3.9)

|dGJ |(u, s) = 1 with respect to the metric (3.1), whenever J (u) < s � β, (3.10)

∀u ∈ B�(U) \ U, α � J (u) � β ⇒ |dJ |(u) >
β − α

�
. (3.11)

Then J admits a critical point u ∈ U with J (u) ∈ [α,β].

Proof. It is easily seen that α < β . Let σ = β−α
�

and let

α′ = inf
{
J (u): u ∈ E+, ‖u‖ = r

}
.

Let us first treat the particular case in which

β − σ√
1 + σ 2

� < α′. (3.12)

Let us consider the set epi(J ) endowed with the metric (3.1) and put

Û := {
(u, s) ∈ epi(J ): u ∈ U

}
,

Y :=
{
(u, s) ∈ epi(J ): s � β − σ√

1 + σ 2
d
(
(u, s),Gβ

J ∩ Û
)}

.

We are going to apply [7, Theorem 3.12] to the continuous function GJ |Y :Y → R. Then
we will prove that J possesses a critical point too.

Since J is lower semi-continuous, epi(J ) is closed in E × R, hence complete. In turn,
also Y is complete.

Let us consider the compact pair (D,S) given by

D = (
∂E−⊕ReQ × [α,β]) ∪ (

Q × {β}), S = ∂E−⊕ReQ × {α}.

From assumption (a) it follows that D ⊂ epi(J ). Then it is easy to see that D ⊂ Gβ
J ∩ Û ,

whence D ⊂ Y . Let ψ :S → Y be the inclusion map and

Φ = {
ϕ ∈ C(D,Y ): ϕ|S = ψ

}
.

If ϕ :D → Y is the inclusion map, we have ϕ ∈ Φ , whence Φ �= ∅. Let

c = inf
ϕ∈Φ

sup(GJ ◦ ϕ).

D
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Since ϕ ∈ Φ , we immediately find that c � β . On the other hand, it is easily seen that the
pair (D,S) is homeomorphic to the pair (Q,∂E−⊕ReQ). Then, standard considerations on
the linking theorem show that

ϕ1(D) ∩ {
u ∈ E+: ‖u‖ = r

} �= ∅ for every ϕ ≡ (ϕ1, ϕ2) ∈ Φ.

It follows

sup
D

(GJ ◦ ϕ) = sup
D

ϕ2 � sup
D

(J ◦ ϕ1) � inf
{
J (u): u ∈ E+,‖u‖ = r

}
= α′ > sup

S

(GJ ◦ ψ)

for every ϕ ≡ (ϕ1, ϕ2) ∈ Φ . In particular, we have c � α′.
Consider now the (PS)c condition for GJ |Y . If

(u, s) ∈ B�(Û) \ Û and β − σ√
1 + σ 2

� < s � β,

we have u ∈ B�(U) \ U , hence

|dGJ |(u, s) >
σ√

1 + σ 2

by assumption (3.11) and Proposition 3.4. From Lemma 3.9 we deduce that

∀(u, s) ∈ Y ∩ Û ,
∣∣d(GJ |Y )

∣∣(u, s) � |dGJ |(u, s), (3.13)

∀(u, s) ∈ Y \ Û , s > β − σ√
1 + σ 2

� ⇒ ∣∣d(GJ |Y )
∣∣(u, s) >

σ√
1 + σ 2

. (3.14)

If (uh, sh) is a (PS)c-sequence for GJ |Y , by (3.12) we have

sh = GJ (uh, sh) > β − σ√
1 + σ 2

�

eventually as h → ∞, hence (uh, sh) ∈ Û by (3.14). From (3.13) it follows that (uh, sh)

is a (PS)c-sequence also for GJ . Again by assumption (3.10) and Proposition 3.4 we have
that J (uh) = sh eventually as h → ∞ and that (uh) is a (PS)c-sequence for J with uh ∈ U .
By assumption (3.9), up to a subsequence (uh) is convergent to some u in U . Then (uh, sh)

is convergent to (u, c) in Y . Therefore GJ |Y satisfies condition (PS)c.
By [7, Theorem 3.12] there exists a critical point (u, s) ∈ Y of GJ |Y with s =

GJ (u, s) = c. By (3.14) we have (u, c) ∈ Û , hence u ∈ U . From (3.13) it follows that
(u, c) is a critical point also for GJ . By assumption (3.10) and Proposition 3.4 we conclude
that J (u) = c and that u is a critical point of J .

In order to remove the extra assumption (3.12), take λ > 0 and consider on E the norm

‖u‖λ := λ‖u‖. (3.15)

Of course, the norm (3.15) is equivalent to the original one of E.
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It is easy to see that assumption (a) is still valid after the change of norm with the same
α, β and rλ := λr , Rλ := λR and eλ := e/λ.

From Definition 3.1 it is also easy to see that |dλJ |(u) = 1
λ
|dJ |(u), where dλ denotes

the weak slope induced by the norm (3.15). If we set �λ := λ� and keep the same U , we
have that (3.9) and (3.11) still hold.

Concerning (3.10), let (u, s) ∈ epi(J ) with J (u) < s � β and let ε ∈ ]0,1[ be such
that λ2(2ε − ε2) < 1. Since |dGJ |(u, s) = 1, by Proposition 3.3 there exist δ > 0 and a
continuous map H ≡ (H1,H2) : Bδ(u, s) × [0, δ] → epi(J ) such that∥∥H1

(
(v, τ ), t

) − v
∥∥2 + (

H2
(
(v, τ ), t

) − τ
)2 � t2, (3.16)

H2
(
(v, τ ), t

) = GJ

(
H

(
(v, τ ), t

))
� GJ (v, τ ) − (1 − ε)t = τ − (1 − ε)t, (3.17)

whence ∥∥H1
(
(v, τ ), t

) − v
∥∥2 �

(
1 − (1 − ε)2)t2 = (2ε − ε2)t2. (3.18)

If we set Ĥ2((v, τ ), t) := τ − t
√

1 − λ2(2ε − ε2), from (3.16)–(3.18) it follows that∥∥H1
(
(v, τ ), t

) − v
∥∥2

λ
+ (

Ĥ2
(
(v, τ ), t

) − τ
)2 � t2,

Ĥ2
(
(v, τ ), t

) = τ − t
√

1 − λ2(2ε − ε2) � τ − (1 − ε)t � H2
(
(v, τ ), t

)
� J

(
H1

(
(v, τ ), t

))
.

In particular, (H1, Ĥ2) also takes its values in epi(J ). This yields that |dλGJ |(u, s) �√
1 − λ2(2ε − ε2), hence |dλGJ |(u, s) = 1 by the arbitrariness of ε.
Therefore, all the assumptions of the theorem are satisfied, also after the change of

norm. On the other hand, if we set σλ := (β − α)/�λ = σ/λ, the extra assumption (3.12)
reads

β − σλ√
1 + σ 2

λ

�λ = β − σ√
1 + (σ/λ)2

� < α′. (3.19)

Since α < α′, if λ is large enough also (3.19) is satisfied and the assertion follows. �

4. Some preliminary lemmas

Now we come back to the setting of Theorem 2.1. We observe that 〈A· , ·〉 1
2 is a norm

in H 1
0 (Ω) equivalent to that induced by H 1(Ω). From now on, we will consider the space

H 1
0 (Ω) endowed with the norm associated with the operator A, i.e. we will put

‖u‖ = 〈Au,u〉 1
2 , ∀u ∈ H 1

0 (Ω).

We will also denote by ‖ · ‖q the usual norm of Lq(Ω), q � 1.



P. Magrone et al. / J. Differential Equations 228 (2006) 191–225 205
In what follows, let 1 � k � j be such that λk−1 < λk = · · · = λj < λj+1 and let
e1, . . . , ej+1 be eigenfunctions related to λ1, . . . , λj+1 such that {e1, . . . , ej+1} is an
L2(Ω)-orthonormal system of functions. For any 1 � i � j + 1, we also denote by Vi

the i-dimensional space generated by {e1, . . . , ei} and we set

V ⊥
i =

{
v ∈ H 1

0 (Ω):
∫
Ω

veh dx = 0, ∀h = 1, . . . , i

}
.

For i = 0 we set V0 = {0}. Finally, for h = 1, . . . , k − 1 we choose ẽh ∈ C∞
0 (Ω) close

enough to eh in order to have that

H 1
0 (Ω) = Ṽk−1 ⊕ span{ek, . . . , ej } ⊕ V ⊥

j , (4.1)

〈Av,v〉 � λk−1 + λk

2
‖v‖2

2, ∀v ∈ Ṽk−1, (4.2)

where Ṽk−1 is the (k − 1)-dimensional space generated by {ẽ1, . . . , ẽk−1}. We denote by
P1 :H 1

0 (Ω) → Ṽk−1, P2 :H 1
0 (Ω) → span{ek, . . . , ej } and P3 :H 1

0 (Ω) → V ⊥
j the projec-

tions associated with the (nonorthogonal) direct sum (4.1) and we observe that

〈Av,v〉 � λk‖v‖2
2, ∀v ∈ Ṽk−1 ⊕ span{ek, . . . , ej }. (4.3)

About the nonlinearity p, we observe that condition (P4) easily yields

lim|ξ |→∞
P(x, ξ)

ξ2
= +∞, for a.e. x ∈ Ω. (4.4)

Finally, we denote by IKψ the indicator function of the closed convex set Kψ , namely

IKψ (u) =
{

0 if u ∈ Kψ,

+∞ if u ∈ H 1
0 (Ω) \ Kψ,

and by Jλ,ψ :Kψ → R the restriction of Jλ to Kψ .
For any � > 0 we also set

M� =
{
u ∈ H 1

0 (Ω):
∫
Ω

|P2u|2 dx � �2
}

and for any u ∈ M�

HM�(u) =
{ {v ∈ H 1

0 (Ω):
∫
Ω

(P2u)(P2v)dx > 0} if
∫
Ω

|P2u|2 dx = �2,

H 1
0 (Ω) if

∫
Ω

|P2u|2 dx > �2.

The set HM�(u) is called the hypertangent cone to M� at u (see [4]).
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Now, we are able to prove some preliminary lemmas we will need in order to get the
existence of two solutions for the variational inequality (P).

Lemma 4.1. The following statements hold true:

(1) for every u ∈ Kψ , there exists ϕ ∈ H−1(Ω) with ‖ϕ‖ � |dJλ,ψ |(u) such that

〈Au,v − u〉 − λ

∫
Ω

u(v − u)dx −
∫
Ω

p(x,u)(v − u)dx � 〈ϕ,v − u〉, ∀v ∈ Kψ ;

(2) for every u ∈ Kψ ∩ M� , there exists ϕ ∈ H−1(Ω) with ‖ϕ‖ � |d(Jλ,ψ |M�)|(u) such
that

〈Au,v − u〉 − λ

∫
Ω

u(v − u)dx −
∫
Ω

p(x,u)(v − u)dx � 〈ϕ,v − u〉,

∀v ∈ Kψ ∩ (u + HM�(u)).

Proof. (1) Since the functional Jλ,ψ :Kψ → R is locally Lipschitz continuous, it is easily
seen that |dJλ,ψ |(u) < +∞. If we consider the functional Jλ +IKψ :H 1

0 (Ω) → R∪{+∞},
by Definition 3.1 we have that∣∣d(Jλ + IKψ )

∣∣(u) = ∣∣d(
(Jλ + IKψ )|Kψ

)∣∣(u) = |dJλ,ψ |(u).

On the other hand, the function IKψ is convex and lower semi-continuous, while Jλ is
of class C1. From [7, Proposition 2.10 and Theorem 2.11] we deduce that there exists
ϕ ∈ H−1(Ω) with ‖ϕ‖ � |dJλ,ψ |(u) and ϕ − J ′

λ(u) ∈ ∂IKψ (u), where ∂ stands for the
usual subdifferential of convex analysis. Then assertion (1) easily follows.

(2) Consider first the case in which
∫
Ω

|P2u|2 dx > �2. Since the notion of weak slope
is local, we have |d(Jλ,ψ |M�)|(u) = |dJλ,ψ |(u) and the assertion follows from (1).

Then, let
∫
Ω

|P2u|2 dx = �2. We claim that〈
J ′

λ(u), v − u
〉
� −∣∣d(Jλ,ψ |M�)

∣∣(u)‖v − u‖, ∀v ∈ Kψ ∩ (
u + HM�(u)

)
. (4.5)

By contradiction, let v ∈ Kψ ∩ (u + HM�(u)) and let σ > |d(Jλ,ψ |M�)|(u) be such that〈
J ′

λ(u), v − u
〉
< −σ‖v − u‖. (4.6)

Let δ > 0 and let H : (Kψ ∩ M� ∩ Bδ(u)) × [0, δ] → Kψ ∩ M� be defined by

H(z, t) = z + t

‖v − z‖ (v − z).

Since v �= u, it is readily seen that H is well defined with values in Kψ , provided that δ

is small enough. Moreover, we have:
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∫
Ω

∣∣P2H(z, t)
∣∣2

dx =
∫
Ω

|P2z|2 dx + 2t

‖v − z‖
∫
Ω

P2zP2(v − z) dx

+ t2

‖v − z‖2

∫
Ω

∣∣P2(v − z)2
∣∣dx

� �2 + 2t

‖v − z‖
∫
Ω

P2zP2(v − z) dx � �2,

provided, again, that δ is small enough, as v − u ∈ HM�(u). Therefore H takes its values
in Kψ ∩ M� .

It is clear that ‖H(z, t) − z‖ = t . Since Jλ is of class C1, from (4.6) we deduce that
Jλ(H(z, t)) � Jλ(z) − σ t , provided again that δ is small enough.

It follows that |d(Jλ,ψ |M�)|(u) � σ , whence a contradiction. Therefore (4.5) is proved.
If we define g :H 1

0 (Ω) → R ∪ {+∞} by

g(v) =
{ 〈J ′

λ(u), v − u〉 if v ∈ Kψ ∩ (u + ({0} ∪ HM�(u))),

+∞ otherwise,

we have that g is a convex function with g(u) = 0 and

g(v) � −∣∣d(Jλ,ψ |M�)
∣∣(u)‖v − u‖

for every v ∈ H 1
0 (Ω). From [5, Lemma] we deduce that there exists ϕ ∈ H−1(Ω) with

‖ϕ‖ � |d(Jλ,ψ |M�)|(u) and g(v) � 〈ϕ,v − u〉 for every v ∈ H 1
0 (Ω). Then assertion (2)

easily follows. �
Lemma 4.2. The following statements hold true:

(1) we have

lim‖u‖s+1→0

‖p(x,u)‖(s+1)/s

‖u‖s+1
= 0, (4.7)

lim‖u‖s+1→0

‖P(x,u)‖1

‖u‖2
s+1

= 0; (4.8)

(2) for every finite-dimensional subspace V of H 1
0 (Ω), we have

lim‖v‖→∞, v∈V

∫
Ω

P(x,u)dx

‖u‖2
= +∞.
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Proof. (1) If we set

π(x, ξ) =
⎧⎨⎩

p(x, ξ)

ξ
if ξ �= 0,

0 if ξ = 0,

from (P2) and (P3) it follows that π :Ω × R → R is a Carathéodory function satisfying∣∣π(x, ξ)
∣∣ � a1 + a2|ξ |s−1, ∀ξ ∈ R, a.e. x ∈ Ω. (4.9)

It follows that

lim‖u‖s+1→0
π(x,u) = 0 in L

s+1
s−1 (Ω).

On the other hand, Hölder inequality implies that∥∥p(x,u)
∥∥

s+1
s

= ∥∥π(x,u)u
∥∥

s+1
s

�
∥∥π(x,u)

∥∥
s+1
s−1

‖u‖s+1.

Then (4.7) follows.
The proof of (4.8) is similar.
(2) Let (vn)n be a sequence in V with ‖vn‖ → ∞. If we set tn = ‖vn‖ and wn = vn/tn,

we may assume, since V is finite-dimensional, that (wn)n is convergent a.e. to some w ∈
V \ {0}. From (4.4) it follows that

lim
n→∞

P(x, tnwn(x))

t2
n

= +∞ on a set of positive measure.

Therefore, from (P4) and Fatou’s lemma we deduce that

lim
n→∞

∫
Ω

P(x, tnwn)dx

t2
n

= +∞

and the assertion follows. Lemma 4.2 is thus completely proved. �
Lemma 4.3. There exist R∗,R∗∗ > 0 and η∗, ε∗ > 0 such that, for every λ ∈ [λk − η∗,
λk + η∗], the following statements hold true:

(1) for any u ∈ Ṽk−1 ⊕ span{ek, . . . , ej } with max{‖P1u‖,‖P2u‖} = R∗, we have
‖u‖ < R∗∗ and Jλ(u) < 0;

(2) if u is a critical point of the functional Jλ with ‖u‖ � R∗∗ + 1 and critical value
Jλ(u) � ε∗, then ‖u‖ < R∗∗;

(3) if u ∈ Ṽk−1 ⊕ V ⊥
j is a constrained critical point of the functional Jλ|Ṽk−1⊕V ⊥

j
with

‖u‖ � R∗∗ + 1 and critical value Jλ(u) � ε∗, then u is identically zero.
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Proof. (1) By (4.3) for any λ ∈ [λk − 1, λk + 1] we have that

Jλ(u) � 1

2

∫
Ω

u2 dx −
∫
Ω

P(x,u)dx, ∀u ∈ Ṽk−1 ⊕ span{ek, . . . , ej }. (4.10)

Combining (4.10) with (2) of Lemma 4.2, we deduce that there exists R∗ > 0 such that, for
any λ ∈ [λk − 1, λk + 1] and any u ∈ Ṽk−1 ⊕ span{ek, . . . , ej } with max{‖P1u‖,‖P2u‖}
= R∗, we have Jλ(u) < 0. Since max{‖P1u‖,‖P2u‖} is a norm equivalent to the original
one, we also find R∗∗ with the required property.

(2) Let R∗∗ be as in assertion (1). By contradiction, let us suppose that there exist a
sequence (λ(n))n such that λ(n) → λk and (un)n such that un is a critical point for Jλ(n) with
R∗ � ‖un‖ � R∗∗ + 1, for any n ∈ N and lim supn→∞ Jλ(n) (un) � 0. Up to a subsequence,
we may also assume that (un)n is convergent to some u ∈ H 1

0 (Ω) weakly in H 1
0 (Ω) and

a.e. in Ω .
We have that

〈Aun, v〉 − λ(n)

∫
Ω

unv dx −
∫
Ω

p(x,un)v dx = 0, (4.11)

for any v ∈ H 1
0 (Ω) and for any n ∈ N. Taking v = un as a test function in (4.11) and using

(P4) we get

0 � (μ − 2)

∫
Ω

P(x,un) dx � 2Jλ(n)(un), (4.12)

for any n ∈ N. Passing to the limit in (4.12) as n goes to infinity, we deduce that
P(x,u) = 0, hence that u = 0 a.e. in Ω . So,

un
w→ 0 in H 1

0 (Ω) (4.13)

as n goes to infinity.
Coming back to (4.11) with un as a test function and using (4.13), we obtain

‖un‖ → 0 (4.14)

as n goes to infinity. This is in contradiction with ‖un‖ � R∗ for any n ∈ N.
(3) Let R∗∗ be as in assertion (2). Let us suppose by contradiction that there exist (λ(n))n

such that λ(n) → λk and (un)n in (Ṽk−1 ⊕ V ⊥
j ) \ {0} such that un is a constrained critical

point for Jλ(n) |Ṽk−1⊕V ⊥
j

with ‖un‖ � R∗∗ + 1 and lim supn→∞ Jλ(n) (un) � 0. We have that

〈Aun, v〉 − λ(n)

∫
unv dx −

∫
p(x,un)v dx = 0, (4.15)
Ω Ω
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for any v ∈ Ṽk−1 ⊕ V ⊥
j and for any n ∈ N. Choosing v = un as a test function and arguing

as in part (2) of this lemma, we get that

un → 0 in H 1
0 (Ω) (4.16)

as n goes to infinity. We can split un as un = vn + zn with vn ∈ Ṽk−1 and zn ∈ V ⊥
j . Taking

v = −vn + zn as a test function in (4.15) we obtain

〈Avn, vn〉 − λ(n)

∫
Ω

v2
n dx − 〈Azn, zn〉 + λ(n)

∫
Ω

z2
n dx =

∫
Ω

p(x,un)(vn − zn) dx

(4.17)

for any n ∈ N. Taking into account (4.2), we have that

〈Avn, vn〉 − λ(n)

∫
Ω

v2
n dx � −

(
2λ(n)

λk−1 + λk

− 1

)
〈Avn, vn〉 � −K1〈Avn, vn〉 (4.18)

and

−〈Azn, zn〉 + λ(n)

∫
Ω

z2
n dx � −

(
1 − λ(n)

λj+1

)
〈Azn, zn〉 � −K2〈Azn, zn〉, (4.19)

for any n ∈ N, where K1 and K2 are positive constants independent of n. Then, combining
(4.17)–(4.19), it easily follows that there exist positive constants K ′,K ′′, independent of n,
such that ∫

Ω

p(x,un)(vn − zn) dx � −K ′(‖vn‖2 + ‖zn‖2) � −K ′′‖un‖2, (4.20)

for n sufficiently large. On the other hand, by Hölder inequality and the continuous em-
bedding of H 1

0 (Ω) into Ls+1(Ω), we have that∣∣∣∣ ∫
Ω

p(x,un)(vn − zn) dx

∣∣∣∣ �
∥∥p(x,un)

∥∥
s+1
s

‖vn − zn‖s+1 � K ′′′∥∥p(x,un)
∥∥

s+1
s

‖un‖,

(4.21)

where K ′′′ is a positive constant independent of n.
Taking into account (4.20), (4.21) and the fact that un → 0 in H 1

0 (Ω), we obtain that

K ′′ � K ′′′ ‖p(x,un)‖(s+1)/s

‖un‖ ,

for n sufficiently large. This fact contradicts (4.7). Lemma 4.3 is now proved. �
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Lemma 4.4. Let R∗∗ > 0 and η∗, ε∗ > 0 be as in Lemma 4.3. Then the following statements
hold true:

(1) there exist �′, σ > 0, R′ > 0 and a compact set C′ ⊂ Ω such that, if λ ∈ [λk − η∗,
λk + η∗], if ψ1 and ψ2 satisfy (ψR′,C′) and if � ∈ ]0, �′], we have

∀u ∈ Kψ, R∗∗ � ‖u‖ � R∗∗ + 1, Jλ,ψ(u) � ε∗ ⇒ |dJλ,ψ |(u) > σ,

∀u ∈ Kψ ∩ ∂M�, R∗∗ � ‖u‖ � R∗∗ + 1,

Jλ,ψ(u) � ε∗ ⇒ ∣∣d(Jλ,ψ |Kψ∩M�)
∣∣(u) > σ ;

(2) for every α > 0, there exist �α,σα > 0, Rα > 0 and a compact set Cα ⊂ Ω such
that, if λ ∈ [λk − η∗, λk + η∗], if ψ1 and ψ2 satisfy (ψRα,Cα ) and if � ∈ ]0, �α],
then |d(Jλ,ψ |Kψ∩M�)|(u) > σα , whenever u ∈ Kψ ∩ ∂M� , ‖u‖ � R∗∗ + 1 and α �
Jλ,ψ(u) � ε∗.

Proof. (1) We proceed by contradiction and we suppose that there exist a sequence (λ(n))n
in R with

λ(n) → λ̄ ∈ [λk − η∗, λk + η∗], (4.22)

two sequences of Borel functions ψ1,n :Ω → [−∞,0] and ψ2,n :Ω → [0,+∞] such that

ψ1,n(x) � −n < n � ψ2,n cap. q.e. on Cn :=
{
x ∈ R

N : d(x,R
N \ Ω) � 1

n

}
,

(4.23)

and a sequence (un)n in Kψn such that

R∗∗ � ‖un‖ � R∗∗ + 1, (4.24)

Jλ(n),ψn
(un) � ε∗, (4.25)

and |d(Jλ(n),ψn
)|(un) → 0. By (2) of Lemma 4.1, we deduce that there exists ϕn ∈ H−1(Ω)

such that

‖ϕn‖H−1(Ω) → 0, (4.26)

〈Aun, v − un〉 − λ(n)

∫
Ω

un(v − un)dx −
∫
Ω

p(x,un)(v − un)dx

� 〈ϕn, v − un〉, ∀v ∈ Kψn. (4.27)

Since (un)n is bounded, up to a subsequence there exists u ∈ H 1
0 (Ω) such that

un
w→ u in H 1(Ω) (4.28)
0
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as n goes to infinity. Let v̄ ∈ C∞
0 (Ω). By (4.23) we have that ψ1,n � v̄ � ψ2,n cap. q.e. in

Ω for n sufficiently large. So, v̄ can be taken as a test function in (4.27) for n sufficiently
large, whence

〈Aun,un〉
� 〈Aun, v̄〉 − λ(n)

∫
Ω

un(v̄ − un)dx −
∫
Ω

p(x,un)(v̄ − un)dx − 〈ϕn, v̄ − un〉.

(4.29)

By (4.22), (4.26) and (4.28), passing to the upper limit, we get

lim sup
n→∞

〈Aun,un〉

� 〈Au, v̄〉 − λ

∫
Ω

u(v̄ − u)dx −
∫
Ω

p(x,u)(v̄ − u)dx, ∀v̄ ∈ C∞
0 (Ω). (4.30)

By density we get that (4.30) holds for any v̄ ∈ H 1
0 (Ω). In particular, we can take v̄ = u

in (4.30). So, by the weak lower semi-continuity of the norm, we obtain that un → u in
H 1

0 (Ω) as n goes to infinity. Moreover, by (4.24), (4.25) and (4.29), we get

R∗∗ � ‖u‖ � R∗∗ + 1, (4.31)

Jλ̄(u) � ε∗ (4.32)

and

〈Au,v − u〉 − λ̄

∫
Ω

u(v − u)dx −
∫
Ω

p(x,u)(v − u)dx � 0, ∀v ∈ H 1
0 (Ω). (4.33)

Then, it is easy to see that

〈Au,v〉 − λ̄

∫
Ω

uv dx −
∫
Ω

p(x,u)v dx = 0, ∀v ∈ H 1
0 (Ω), (4.34)

i.e. u is a critical point for the functional Jλ̄. By (2) of Lemma 4.3 we have that ‖u‖ < R∗∗,
which is in contradiction with (4.31). Then, the first assertion in (1) is proved.

Now, we consider the second statement of (1). We proceed again by contradiction and
we suppose that there exist a sequence (�n)n in ]0,+∞[ such that

�n → 0, (4.35)



P. Magrone et al. / J. Differential Equations 228 (2006) 191–225 213
a sequence (λ(n))n in R satisfying (4.22), two sequences of Borel functions ψ1,n :Ω →
[−∞,0] and ψ2,n :Ω → [0,+∞] satisfying (4.23) and a sequence (un)n in Kψn ∩ ∂M�n

satisfying (4.24), (4.25) and ∣∣d(Jλ(n),ψn
|Kψn∩M�n

)
∣∣(un) → 0. (4.36)

By (2) of Lemma 4.1, we deduce that there exists ϕn ∈ H−1(Ω) such that

‖ϕn‖H−1(Ω) → 0, (4.37)

〈Aun, v − un〉 − λ(n)

∫
Ω

un(v − un)dx −
∫
Ω

p(x,un)(v − un)dx

� 〈ϕn, v − un〉, ∀v ∈ Kψn ∩ (
un + HM�n

(un)
)
. (4.38)

Since (un)n is bounded, there exists u ∈ H 1
0 (Ω) such that, up to a subsequence,

un
w→ u in H 1

0 (Ω). (4.39)

Moreover, un ∈ ∂M�n and (4.35) yield∫
Ω

|P2u|2 dx = 0, (4.40)

i.e. u ∈ Ṽk−1 ⊕ V ⊥
j . Let zn = P2un

�n
. It easily follows that

∫
Ω

|zn|2 dx = 1 and zn ∈
span{ek, . . . , ej }. Then, up to a subsequence,

zn → z ∈ span{ek, . . . , ej } (4.41)

with
∫
Ω

|z|2 dx = 1.
Let v̄ ∈ C∞

0 (Ω) be such that
∫
Ω

zP2v dx > 0. By (4.40) we have that
∫
Ω

zP2(v −u)dx

> 0. It follows
∫
Ω

znP2(v − un)dx > 0 for n sufficiently large, namely, v − un ∈
HM�n

(un). On the other hand, (4.23) yields ψ1,n � v̄ � ψ2,n cap. q.e. in Ω for n suffi-
ciently large. So, v̄ can be taken as a test function in (4.38), and passing to the upper limit
we get

lim sup
n→+∞

〈Aun,un〉 � 〈Au, v̄〉 − λ̄

∫
Ω

u(v̄ − u)dx −
∫
Ω

p(x,u)(v̄ − u)dx,

for any v̄ ∈ C∞
0 (Ω) with

∫
Ω

zP2v̄ dx > 0. (4.42)

By density (4.42) holds for any v ∈ H 1
0 (Ω) such that

∫
Ω

zP2v dx � 0. So, we can take
v = u as a test function in (4.42). By the weak lower semi-continuity of the norm we
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obtain that un → u in H 1
0 (Ω) as n goes to infinity. Then, by (4.24), (4.25) and (4.38), we

get

R∗∗ � ‖u‖ � R∗∗ + 1, (4.43)

Jλ̄(u) � ε∗ (4.44)

and

〈Au,v − u〉 − λ̄

∫
Ω

u(v − u)dx −
∫
Ω

p(x,u)(v − u)dx � 0

for any v ∈ H 1
0 (Ω) with

∫
Ω

zP2v dx � 0. (4.45)

In particular, (4.45) holds for any v ∈ Ṽk−1 ⊕ V ⊥
j , whence

〈Au,v〉 − λ̄

∫
Ω

uv dx −
∫
Ω

p(x,u)v dx = 0, ∀v ∈ Ṽk−1 ⊕ V ⊥
j . (4.46)

It follows that u is a constrained critical point for the functional Jλ̄|Ṽk−1⊕V ⊥
j

. By (3)
of Lemma 4.3 we have that u ≡ 0, which contradicts (4.43).

Assertion (1) is therefore proved.
(2) We proceed by contradiction and we suppose that there exist ᾱ > 0, a sequence (�n)n

in ]0,+∞[ satisfying (4.35), a sequence (λ(n))n in R satisfying (4.22), two sequences of
Borel functions ψ1,n :Ω → [−∞,0] and ψ2,n :Ω → [0,+∞] satisfying (4.23) and a se-
quence (un)n in Kψn ∩ ∂M�n satisfying

‖un‖ � R∗∗ + 1,

(4.25) and (4.36).
Arguing as in the second part of (1), we can prove that un → u in H 1

0 (Ω), where u

is a constrained critical point for the functional Jλ̄|Ṽk−1⊕V ⊥
j

with ‖u‖ � R∗∗ + 1 and ᾱ �
Jλ̄(u) � ε∗. By (3) of Lemma 4.3 it follows that u ≡ 0, which is in contradiction with
Jλ̄(u) � ᾱ > 0.

Assertion (2) follows. Lemma 4.4 is completely proved. �

5. Existence of two solutions for (P) with low energy

In this section we will prove the existence of two distinct solutions u1 and u2 for the
variational inequality (P) characterized by the fact that the energy Jλ(ui) is small for
i = 1,2. For this purpose, we will apply Theorem 3.10 to the continuous functional Jλ,ψ .
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Theorem 5.1. Let 1 � k � j be such that λk−1 < λk = · · · = λj < λj+1. Then, for every
ε > 0, there exist η > 0, R > 0 and a compact set C ⊂ Ω such that, if λk − η � λ < λk

and ψ1 and ψ2 satisfy (ψR,C), problem (P) has at least two solutions u1 and u2 such that
0 < Jλ(ui) � ε, i = 1,2.

Proof. Let ε > 0. Let also R∗, R∗∗, η∗, ε∗ be as in Lemma 4.3 and �′, σ , R′ and C′ be as
in Lemma 4.4.

We will proceed by steps.
Step 1. There exist β > 0 and η > 0 such that, for every λ ∈ [λk − η,λk + η], we have

β � min{ε, ε∗, σ }, (5.1)

η � η∗, (5.2)

sup
{
Jλ(u): u ∈ Ṽk−1

}
� 0, (5.3)

sup
{
Jλ(u): u ∈ Ṽk−1 ⊕ span{ek, . . . , ej }, max

{‖P1u‖,‖P2u‖} = R∗} < 0, (5.4)

sup
{
Jλ(u): u ∈ Ṽk−1 ⊕ span{ek, . . . , ej }, max

{‖P1u‖,‖P2u‖} � R∗} < β. (5.5)

Proof. From (4.2) and (P4) we see that we can satisfy (5.3), while (5.4) follows from (1)
of Lemma 4.3. By (4.3) and (P4) we have that

Jλ(u) � λk − λ

2
‖u‖2

2 � η

2λ1
‖u‖2

for any u ∈ Ṽk−1 ⊕ span{ek, . . . , ej }. Then assertions (5.1) and (5.5) easily follow. Of
course, we can also satisfy (5.2). �

At this point, fix λ ∈ [λk − η,λk[.
Step 2. There exist r, r ′ > 0 and α > 0 such that r ′ < r < R∗ and

inf
{
Jλ(u): u ∈ span{ek, . . . , ej } ⊕ V ⊥

j , ‖u‖ = r
}

> α, (5.6)

sup
{
Jλ(u): u ∈ Ṽk−1 ⊕ span{ek, . . . , ej }, ‖P1u‖ � R∗,‖P2u‖ = r ′} < α. (5.7)

Proof. Since

〈Au,u〉 − λ

∫
Ω

u2 dx �
(

1 − λ

λk

)
〈Au,u〉, ∀u ∈ span{ek, . . . , ej } ⊕ V ⊥

j ,

by (4.8) there exist r ∈ ]0,R∗[ and α > 0 satisfying (5.6). By (5.3) there exists r ′ ∈ ]0, r[
satisfying (5.7). By (2) of Lemma 4.4 we have that there exist �α,σα > 0, Rα > 0
and a compact set Cα ⊂ Ω such that, if ψ1 and ψ2 satisfy (ψRα,Cα ) and � ∈ ]0, �α],
we have |d(Jλ,ψ |M�)|(u) > σα , for any u ∈ Kψ ∩ ∂M� with ‖u‖ � R∗∗ + 1 and α �
Jλ,ψ(u) � ε∗. �
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Now, fix � ∈ (0,min{�′, �α, r ′}).
Step 3. There exist ẽk, . . . , ẽj ∈ C∞

0 (Ω) such that

H 1
0 (Ω) = Ṽk−1 ⊕ span{ẽk, . . . , ẽj } ⊕ V ⊥

j , (5.8)

sup
{
Jλ(u): u ∈ ∂Ṽk−1⊕span{ẽk ,...,ẽj }Δ

}
< α, (5.9)

sup{Jλ(u): u ∈ Δ} < β, (5.10)

inf
{
Jλ(u): u ∈ span{ẽk, . . . , ẽj } ⊕ V ⊥

j , ‖u‖ = r
}

> α, (5.11)

Δ ⊂ M� ∩ BR∗∗(0), (5.12)

where Δ = {u ∈ Ṽk ⊕span{ẽk, . . . , ẽj }: ‖P̃1u‖ � R∗, r ′ � ‖P̃2u‖ � R∗} and P̃1:H 1
0 (Ω) →

Ṽk−1, P̃2 :H 1
0 (Ω) → span{ẽk, . . . , ẽj } and P̃3 :H 1

0 (Ω) → V ⊥
j are the projections associ-

ated with the (nonorthogonal) direct sum (5.8).

Proof. If we choose ẽk, . . . , ẽj close enough to ek, . . . , ej , respectively, and take into ac-
count the continuity of Jλ, then assertion (5.9) follows from (5.4) and (5.7), assertion (5.10)
from (5.5), while (5.8) is clear. Since Jλ is Lipschitz continuous on bounded sets, asser-
tion (5.11) follows from (5.6), while assertion (5.12) follows from (1) of Lemma 4.3 and
the fact that � < r ′. �

At this point, let E1 = Ṽk−1, E2 = span{ẽk, . . . , ẽj } and E3 = V ⊥
j . Let also B =

(H 1
0 (Ω) \ M�) ∩ E2 and observe that B is a bounded, convex, open neighborhood of 0

in E2 such that

M� = {
u ∈ H 1

0 (Ω): P̃2u /∈ B
}
.

Let C = C′ ∪ Cα ∪ ⋃j

i=1 supt(ẽi ) and let R > max{R′,Rα} be such that ‖u‖∞ � R when-
ever u ∈ Δ. If ψ1 :Ω → [−∞,0] and ψ2 :Ω → [0,+∞] are Borel functions satisfying
condition (ψR,C), then we clearly have

Δ ⊂ Kψ. (5.13)

Now let X = Kψ and consider the continuous functional Jλ,ψ :Kψ → R. By step 3 and
(5.13), we have that assumption (a) of Theorem 3.10 is satisfied.

Step 4. If we set U = X ∩ BR∗∗(0), we have that

Jλ,ψ satisfies (PS)c on U for every c ∈ R, (5.14)

inf
{∣∣d(Jλ,ψ |Kψ∩M)

∣∣(u): u ∈ U, P̃2u ∈ ∂B, α � Jλ,ψ(u) � β
}

> 0, (5.15)

∀u ∈ B1(U) \ U, α � Jλ,ψ(u) � β ⇒ |dJλ,ψ |(u) > β − α, (5.16)

∀u ∈ B1(U) \ U, α � Jλ,ψ(u) � β,

P̃2u ∈ ∂B ⇒ ∣∣d(Jλ,ψ |Kψ∩M)
∣∣(u) > β − α. (5.17)
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Proof. Let (un) be a (PS)c-sequence for Jλ,ψ with ‖un‖ � R∗∗. By (1) of Lemma 4.1,
there exists a sequence (ϕn)n in H−1(Ω) such that ‖ϕn‖H−1(Ω) → 0 as n → ∞ and

〈Aun, v − un〉 − λ

∫
Ω

un(v − un)dx −
∫
Ω

p(x,un)(v − un)dx

� 〈ϕn, v − un〉, ∀v ∈ Kψ. (5.18)

Since (un)n is bounded, it is weakly convergent, up to a subsequence, to some u ∈ Kψ .
Taking u as a test function in (5.18), we get by (P2)

lim sup
n→∞

〈Aun,un〉 � 〈Au,u〉.

By the weak lower semi-continuity of the norm, (5.14) follows.
Assertion (5.15) follows by (2) of Lemma 4.4. Finally, (5.1) and (1) of Lemma 4.4 easily

yield (5.16) and (5.17).
By (5.12) and step 4, we have that also assumption (b′) of Theorem 3.10 is satisfied. �
Step 5. The metric space X is locally contractible.

Proof. Being a convex subset of a normed space, X is an ANR, hence locally contractible
(see, e.g., [10]). �

Since also assumption (c) of Theorem 3.10 is satisfied, there exist two distinct critical
points u1 and u2 of Jλ,ψ such that Jλ,ψ(ui) ∈ [α,β], i = 1,2, hence with 0 < Jλ,ψ(ui) � ε.
From (1) of Lemma 4.1 we conclude that u1 and u2 are solutions of (P).

The proof of Theorem 5.1 is complete. �

6. The linking solution

In the first part of the section we will get the existence of a solution u for the prob-
lem (P) with energy Jλ(u) > 0 in a uniform way with respect to λ. In the second part we
will prove Theorem 2.1.

Let s be given by assumption (P2) and let Jλ, IKψ :Ls+1(Ω) → R ∪ {+∞} be the
functionals defined as

Jλ(u) =
{

Jλ(u) if u ∈ H 1
0 (Ω),

+∞ if u ∈ Ls+1(Ω) \ H 1
0 (Ω),

IKψ (u) =
{

0 if u ∈ Kψ,

+∞ if u ∈ Ls+1(Ω) \ Kψ.

We also set Jλ,ψ = Jλ + IKψ . First of all, we prove the following:
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Lemma 6.1. The following facts hold:

(1) for every u ∈ H 1
0 (Ω), we have |dJλ|(u) < +∞ if and only if Au ∈ L(s+1)′(Ω) and in

this case

|dJ λ|(u) = ∥∥Au − λu − p(x,u)
∥∥

(s+1)′ ;

(2) for every u ∈ Kψ with |dJ λ+ψ |(u) < +∞, there exists ϕ ∈ L(s+1)′(Ω) with

‖ϕ‖(s+1)′ � |dJ λ,ψ |(u)

such that

〈Au,v − u〉 − λ

∫
Ω

u(v − u)dx −
∫
Ω

p(x,u)(v − u)dx �
∫
Ω

ϕ(v − u)dx, ∀v ∈ Kψ.

Proof. We only prove assertion (2). The proof of (1) is similar and simpler. First of all,
observe that the functional A :Ls+1(Ω) → R ∪ {+∞} defined as

A(u) =
{

1
2 〈Au,u〉 if u ∈ Kψ,

+∞ if u ∈ Ls+1(Ω) \ Kψ,

is convex and lower semi-continuous, while the functional

u �→ λ

2

∫
Ω

u2 dx +
∫
Ω

P(x,u)dx

is of class C1 on Ls+1(Ω). From [7, Proposition 2.10 and Theorem 2.11] we deduce that
there exists ϕ ∈ L(s+1)′(Ω) with ‖ϕ‖(s+1)′ � |dJ λ,ψ |(u) and

ϕ + λu + p(x,u) ∈ ∂A(u),

where ∂ stands for the usual subdifferential of convex analysis. Then assertion (2) easily
follows. �

Now, we are able to prove the main result of this section.

Theorem 6.2. Let 1 � k � j be such that λk−1 < λk = · · · = λj < λj+1. Then, there exist
α > 0, η > 0, R > 0 and a compact set C ⊂ Ω such that, if λk − η � λ � λk + η, and
ψ1 and ψ2 satisfy (ψR,C), we have that problem (P) has at least one solution u such that
Jλ(u) � α.
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Proof. We will apply Theorem 3.11. First of all, let e1, . . . , ej+1 be the eigenfunctions
related to λ1, . . . , λj+1 and let V ⊥

j be as in Section 2. Let also

W =
{
u ∈ Ls+1(Ω):

∫
Ω

ueh dx = 0, ∀h = 1, . . . , j + 1

}
,

so that

Ls+1(Ω) = span{e1, . . . , ej+1} ⊕ W.

Now we will proceed by steps.
Step 1. There exist 0 < r < R∗ and α > 0 such that

inf
{
Jλk

(u): u ∈ span{ej+1} ⊕ W, ‖u‖s+1 = r
}

> α, (6.1)

sup
{
Jλk

(u): u ∈ span{e1, . . . , ej+1}, ‖u‖s+1 = R∗} < 0. (6.2)

Proof. Since

〈Au,u〉 − λk

∫
Ω

u2 dx �
(

1 − λk

λj+1

)
〈Au,u〉, ∀u ∈ V ⊥

j ,

by (4.8) and the continuous embedding of H 1
0 (Ω) into Ls+1(Ω), there exist r > 0 and

α > 0 satisfying (6.1). Then, by (2) of Lemma 4.2 there exists R∗ > r satisfying (6.2). �
Step 2. There exist ẽ1, . . . , ẽj+1 ∈ C∞

0 (Ω), η > 0 and β > 0 such that, for every λ ∈
[λk − η,λk + η], we have

Ls+1(Ω) = Ṽj ⊕ span{ẽj+1} ⊕ W, (6.3)

inf
{
Jλ(u): u ∈ span{ẽj+1} ⊕ W, ‖u‖s+1 = r

}
> α, (6.4)

sup
{
Jλ(u): u ∈ Ṽj , ‖u‖s+1 � R∗} < α, (6.5)

sup
{
Jλ(u): u ∈ Ṽj ⊕ span{ẽj+1}, ‖u‖s+1 = R∗} < 0, (6.6)

sup
{
Jλ(u): u ∈ Ṽj ⊕ span{ẽj+1}, ‖u‖s+1 � R∗} < β, (6.7)

where Ṽj is the j -dimensional space generated by {ẽ1, . . . , ẽj }.

Proof. If ẽh is close enough to eh, 1 � h � j + 1, and η is small enough, we have that
(6.3) holds, while (6.5) follows from (P4) and (6.4), (6.6) from (6.1), (6.2), respectively.
Of course, there exists β > 0 satisfying (6.7). So, step 2 is proved. �

Now let us fix λ ∈ [λk − η,λk + η].
Step 3. For every c ∈ R, the functional Jλ satisfies (PS)c.
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Proof. Let (un)n be a (PS)c-sequence for Jλ. We have that (J λ(un))n is bounded. More-
over, by Lemma 6.1 there exists (ϕn)n in L(s+1)′(Ω) such that ‖ϕn‖(s+1)′ → 0 as n goes
to infinity and

〈Aun, v〉 − λ

∫
Ω

unv dx −
∫
Ω

p(x,un)v dx =
∫
Ω

ϕnv dx, ∀v ∈ H 1
0 (Ω). (6.8)

Taking v = un as a test function in (6.8) and using (P4), by standard arguments we obtain
that (un)n is bounded in H 1

0 (Ω). Then, up to subsequences, (un)n strongly converges to
some u in Ls+1(Ω). �

Step 4. Let Q = {v + t ẽj+1: v ∈ Ṽj , t � 0, ‖v + t ẽj+1‖s+1 � R∗}. Then there exist
R∗∗ > 0 and � > 0 such that

Q ⊂ {
u ∈ Ls+1(Ω): ‖u‖s+1 < R∗∗}, (6.9)

|dJλ|(u) >
β − α

�
whenever u ∈ H 1

0 (Ω), α � Jλ(u) � β and ‖u‖s+1 � R∗∗.

(6.10)

Proof. By step 3, the set {u ∈ Ls+1(Ω): α � Jλ(u) � β, |dJ λ|(u) = 0} is compact.
Since Q also is compact, there exists R∗∗ > 0 satisfying (6.9) and

{
u ∈ Ls+1(Ω): α � Jλ(u) � β, |dJ λ|(u) = 0

} ⊂ {
u ∈ Ls+1(Ω): ‖u‖s+1 < R∗∗}.

(6.11)

To find � satisfying (6.10), assume for a contradiction that there exists a sequence (un)n in
H 1

0 (Ω) such that ‖un‖s+1 � R∗∗,

α � Jλ(un) � β (6.12)

for any n ∈ N and ∣∣dJ λ

∣∣(un) → 0 (6.13)

as n goes to infinity. Then, (un)n is a (PS)-sequence for Jλ. So, up to a subsequence, we
have that

Jλ(un) → c ∈ [α,β] (6.14)

and

un → u with ‖u‖s+1 � R∗∗ (6.15)
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as n goes to infinity. By (6.13) and Proposition 3.4 we deduce that |dGJλ
|(un, J λ(un)) → 0

as n goes to infinity. Remark 3.2 and (6.14) easily yield that

|dGJλ
|(u, c) = 0. (6.16)

On the other hand, by [7, Theorem 3.13] we have |dGJλ
|(u, t) = 1 whenever Jλ(u) < t .

It follows that Jλ(u) = c. Using again Proposition 3.4 and (6.16) we obtain that
|dJλ|(u) = 0. Then, u is a critical point for Jλ such that ‖u‖s+1 � R∗∗ and α � Jλ(u) � β .
This contradicts (6.11). Then, step 4 is proved. �

Now, let U = {u ∈ Ls+1(Ω): ‖u‖s+1 < R∗∗}. We apply Theorem 3.11 to the lower
semicontinuous functional Jλ,ψ :Ls+1(Ω) → R ∪ {+∞}.

Step 5. There exist R′ > 0 and a compact set C′ ⊂ Ω such that, if ψ1 and ψ2 satisfy
(ψR′,C′), we have that

∀u ∈ B�(U) \ U, α � Jλ,ψ(u) � β ⇒ |dJ λ,ψ |(u) >
β − α

�
.

Proof. We argue by contradiction and we suppose that there exist two sequences of Borel
functions ψ1,n :Ω → [−∞,0] and ψ2,n :Ω → [0,+∞] such that

ψ1,n(x) � −n < n � ψ2,n(x) cap. q.e. on Cn :=
{
x ∈ R

N : d(x,R
N \ Ω) � 1

n

}
(6.17)

and a sequence (un)n in Kψn such that

R∗∗ � ‖un‖s+1 < R∗∗ + �, (6.18)

α � Jλ,ψn(un) � β, (6.19)

and |dJ λ,ψn |(un) � β−α
�

. By (2) of Lemma 6.1, we deduce that there exists ϕn ∈
L(s+1)′(Ω) such that

‖ϕn‖L(s+1)′ (Ω)
� β − α

�
(6.20)

and

〈Aun, v − un〉 − λ

∫
Ω

un(v − un)dx −
∫
Ω

p(x,un)(v − un)dx

�
∫

ϕn(v − un)dx, ∀v ∈ Kψn. (6.21)
Ω
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By (6.18) we have that (un)n is bounded in Ls+1(Ω). By (P2) and (6.19) we deduce that
(un)n is bounded in H 1

0 (Ω). Then, up to subsequences, there exists u in H 1
0 (Ω) such that

un → u in Ls+1(Ω) and un
w→ u in H 1

0 (Ω) as n tends to infinity.
Let v̄ ∈ C∞

0 (Ω). By (6.17) we have that ψ1,n � v̄ � ψ2,n cap. q.e. in Ω for n sufficiently
large. Then we can take v̄ as a test function in (6.21), obtaining

〈Aun,un〉 � 〈Aun, v̄〉 − λ

∫
Ω

un(v̄ − un)dx −
∫
Ω

p(x,un)(v − un)dx

−
∫
Ω

ϕn(v̄ − un)dx, (6.22)

for any v̄ ∈ C∞
0 (Ω) and n sufficiently large. Moreover, there exists ϕ in L(s+1)′(Ω) such

that ‖ϕ‖(s+1)′ � β−α
�

and ϕn
w→ ϕ in L(s+1)′(Ω) as n goes to infinity. Passing to the upper

limit in (6.22), we get

lim sup
n→∞

〈Aun,un〉 � 〈Au, v̄〉 − λ

∫
Ω

u(v̄ − u)dx −
∫
Ω

p(x,u)(v̄ − u)dx + 〈ϕ, v̄ − u〉,

(6.23)

for any v̄ ∈ C∞
0 (Ω). By density we get that (6.23) holds for any v̄ ∈ H 1

0 (Ω). In particular,
we can take v̄ = u in (6.23). So, by the weak lower semi-continuity of the norm we obtain
that un → u in H 1

0 (Ω) as n goes to infinity. Moreover, by (6.18) and (6.19) have that
R∗∗ � ‖u‖ � R∗∗ + � and α � Jλ(u) � β . Finally, (6.23) yields

〈Au,u〉 � 〈Au,v〉 − λ

∫
Ω

u(v − u)dx −
∫
Ω

p(x,u)(v − u)dx

+ 〈ϕ, v̄ − u〉, ∀v ∈ H 1
0 (Ω),

whence Au − λu − p(x,u) = ϕ. By (1) of Lemma 6.1 it follows that |dJλ|(u) � β−α
�

and
this fact contradicts step 4. Then, step 5 is proved. �

At this point, let C = C′ ∪ ⋃j+1
i=1 supt(ẽi ) where C′ and Cα are those of Lemma 4.4,

and let R > R′ be such that ‖u‖∞ � R whenever u ∈ Q. If ψ1 and ψ2 satisfy condition
(ψR,C), then we clearly have Q ⊂ Kψ . So, by (6.5)–(6.7) it follows

sup
{
Jλ,ψ(u): u ∈ ∂Ṽj ⊕span{ẽj+1}Q

}
< α,

sup
{
Jλ,ψ(u): u ∈ Q

}
< β.

Taking into account also (6.4), we can infer that the functional Jλ,ψ satisfies assumption
(a) of Theorem 3.11 with E− = Ṽj and E+ = span{ẽj+1} ⊕ W .
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Step 6. For every c ∈ R, Jλ,ψ satisfies (PS)c on U . Moreover, we have that

|dGJλ,ψ
|(u, t) = 1 whenever Jλ,ψ(u) < t. (6.24)

Proof. Let (un)n be a (PS)c-sequence for Jλ,ψ on U . We have that

‖un‖s+1 � R∗∗ (6.25)

for any n ∈ N, and

Jλ,ψ(un) → c (6.26)

and

|dJ λ,ψ |(un) → 0 (6.27)

as n goes to infinity. By (6.25), (P2) and (6.26) we deduce that (un)n is bounded in H 1
0 (Ω),

hence convergent, up to a subsequence, in Ls+1(Ω). On the other hand, property (6.24)
directly follows from [7, Theorem 3.13]. Then, step 6 is proved. �

Since also assumption (b) of Theorem 3.11 is satisfied, there exists a critical point u

of Jλ,ψ such that Jλ,ψ(u) ∈ [α,β]. Therefore, u ∈ Kψ and by (2) of Lemma 6.1 we con-
clude that u is a solution of problem (P). �

Let us observe that Theorem 2.1 now easily follows from Theorems 5.1 and 6.2.

Remark 6.3. While in Section 5 we have considered the continuous functional Jλ,ψ , tak-
ing as reference the H 1

0 (Ω)-metric, here the same approach would have caused a further
compactness difficulty. More precisely, in the proof of step 5 of Theorem 6.2, it is not clear
how to manage the term 〈ϕn,un〉 if one only knows that (un)n is weakly convergent to u

in H 1
0 (Ω) and (ϕn)n is weakly convergent to ϕ in H−1(Ω). On the contrary, the use of

the Ls+1(Ω)-metric forces to consider the lower semicontinuous functional Jλ,ψ , but now
(ϕn)n is weakly convergent to ϕ in L(s+1)′(Ω), while (un)n is still bounded in H 1

0 (Ω),
hence strongly convergent, up to a subsequence, in Ls+1(Ω). In these conditions the term
〈ϕn,un〉 can be easily handled.

Remark 6.4. Actually, following the same proof of Theorem 6.2, one can state a more pre-
cise assertion. Namely, that, for every ε > 0, there exist α > 0, η > 0, R > 0 and a compact
set C ⊂ Ω such that, if λk −η � λ � λj+1 − ε and ψ1 and ψ2 satisfy (ψR,C), we have that
problem (P) has at least one solution u such that Jλ(u) � α.

This is an improvement of a result of [18], concerning the existence of a nontrivial
solution for problem (P).
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