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1. Introduction and main results

Let us consider the problem{
−div(Ψ′(∇u)) = λu + |u|2∗−2u in Ω ,

u = 0 on ∂Ω ,
(P)

where λ is a real parameter, Ω is a bounded open subset of R
N , N ≥ 4, and

2∗ = 2N
N−2 is the critical Sobolev exponent for the embedding of H1

0 (Ω) in Lp(Ω).
Moreover, assume that Ψ : R

N → R is a convex function of class C1 satisfying the
following conditions:

lim
ξ→0

Ψ(ξ)
|ξ|2 =

1
2

; (Ψ1)

lim
|ξ|→∞

Ψ′(ξ) · ξ
|ξ|2 = 1 ; (Ψ2)

Ψ(ξ) ≤ 1
2
|ξ|2 for every ξ ∈ R

N . (Ψ3)

Let us also denote by (λk) the eigenvalues of −Δ with homogeneous Dirichlet
boundary condition. It is easily seen that (Ψ1) implies Ψ′(0) = 0. Therefore prob-
lem (P) possesses the trivial solution u = 0.
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Figure 1

Problem (P) can be treated by variational techniques. Indeed, weak solu-
tions u of (P) can be found as critical points of the C1 functional J : H1

0 (Ω) → R

defined as

J(u) =
∫

Ω

Ψ(∇u) dx − λ

2

∫
Ω

u2 dx − 1
2∗

∫
Ω

|u|2∗
dx . (1.1)

In the typical case Ψ(ξ) = 1
2 |ξ|2, there is now a wide literature on problem (P),

starting from [3]. The key point here is that, although Ψ shares some properties
with this typical case, there is no assumption of strict convexity with respect to ξ.

For instance, one could consider (see Figure 1)

Ψ(ξ) = ψ(ξ1) +
1
2

N∑
j=2

ξ2
j , (1.2)

where

ψ(t) =

⎧⎪⎨
⎪⎩

1
2 t2 if |t| < 1 ,
|t| − 1

2 if 1 ≤ |t| ≤ 2 ,
1
2 |t|2 − |t| + 3

2 if |t| > 2 .

If we look at the principal part of J as the energy stored in the deformation u,
this means that the material has a plastic behavior when 1 ≤ |D1u| ≤ 2. We refer
the reader to [10, Chapter 6] for a discussion of several models of plasticity.

From a variational point of view, the effect is a lack of compactess even
stronger than in the usual case. For instance, in the case of (1.2), suppose that u
is a critical point of J with 5/4 < D1u < 7/4 on some open subset ω of Ω. There
exists a sequence (vn) in H1

0 (Ω) such that supt vn ⊂ ω, |D1vn| ≤ 1/4, Djvn → 0 in
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L2(Ω) for j ≥ 2, vn → 0 in L∞(Ω), but (vn) is not strongly precompact in H1
0 (Ω).

Then (u + vn) is a Palais–Smale sequence just at the critical level J(u) which is
not strongly precompact in H1

0 (Ω). On the other hand, there is no way to prevent
an interaction between the area where Ψ fails to be strictly convex and the values
of ∇u.

Let us mention that, in the subcritical case, (nonsmooth) variational methods
for functionals with lack of strict convexity have been successfully applied in [6].

Our first purpose is to extend the main result of [3] to the setting of prob-
lem (P).

Theorem 1.1. Let N ≥ 4 and let Ψ : R
N → R be a convex function of class C1

satisfying (Ψ1)–(Ψ3). Then, for every λ ∈]0, λ1[, problem (P) admits a nontrivial
and nonnegative weak solution u ∈ H1

0 (Ω).

Then we will also extend the result of [4].

Theorem 1.2. Let Ψ : R
N → R be a convex function of class C1 satisfying (Ψ1)–

(Ψ3) and let λ > 0. Moreover, suppose that either:

(a) N ≥ 5;

or

(b) N ≥ 4 and λ �= λk for every k ≥ 1.

Then problem (P) admits a nontrivial weak solution u ∈ H1
0 (Ω).

For proving both results, we will construct in a standard way a Palais–Smale
sequence (un) for J . Then we will show that, up to a subsequence, (un) is weakly
convergent in H1

0 (Ω) to a nontrivial solution u of (P), even if there is no hope to
ensure the strong convergence in H1

0 (Ω). In order to prove that the weak limit is
a solution of (P), we will show in Lemma 2.2 a variant of the main result of [2, 5]
which can be of independent interest.

From now on, ‖ · ‖p will denote the usual norm in Lp and ‖ · ‖ the H1
0 -norm

defined as ‖u‖ = ‖∇u‖2.

2. Some convergence properties for convex functions

This section deals with some results of convergence for convex functions.
We point out that, by a simple extension of Hôpital’s theorem, (Ψ2) implies

that

lim
|ξ|→∞

2Ψ(ξ)
|ξ|2 = 1 . (2.1)

In turn, (Ψ2) and (2.1) yield that

lim
|ξ|→∞

1
2Ψ′(ξ) · ξ − Ψ(ξ)

|ξ|2 = 0 . (2.2)
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On the other hand, (Ψ1), (2.1) and the convexity of Ψ imply that Ψ(0) = 0,
Ψ′(0) = 0 and that there exists μ > 0 such that

Ψ(ξ) ≥ μ|ξ|2 ∀ξ ∈ R
N . (2.3)

Since
0 = Ψ(0) ≥ Ψ(ξ) − Ψ′(ξ) · ξ ,

it easily follows that

Ψ′(ξ) · ξ ≥ μ|ξ|2 ∀ξ ∈ R
N , (2.4)

|Ψ′(ξ)| ≥ μ|ξ| ∀ξ ∈ R
N . (2.5)

We also have

Ψ(ξ + |ξ|ν) ≥ Ψ(ξ) + |ξ|Ψ′(ξ) · ν ∀ξ, ν ∈ R
N with |ν| = 1 .

Combining this fact with (2.3), (Ψ1) and (2.1), we deduce that there exists M > 0
such that

|Ψ′(ξ)| ≤ M |ξ| ∀ξ ∈ R
N . (2.6)

Lemma 2.1. Let Ψ : R
N → R be a convex function of class C1, let (ξk) be a

sequence in R
N and let ξ ∈ R

N be such that

lim
k→∞

(
Ψ′(ξk) − Ψ′(ξ)

)
· (ξk − ξ) = 0 .

Then (Ψ′(ξk)) is convergent to Ψ′(ξ).

Proof. By substituting Ψ with Ψ̃(ζ) = Ψ(ζ) − Ψ′(ξ) · ζ, we may suppose, without
loss of generality, that ξ is a minimum of Ψ. By contradiction, assume that, up
to a subsequence, there exists δ > 0 such that |Ψ′(ξk)| > δ for every k ∈ N. Let
tk ∈]0, 1[ be such that |Ψ′((1− tk)ξ+ tkξk)| = δ and let ζk = (1− tk)ξ+ tkξk. Up to
a subsequence, (Ψ′(ζk)) is convergent to some α ∈ R

N with |α| = δ. As Ψ′(ξ) = 0,
we have

0 ≤ Ψ′(ζk) · (ζk − ξ) = tk Ψ′(ζk) · (ξk − ξ)

=
tk

1 − tk
Ψ′(ζk) · (ξk − ζk) ≤ tk

1 − tk
Ψ′(ξk) · (ξk − ζk)

= tk Ψ′(ξk) · (ξk − ξ) ,

whence
lim

k→∞
Ψ′(ζk) · (ζk − ξ) = 0 . (2.7)

On the other hand, the convexity of Ψ also implies that

Ψ(ξ) ≥ Ψ(ζk) + Ψ′(ζk) · (ξ − ζk) .

Combining this fact with (2.7) and the minimality of ξ, we infer that

lim
k→∞

Ψ(ζk) = Ψ(ξ) .

For every η ∈ R
N , we also have

Ψ(η) ≥ Ψ(ζk) + Ψ′(ζk) · (η − ζk) = Ψ(ζk) + Ψ′(ζk) · (η − ξ) + Ψ′(ζk) · (ξ − ζk) .



Vol. 15 (2008) An Existence Result for a Problem with Critical Growth . . . 721

Passing to the limit as k → ∞, we get

Ψ(η) ≥ Ψ(ξ) + α · (η − ξ) ∀η ∈ R
N .

Since α �= 0, this contradicts the fact that ξ is a minimum of Ψ and Ψ is of
class C1. �

In the next result we adapt to our setting the main theorem of [2, 5].

Lemma 2.2. Let Ψ : R
N → R be a convex function of class C1 satisfying (2.6). Let

(uk) be a sequence weakly convergent to u in H1
0 (Ω) such that

−div
(
Ψ′(∇uk)

)
= μk + wk in H−1(Ω) ,

where (wk) is a sequence strongly convergent in H−1(Ω) and (μk) is a sequence in
H−1(Ω) such that

sup
{
|〈μk, v〉| : k ∈ N, v ∈ C∞

c (Ω), ‖v‖∞ ≤ 1, supt v ⊆ K
}

< +∞ ∀K ⊂⊂ Ω .
(2.8)

Then there exists a subsequence (ukn
) such that

lim
n→∞

Ψ′(∇ukn
(x)

)
= Ψ′(∇u(x)

)
a.e in Ω .

Proof. Following the proof of [5, Theorem 5] with fk = wk and bk(x, ξ) = b(x, ξ) =
Ψ′(ξ), it turns out that there exists a subsequence (ukn

) such that

lim
n→∞

(
Ψ′(∇ukn

(x)
)
− Ψ′(∇u(x)

))
·
(
∇ukn

(x) −∇u(x)
)

= 0 a.e. in Ω .

Actually, for this conclusion the assumption that b(x, · ) is strictly monotone is
not used in [5].

By Lemma 2.1 the assertion follows. �

Lemma 2.3. Let Ψ : R
N → R be a convex function of class C1 and let (uk) be a

sequence weakly convergent to u in H1
0 (Ω).

(a) If (Ψ′(∇uk(x))) is convergent to Ψ′(∇u(x)) a.e in Ω and we have

lim sup
|ξ|→∞

1
2Ψ′(ξ) · ξ − Ψ(ξ)

|ξ|2 ≤ 0 , (2.9)

then

lim sup
k→∞

∫
Ω

[
1
2

Ψ′(∇uk) · ∇uk − Ψ(∇uk)
]

dx ≤
∫

Ω

[
1
2

Ψ′(∇u) · ∇u − Ψ(∇u)
]

dx .

(b) If (∇uk(x)) is convergent to ∇u(x) a.e in Ω and we have

lim inf
|ξ|→∞

Ψ′(ξ) · ξ
|ξ|2 ≥ 1 , (2.10)

then

lim inf
k→∞

∫
Ω

[
Ψ′(∇uk) · ∇uk − |∇uk|2

]
dx ≥

∫
Ω

[
Ψ′(∇u) · ∇u − |∇u|2

]
dx .
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Proof. Let us prove assertion (a). By (2.9) there exists C > 0 such that

1
2
Ψ′(ξ) · ξ − Ψ(ξ) ≤ |ξ|2 + C ∀ξ ∈ R

N . (2.11)

Moreover, given ε > 0, there exists Kε > 0 such that

1
2
Ψ′(ξ) · ξ − Ψ(ξ) ≤ ε|ξ|2 whenever |Ψ′(ξ)| ≥ Kε . (2.12)

Consider K ≥ Kε such that

the set
{

x ∈ Ω :
∣∣Ψ′(∇u(x)

)∣∣ = K
}

is negligible . (2.13)

Apart from a countable set, each K ≥ Kε satisfies (2.13). If we denote
by χA the characteristic function of the set A, it follows that the sequence
(χ{|Ψ′(∇uk)|<K}Ψ′(∇uk)) is convergent to χ{|Ψ′(∇u)|<K}Ψ′(∇u) a.e. in Ω, hence
strongly in L2(Ω; RN ). Therefore we have

lim
k→∞

∫
Ω

χ{|Ψ′(∇uk)|<K}Ψ′(∇uk) · ∇uk dx

=
∫

Ω

χ{|Ψ′(∇u)|<K}Ψ′(∇u) · ∇u dx . (2.14)

Since also the sequence (χ{|Ψ′(∇uk)|<K}) is convergent to χ{|Ψ′(∇u)|<K} strongly in
L2(Ω), we can apply the result of [8] to the integrand f(x, s, ξ) = min{|s|, 1}Ψ(ξ),
obtaining

lim inf
k→∞

∫
Ω

χ{|Ψ′(∇uk)|<K}Ψ(∇uk) dx = lim inf
k→∞

∫
Ω

f(x, χ{|Ψ′(∇uk)|<K},∇uk) dx

≥
∫

Ω

f(x, χ{|Ψ′(∇u)|<K},∇u) dx

=
∫

Ω

χ{|Ψ′(∇u)|<K}Ψ(∇u) dx . (2.15)

Combining (2.14) and (2.15), we infer that

lim sup
k→∞

∫
{|Ψ′(∇uk)|<K}

[
1
2

Ψ′(∇uk) · ∇uk − Ψ(∇uk)
]

dx

≤
∫
{|Ψ′(∇u)|<K}

[
1
2

Ψ′(∇u) · ∇u − Ψ(∇u)
]

dx .

On the other hand, by (2.12) we have∫
{|Ψ′(∇uk)|≥K}

[
1
2

Ψ′(∇uk) · ∇uk − Ψ(∇uk)
]

dx ≤ ε‖∇uk‖2
2 ,



Vol. 15 (2008) An Existence Result for a Problem with Critical Growth . . . 723

hence

lim sup
k→∞

∫
Ω

[
1
2

Ψ′(∇uk) · ∇uk − Ψ(∇uk)
]

dx

≤ ε sup
k∈N

‖∇uk‖2
2 +

∫
{|Ψ′(∇u)|<K}

[
1
2

Ψ′(∇u) · ∇u − Ψ(∇u)
]

dx (2.16)

for every K ≥ Kε satisfying (2.13). By (2.11) and the monotone convergence
theorem, we have

lim
K→+∞

∫
{|Ψ′(∇u)|<K}

[
1
2

Ψ′(∇u) · ∇u − Ψ(∇u)
]

dx

=
∫

Ω

[
1
2

Ψ′(∇u) · ∇u − Ψ(∇u)
]

dx .

Combining this fact with (2.16), we get

lim sup
k→∞

∫
Ω

[
1
2

Ψ′(∇uk) · ∇uk − Ψ(∇uk)
]

dx

≤ ε sup
k∈N

‖∇uk‖2
2 +

∫
Ω

[
1
2

Ψ′(∇u) · ∇u − Ψ(∇u)
]

dx

and assertion (a) follows by the arbitrariness of ε.
The proof of assertion (b) is similar and even simpler, as

lim
k→∞

∫
{|∇uk|<K}

[
Ψ′(∇uk) · ∇uk−|∇uk|2

]
dx =

∫
{|∇u|<K}

[
Ψ′(∇u) · ∇u−|∇u|2

]
dx

whenever the set {x ∈ Ω : |∇u(x)| = K} is negligible. �

3. Existence of a nonnegantive, nontrivial solution

In this section we prove Theorems 1.1 and 1.2.
The functional J defined in (1.1) is of class C1 on H1

0 (Ω) by (2.6).
Since Ψ′(0) = 0, of course 0 is a solution of (P). Therefore we are interested

in nontrivial solutions. In order to find nonnegative solutions of (P), we consider
the modified functional J : H1

0 (Ω) → R defined as

J(u) =
∫

Ω

Ψ(∇u) dx − λ

2

∫
Ω

(u+)2 dx − 1
2∗

∫
Ω

(u+)2
∗
dx .

Of course, J also is of class C1.

Proposition 3.1. Let Ψ : R
N → R be a convex function of class C1 satisfying (2.4),

with μ > 0, and (2.6). Then each critical point u ∈ H1
0 (Ω) of J is a nonnegative

solution of (P).
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Proof. We have

μ

∫
Ω

|∇u−|2 dx ≤
∫

Ω

Ψ′(∇u) · (−∇u−) dx

= λ

∫
Ω

u+(−u−) dx +
∫

Ω

(u+)2
∗−1(−u−) dx = 0 ,

whence the assertion. �

Proof of Theorem 1.1. We aim to apply to J the mountain pass theorem [1, 9].
First of all, let us observe that, by (Ψ1), we have∫

Ω
Ψ(∇u) dx∫

Ω
|∇u|2 dx

→ 1
2

as u → 0 in H1
0 (Ω) .

Then, as in the case Ψ(ξ) = 1
2 |ξ|2 treated in [3], we deduce that there exist � > 0

and α > 0 such that J(u) ≥ α whenever ‖u‖ = �. On the other hand, there exists
e ∈ H1

0 (Ω) with e ≥ 0 a.e. in Ω such that

lim
t→+∞

J(te) = −∞ ,

sup
{
J(te) : t ≥ 0

}
<

1
N

S
N
2 ,

where

S = inf
{∫

Ω

|∇u|2 dx : u ∈ H1
0 (Ω) , ‖u‖2∗ = 1

}
.

Again, this is proved in [3] in the case Ψ(ξ) = 1
2 |ξ|2, but by (Ψ3) the assertion is

true also in our case.
By the mountain pass theorrem, there exist a sequence (uk) in H1

0 (Ω) and a
sequence (wk) in H−1(Ω) strongly convergent to 0 such that∫

Ω

Ψ′(∇uk) · ∇v dx − λ

∫
Ω

u+
k v dx −

∫
Ω

(u+
k )2

∗−1v dx = 〈wk, v〉 ∀v∈H1
0 (Ω) ,

(3.1)

lim
k→∞

(∫
Ω

Ψ(∇uk) dx − λ

2

∫
Ω

(u+
k )2 dx − 1

2∗

∫
Ω

(u+
k )2

∗
dx

)
= c∈

[
α,

1
N

S
N
2

[
. (3.2)

From (3.1), we get∫
Ω

Ψ′(∇uk) · ∇uk dx − λ

∫
Ω

(u+
k )2 dx −

∫
Ω

(u+
k )2

∗
dx = 〈wk, uk〉 . (3.3)

We claim that (uk) is bounded in H1
0 (Ω). By contradiction, up to a subsequence

we may assume that ‖uk‖ → ∞. From (3.2) it follows that

lim
k→∞

[∫
Ω

Ψ(∇uk) dx

‖uk‖2∗ −
λ

∫
Ω
(u+

k )2 dx

2‖uk‖2∗ − 1
2∗

∫
Ω

(
u+

k

‖uk‖

)2∗

dx

]
= 0 .
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By (Ψ3) we deduce that (u+
k /‖uk‖) is convergent to 0 strongly in L2∗

(Ω) and
weakly in H1

0 (Ω). On the other hand, by (3.2) and (3.3) we have∫
Ω

[
(2∗ − 2) Ψ(∇uk)+

(
2Ψ(∇uk)−Ψ′(∇uk) · ∇uk

)]
dx−λ

(
2∗

2
− 1

) ∫
Ω

(u+
k )2 dx

= 2∗c − 〈wk, uk〉 + o(1) .

By (2.2) and (2.3) it follows that there exist μ̃ > 0 and C ∈ R such that

μ̃

∫
Ω

|∇uk|2 dx ≤ λ

(
2∗

2
− 1

) ∫
Ω

(u+
k )2 dx + C ,

whence

μ̃ ≤ λ

(
2∗

2
− 1

) ∫
Ω

(
u+

k

‖uk‖

)2

dx + o(1) .

Since (u+
k /‖uk‖) is strongly convergent to 0 in L2(Ω), a contradiction follows.

Therefore (uk) is bounded in H1
0 (Ω), hence convergent, up to a subsequence, to

some u weakly in H1
0 (Ω) and strongly in L2(Ω).

If we set
μk = λu+

k + (u+
k )2

∗−1 ,

we have that (μk) is bounded in L
2N

N+2 (Ω), in particular (2.8) is satisfied. By
Lemma 2.2 we have that, up to a further subsequence,

lim
k→∞

Ψ′(∇uk(x)
)

= Ψ′(∇u(x)
)

a.e in Ω .

In particular, (Ψ′(∇uk)) is convergent to Ψ′(∇u) weakly in L2(Ω; RN ).
Passing to the limit as k → ∞ in (3.1), we get that∫

Ω

Ψ′(∇u) · ∇v dx − λ

∫
Ω

u+v dx −
∫

Ω

(u+)2
∗−1v dx = 0 ∀v ∈ H1

0 (Ω) ,

namely that u is a critical point of J , hence a nonnegative weak solution of (P)
by Proposition 3.1.

It is left to prove that u is not trivial. Arguing by contradiction, let us assume
that u = 0 a.e. in Ω. Since (2.2) implies (2.9), from Lemma 2.3 we deduce that

lim sup
k→∞

∫
Ω

[
1
2
Ψ′(∇uk) · ∇uk − Ψ(∇uk)

]
dx ≤ 0 .

Then from(
1
2
− 1

2∗

)∫
Ω

(u+
k )2

∗
dx = J(uk)+

∫
Ω

[
1
2
Ψ′(∇uk) · ∇uk − Ψ(∇uk)

]
dx−1

2
〈wk, uk〉 ,

we get
1
N

∫
Ω

(u+
k )2

∗
dx ≤ J(uk) + o(1) .
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On the other hand, by (2.5) we have that (∇uk(x)) is convergent to 0 a.e. in Ω.
Since (Ψ2) implies (2.10), from Lemma 2.3 we deduce that

lim inf
k→∞

∫
Ω

[
Ψ′(∇uk) · ∇uk − |∇uk|2

]
dx ≥ 0 .

Then we have∫
Ω

|∇uk|2 dx ≤
∫

Ω

Ψ′(∇uk) · ∇uk dx + o(1)

=
∫

Ω

(u+
k )2

∗
dx + o(1)

≤
(∫

Ω

(u+
k )2

∗
dx

) 2∗−2
2∗

(∫
Ω

|uk|2
∗
dx

) 2
2∗

+ o(1)

≤ 1
S

(
NJ(uk)

) 2
N

∫
Ω

|∇uk|2 dx + o(1) .

Combining this fact with (3.2), we deduce that (uk) is convergent to 0 strongly in
H1

0 (Ω). In turn, this implies that c = 0, while (3.2) asserts that c > 0. Therefore u
is not trivial and the proof is complete. �

4. Existence of a nontrivial solution

In this section we are concerned with the existence of (possibly sign-changing)
nontrivial solutions u of (P). Let (λk) denote the sequence of the eigenvalues of
−Δ with homogeneous Dirichlet condition, repeated according to multiplicity. We
will prove the second result stated in the introduction.

Proof of Theorem 1.2. Since the case 0 < λ < λ1 is already contained in Theo-
rem 1.1, we may assume that λ ≥ λ1. Let k ≥ 1 be such that λk ≤ λ < λk+1

and let e1, . . . , ek be eigenfunctions of −Δ associated to λ1, . . . , λk, respectively.
Finally, let E− = span{e1, ..., ek} and E+ = E⊥

− .
Consider the functional J defined in (1.1). We aim to apply the linking the-

orem [9]. Since ∫
Ω

Ψ(∇u) dx∫
Ω
|∇u|2 dx

→ 1
2

as u → 0 in H1
0 (Ω) ,

as in the case Ψ(ξ) = 1
2 |ξ|2 treated in [4], we deduce that there exist � > 0 and

α > 0 such that J(u) ≥ α whenever u ∈ E+ with ‖u‖ = �. On the other hand,
there exists e ∈ H1

0 (Ω) \ E− such that

lim
‖u‖→∞

u∈Re⊕E−

J(u) = −∞ ,

sup
{
J(te + v) : t ≥ 0 , v ∈ E−

}
<

1
N

S
N
2 .
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Again, this is proved in [4] in both cases (a) and (b) (in case (a), the condition
N ≥ 5 needs to be required, see also [7, Corollary 1]) when Ψ(ξ) = 1

2 |ξ|2, but by
(Ψ3) the assertion is true also in our case. Finally, it is clear that J(u) ≤ 0 for
every u ∈ E−.

By the linking theorem, there exist a sequence (uk) in H1
0 (Ω) and a sequence

(wk) in H−1(Ω) strongly convergent to 0 such that∫
Ω

Ψ′(∇uk) · ∇v dx − λ

∫
Ω

ukv dx −
∫

Ω

|uk|2
∗−2ukv dx = 〈wk, v〉 ∀v ∈ H1

0 (Ω) ,

lim
k→∞

(∫
Ω

Ψ(∇uk) dx − λ

2

∫
Ω

u2
k dx − 1

2∗

∫
Ω

|uk|2
∗
dx

)
= c ∈

[
α,

1
N

S
N
2

[
.

At this point, we can continue, up to minor changes, as in the proof of Theo-
rem 1.1. In particular, (uk) is bounded in H1

0 (Ω), hence weakly convergent, up
to a subsequence, to some weak solution u of (P). Moreover u turns out to be
nontrivial. �
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