An Existence Result for a Problem with Critical Growth and Lack of Strict Convexity

Paola Magrone

Abstract

We prove the existence of a nontrivial solution for a quasilinear elliptic equation involving a nonlinearity having critical growth and a convex principal part, which is not required to be strictly convex.

Mathematics Subject Classification (2000). 35J65, 58E05.
Keywords. Critical growth, linking theorem, nontrivial solution.

1. Introduction and main results

Let us consider the problem

$$
\begin{cases}-\operatorname{div}\left(\Psi^{\prime}(\nabla u)\right)=\lambda u+|u|^{2^{*}-2} u & \text { in } \Omega \tag{P}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where λ is a real parameter, Ω is a bounded open subset of $\mathbb{R}^{N}, N \geq 4$, and $2^{*}=\frac{2 N}{N-2}$ is the critical Sobolev exponent for the embedding of $H_{0}^{1}(\Omega)$ in $L^{p}(\Omega)$. Moreover, assume that $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a convex function of class C^{1} satisfying the following conditions:

$$
\begin{align*}
\lim _{\xi \rightarrow 0} \frac{\Psi(\xi)}{|\xi|^{2}} & =\frac{1}{2} \tag{1}\\
\lim _{|\xi| \rightarrow \infty} \frac{\Psi^{\prime}(\xi) \cdot \xi}{|\xi|^{2}} & =1 \tag{2}\\
\Psi(\xi) & \leq \frac{1}{2}|\xi|^{2} \quad \text { for every } \quad \xi \in \mathbb{R}^{N} . \tag{3}
\end{align*}
$$

Let us also denote by $\left(\lambda_{k}\right)$ the eigenvalues of $-\Delta$ with homogeneous Dirichlet boundary condition. It is easily seen that $\left(\Psi_{1}\right)$ implies $\Psi^{\prime}(0)=0$. Therefore problem (\mathcal{P}) possesses the trivial solution $u=0$.

[^0]

Figure 1

Problem (\mathcal{P}) can be treated by variational techniques. Indeed, weak solutions u of (\mathcal{P}) can be found as critical points of the C^{1} functional $J: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
J(u)=\int_{\Omega} \Psi(\nabla u) d x-\frac{\lambda}{2} \int_{\Omega} u^{2} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \tag{1.1}
\end{equation*}
$$

In the typical case $\Psi(\xi)=\frac{1}{2}|\xi|^{2}$, there is now a wide literature on problem (\mathcal{P}), starting from [3]. The key point here is that, although Ψ shares some properties with this typical case, there is no assumption of strict convexity with respect to ξ.

For instance, one could consider (see Figure 1)

$$
\begin{equation*}
\Psi(\xi)=\psi\left(\xi_{1}\right)+\frac{1}{2} \sum_{j=2}^{N} \xi_{j}^{2}, \tag{1.2}
\end{equation*}
$$

where

$$
\psi(t)= \begin{cases}\frac{1}{2} t^{2} & \text { if }|t|<1 \\ |t|-\frac{1}{2} & \text { if } 1 \leq|t| \leq 2 \\ \frac{1}{2}|t|^{2}-|t|+\frac{3}{2} & \text { if }|t|>2\end{cases}
$$

If we look at the principal part of J as the energy stored in the deformation u, this means that the material has a plastic behavior when $1 \leq\left|D_{1} u\right| \leq 2$. We refer the reader to [10, Chapter 6] for a discussion of several models of plasticity.

From a variational point of view, the effect is a lack of compactess even stronger than in the usual case. For instance, in the case of (1.2), suppose that u is a critical point of J with $5 / 4<D_{1} u<7 / 4$ on some open subset ω of Ω. There exists a sequence $\left(v_{n}\right)$ in $H_{0}^{1}(\Omega)$ such that supt $v_{n} \subset \omega,\left|D_{1} v_{n}\right| \leq 1 / 4, D_{j} v_{n} \rightarrow 0$ in
$L^{2}(\Omega)$ for $j \geq 2, v_{n} \rightarrow 0$ in $L^{\infty}(\Omega)$, but $\left(v_{n}\right)$ is not strongly precompact in $H_{0}^{1}(\Omega)$. Then $\left(u+v_{n}\right)$ is a Palais-Smale sequence just at the critical level $J(u)$ which is not strongly precompact in $H_{0}^{1}(\Omega)$. On the other hand, there is no way to prevent an interaction between the area where Ψ fails to be strictly convex and the values of ∇u.

Let us mention that, in the subcritical case, (nonsmooth) variational methods for functionals with lack of strict convexity have been successfully applied in [6].

Our first purpose is to extend the main result of [3] to the setting of problem (\mathcal{P}).

Theorem 1.1. Let $N \geq 4$ and let $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a convex function of class C^{1} satisfying $\left(\Psi_{1}\right)-\left(\Psi_{3}\right)$. Then, for every $\left.\lambda \in\right] 0, \lambda_{1}[$, problem (\mathcal{P}) admits a nontrivial and nonnegative weak solution $u \in H_{0}^{1}(\Omega)$.

Then we will also extend the result of [4].
Theorem 1.2. Let $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a convex function of class C^{1} satisfying $\left(\Psi_{1}\right)$ $\left(\Psi_{3}\right)$ and let $\lambda>0$. Moreover, suppose that either:
(a) $N \geq 5$;
or
(b) $N \geq 4$ and $\lambda \neq \lambda_{k}$ for every $k \geq 1$.

Then problem (\mathcal{P}) admits a nontrivial weak solution $u \in H_{0}^{1}(\Omega)$.
For proving both results, we will construct in a standard way a Palais-Smale sequence $\left(u_{n}\right)$ for J. Then we will show that, up to a subsequence, $\left(u_{n}\right)$ is weakly convergent in $H_{0}^{1}(\Omega)$ to a nontrivial solution u of (\mathcal{P}), even if there is no hope to ensure the strong convergence in $H_{0}^{1}(\Omega)$. In order to prove that the weak limit is a solution of (\mathcal{P}), we will show in Lemma 2.2 a variant of the main result of $[2,5]$ which can be of independent interest.

From now on, $\|\cdot\|_{p}$ will denote the usual norm in L^{p} and $\|\cdot\|$ the H_{0}^{1}-norm defined as $\|u\|=\|\nabla u\|_{2}$.

2. Some convergence properties for convex functions

This section deals with some results of convergence for convex functions.
We point out that, by a simple extension of Hôpital's theorem, $\left(\Psi_{2}\right)$ implies that

$$
\begin{equation*}
\lim _{|\xi| \rightarrow \infty} \frac{2 \Psi(\xi)}{|\xi|^{2}}=1 \tag{2.1}
\end{equation*}
$$

In turn, $\left(\Psi_{2}\right)$ and (2.1) yield that

$$
\begin{equation*}
\lim _{|\xi| \rightarrow \infty} \frac{\frac{1}{2} \Psi^{\prime}(\xi) \cdot \xi-\Psi(\xi)}{|\xi|^{2}}=0 \tag{2.2}
\end{equation*}
$$

On the other hand, $\left(\Psi_{1}\right),(2.1)$ and the convexity of Ψ imply that $\Psi(0)=0$, $\Psi^{\prime}(0)=0$ and that there exists $\mu>0$ such that

$$
\begin{equation*}
\Psi(\xi) \geq \mu|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{N} \tag{2.3}
\end{equation*}
$$

Since

$$
0=\Psi(0) \geq \Psi(\xi)-\Psi^{\prime}(\xi) \cdot \xi
$$

it easily follows that

$$
\begin{align*}
\Psi^{\prime}(\xi) \cdot \xi & \geq \mu|\xi|^{2} \tag{2.4}
\end{align*} \quad \forall \xi \in \mathbb{R}^{N},
$$

We also have

$$
\Psi(\xi+|\xi| \nu) \geq \Psi(\xi)+|\xi| \Psi^{\prime}(\xi) \cdot \nu \quad \forall \xi, \nu \in \mathbb{R}^{N} \quad \text { with } \quad|\nu|=1
$$

Combining this fact with $(2.3),\left(\Psi_{1}\right)$ and (2.1), we deduce that there exists $M>0$ such that

$$
\begin{equation*}
\left|\Psi^{\prime}(\xi)\right| \leq M|\xi| \quad \forall \xi \in \mathbb{R}^{N} \tag{2.6}
\end{equation*}
$$

Lemma 2.1. Let $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a convex function of class C^{1}, let $\left(\xi_{k}\right)$ be a sequence in \mathbb{R}^{N} and let $\xi \in \mathbb{R}^{N}$ be such that

$$
\lim _{k \rightarrow \infty}\left(\Psi^{\prime}\left(\xi_{k}\right)-\Psi^{\prime}(\xi)\right) \cdot\left(\xi_{k}-\xi\right)=0
$$

Then $\left(\Psi^{\prime}\left(\xi_{k}\right)\right)$ is convergent to $\Psi^{\prime}(\xi)$.
Proof. By substituting Ψ with $\widetilde{\Psi}(\zeta)=\Psi(\zeta)-\Psi^{\prime}(\xi) \cdot \zeta$, we may suppose, without loss of generality, that ξ is a minimum of Ψ. By contradiction, assume that, up to a subsequence, there exists $\delta>0$ such that $\left|\Psi^{\prime}\left(\xi_{k}\right)\right|>\delta$ for every $k \in \mathbb{N}$. Let $\left.t_{k} \in\right] 0,1\left[\right.$ be such that $\left|\Psi^{\prime}\left(\left(1-t_{k}\right) \xi+t_{k} \xi_{k}\right)\right|=\delta$ and let $\zeta_{k}=\left(1-t_{k}\right) \xi+t_{k} \xi_{k}$. Up to a subsequence, $\left(\Psi^{\prime}\left(\zeta_{k}\right)\right)$ is convergent to some $\alpha \in \mathbb{R}^{N}$ with $|\alpha|=\delta$. As $\Psi^{\prime}(\xi)=0$, we have

$$
\begin{aligned}
0 \leq \Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\zeta_{k}-\xi\right) & =t_{k} \Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\xi_{k}-\xi\right) \\
& =\frac{t_{k}}{1-t_{k}} \Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\xi_{k}-\zeta_{k}\right) \leq \frac{t_{k}}{1-t_{k}} \Psi^{\prime}\left(\xi_{k}\right) \cdot\left(\xi_{k}-\zeta_{k}\right) \\
& =t_{k} \Psi^{\prime}\left(\xi_{k}\right) \cdot\left(\xi_{k}-\xi\right)
\end{aligned}
$$

whence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\zeta_{k}-\xi\right)=0 \tag{2.7}
\end{equation*}
$$

On the other hand, the convexity of Ψ also implies that

$$
\Psi(\xi) \geq \Psi\left(\zeta_{k}\right)+\Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\xi-\zeta_{k}\right)
$$

Combining this fact with (2.7) and the minimality of ξ, we infer that

$$
\lim _{k \rightarrow \infty} \Psi\left(\zeta_{k}\right)=\Psi(\xi)
$$

For every $\eta \in \mathbb{R}^{N}$, we also have

$$
\Psi(\eta) \geq \Psi\left(\zeta_{k}\right)+\Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\eta-\zeta_{k}\right)=\Psi\left(\zeta_{k}\right)+\Psi^{\prime}\left(\zeta_{k}\right) \cdot(\eta-\xi)+\Psi^{\prime}\left(\zeta_{k}\right) \cdot\left(\xi-\zeta_{k}\right)
$$

Passing to the limit as $k \rightarrow \infty$, we get

$$
\Psi(\eta) \geq \Psi(\xi)+\alpha \cdot(\eta-\xi) \quad \forall \eta \in \mathbb{R}^{N}
$$

Since $\alpha \neq 0$, this contradicts the fact that ξ is a minimum of Ψ and Ψ is of class C^{1}.

In the next result we adapt to our setting the main theorem of $[2,5]$.
Lemma 2.2. Let $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a convex function of class C^{1} satisfying (2.6). Let $\left(u_{k}\right)$ be a sequence weakly convergent to u in $H_{0}^{1}(\Omega)$ such that

$$
-\operatorname{div}\left(\Psi^{\prime}\left(\nabla u_{k}\right)\right)=\mu_{k}+w_{k} \quad \text { in } \quad H^{-1}(\Omega)
$$

where $\left(w_{k}\right)$ is a sequence strongly convergent in $H^{-1}(\Omega)$ and $\left(\mu_{k}\right)$ is a sequence in $H^{-1}(\Omega)$ such that

$$
\begin{equation*}
\sup \left\{\left|\left\langle\mu_{k}, v\right\rangle\right|: k \in \mathbb{N}, v \in C_{c}^{\infty}(\Omega),\|v\|_{\infty} \leq 1, \operatorname{supt} v \subseteq K\right\}<+\infty \quad \forall K \subset \subset \Omega \tag{2.8}
\end{equation*}
$$

Then there exists a subsequence ($u_{k_{n}}$) such that

$$
\lim _{n \rightarrow \infty} \Psi^{\prime}\left(\nabla u_{k_{n}}(x)\right)=\Psi^{\prime}(\nabla u(x)) \quad \text { a.e in } \quad \Omega \text {. }
$$

Proof. Following the proof of [5, Theorem 5] with $f_{k}=w_{k}$ and $b_{k}(x, \xi)=b(x, \xi)=$ $\Psi^{\prime}(\xi)$, it turns out that there exists a subsequence ($u_{k_{n}}$) such that

$$
\lim _{n \rightarrow \infty}\left(\Psi^{\prime}\left(\nabla u_{k_{n}}(x)\right)-\Psi^{\prime}(\nabla u(x))\right) \cdot\left(\nabla u_{k_{n}}(x)-\nabla u(x)\right)=0 \quad \text { a.e. in } \quad \Omega .
$$

Actually, for this conclusion the assumption that $b(x, \cdot)$ is strictly monotone is not used in [5].

By Lemma 2.1 the assertion follows.
Lemma 2.3. Let $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a convex function of class C^{1} and let $\left(u_{k}\right)$ be a sequence weakly convergent to u in $H_{0}^{1}(\Omega)$.
(a) If $\left(\Psi^{\prime}\left(\nabla u_{k}(x)\right)\right)$ is convergent to $\Psi^{\prime}(\nabla u(x))$ a.e in Ω and we have

$$
\begin{equation*}
\limsup _{|\xi| \rightarrow \infty} \frac{\frac{1}{2} \Psi^{\prime}(\xi) \cdot \xi-\Psi(\xi)}{|\xi|^{2}} \leq 0 \tag{2.9}
\end{equation*}
$$

then
$\limsup _{k \rightarrow \infty} \int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x \leq \int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}(\nabla u) \cdot \nabla u-\Psi(\nabla u)\right] d x$.
(b) If $\left(\nabla u_{k}(x)\right)$ is convergent to $\nabla u(x)$ a.e in Ω and we have

$$
\begin{equation*}
\liminf _{|\xi| \rightarrow \infty} \frac{\Psi^{\prime}(\xi) \cdot \xi}{|\xi|^{2}} \geq 1 \tag{2.10}
\end{equation*}
$$

then

$$
\liminf _{k \rightarrow \infty} \int_{\Omega}\left[\Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\left|\nabla u_{k}\right|^{2}\right] d x \geq \int_{\Omega}\left[\Psi^{\prime}(\nabla u) \cdot \nabla u-|\nabla u|^{2}\right] d x
$$

Proof. Let us prove assertion (a). By (2.9) there exists $C>0$ such that

$$
\begin{equation*}
\frac{1}{2} \Psi^{\prime}(\xi) \cdot \xi-\Psi(\xi) \leq|\xi|^{2}+C \quad \forall \xi \in \mathbb{R}^{N} \tag{2.11}
\end{equation*}
$$

Moreover, given $\varepsilon>0$, there exists $K_{\varepsilon}>0$ such that

$$
\begin{equation*}
\frac{1}{2} \Psi^{\prime}(\xi) \cdot \xi-\Psi(\xi) \leq \varepsilon|\xi|^{2} \quad \text { whenever } \quad\left|\Psi^{\prime}(\xi)\right| \geq K_{\varepsilon} \tag{2.12}
\end{equation*}
$$

Consider $K \geq K_{\varepsilon}$ such that

$$
\begin{equation*}
\text { the set } \quad\left\{x \in \Omega:\left|\Psi^{\prime}(\nabla u(x))\right|=K\right\} \quad \text { is negligible. } \tag{2.13}
\end{equation*}
$$

Apart from a countable set, each $K \geq K_{\varepsilon}$ satisfies (2.13). If we denote by χ_{A} the characteristic function of the set A, it follows that the sequence $\left(\chi_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right|<K\right\}} \Psi^{\prime}\left(\nabla u_{k}\right)\right)$ is convergent to $\chi_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}} \Psi^{\prime}(\nabla u)$ a.e. in Ω, hence strongly in $L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$. Therefore we have

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \int_{\Omega} \chi_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right|<K\right\}} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k} d x \\
&=\int_{\Omega} \chi_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}} \Psi^{\prime}(\nabla u) \cdot \nabla u d x \tag{2.14}
\end{align*}
$$

Since also the sequence $\left(\chi_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right|<K\right\}}\right)$ is convergent to $\chi_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}}$ strongly in $L^{2}(\Omega)$, we can apply the result of $[8]$ to the integrand $f(x, s, \xi)=\min \{|s|, 1\} \Psi(\xi)$, obtaining

$$
\begin{align*}
\liminf _{k \rightarrow \infty} \int_{\Omega} \chi_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right|<K\right\}} \Psi\left(\nabla u_{k}\right) d x & =\liminf _{k \rightarrow \infty} \int_{\Omega} f\left(x, \chi_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right|<K\right\}}, \nabla u_{k}\right) d x \\
& \geq \int_{\Omega} f\left(x, \chi_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}}, \nabla u\right) d x \\
& =\int_{\Omega} \chi_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}} \Psi(\nabla u) d x \tag{2.15}
\end{align*}
$$

Combining (2.14) and (2.15), we infer that

$$
\begin{aligned}
& \limsup _{k \rightarrow \infty} \int_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right|<K\right\}}\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x \\
& \leq \int_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}}\left[\frac{1}{2} \Psi^{\prime}(\nabla u) \cdot \nabla u-\Psi(\nabla u)\right] d x .
\end{aligned}
$$

On the other hand, by (2.12) we have

$$
\int_{\left\{\left|\Psi^{\prime}\left(\nabla u_{k}\right)\right| \geq K\right\}}\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x \leq \varepsilon\left\|\nabla u_{k}\right\|_{2}^{2},
$$

hence

$$
\begin{align*}
\limsup _{k \rightarrow \infty} \int_{\Omega} & {\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x } \\
& \leq \varepsilon \sup _{k \in \mathbb{N}}\left\|\nabla u_{k}\right\|_{2}^{2}+\int_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}}\left[\frac{1}{2} \Psi^{\prime}(\nabla u) \cdot \nabla u-\Psi(\nabla u)\right] d x \tag{2.16}
\end{align*}
$$

for every $K \geq K_{\varepsilon}$ satisfying (2.13). By (2.11) and the monotone convergence theorem, we have

$$
\begin{aligned}
& \lim _{K \rightarrow+\infty} \int_{\left\{\left|\Psi^{\prime}(\nabla u)\right|<K\right\}}\left[\frac{1}{2} \Psi^{\prime}(\nabla u) \cdot \nabla u-\Psi(\nabla u)\right] d x \\
&=\int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}(\nabla u) \cdot \nabla u-\Psi(\nabla u)\right] d x .
\end{aligned}
$$

Combining this fact with (2.16), we get

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} \int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla\right. & \left.u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x \\
& \leq \varepsilon \sup _{k \in \mathbb{N}}\left\|\nabla u_{k}\right\|_{2}^{2}+\int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}(\nabla u) \cdot \nabla u-\Psi(\nabla u)\right] d x
\end{aligned}
$$

and assertion (a) follows by the arbitrariness of ε.
The proof of assertion (b) is similar and even simpler, as
$\lim _{k \rightarrow \infty} \int_{\left\{\left|\nabla u_{k}\right|<K\right\}}\left[\Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\left|\nabla u_{k}\right|^{2}\right] d x=\int_{\{|\nabla u|<K\}}\left[\Psi^{\prime}(\nabla u) \cdot \nabla u-|\nabla u|^{2}\right] d x$ whenever the set $\{x \in \Omega:|\nabla u(x)|=K\}$ is negligible.

3. Existence of a nonnegantive, nontrivial solution

In this section we prove Theorems 1.1 and 1.2.
The functional J defined in (1.1) is of class C^{1} on $H_{0}^{1}(\Omega)$ by (2.6).
Since $\Psi^{\prime}(0)=0$, of course 0 is a solution of (\mathcal{P}). Therefore we are interested in nontrivial solutions. In order to find nonnegative solutions of (\mathcal{P}), we consider the modified functional $\bar{J}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined as

$$
\bar{J}(u)=\int_{\Omega} \Psi(\nabla u) d x-\frac{\lambda}{2} \int_{\Omega}\left(u^{+}\right)^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(u^{+}\right)^{2^{*}} d x .
$$

Of course, \bar{J} also is of class C^{1}.
Proposition 3.1. Let $\Psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a convex function of class C^{1} satisfying (2.4), with $\mu>0$, and (2.6). Then each critical point $u \in H_{0}^{1}(\Omega)$ of \bar{J} is a nonnegative solution of (\mathcal{P}).

Proof. We have

$$
\begin{aligned}
\mu \int_{\Omega}\left|\nabla u^{-}\right|^{2} d x & \leq \int_{\Omega} \Psi^{\prime}(\nabla u) \cdot\left(-\nabla u^{-}\right) d x \\
& =\lambda \int_{\Omega} u^{+}\left(-u^{-}\right) d x+\int_{\Omega}\left(u^{+}\right)^{2^{*}-1}\left(-u^{-}\right) d x=0
\end{aligned}
$$

whence the assertion.
Proof of Theorem 1.1. We aim to apply to \bar{J} the mountain pass theorem [1, 9]. First of all, let us observe that, by $\left(\Psi_{1}\right)$, we have

$$
\frac{\int_{\Omega} \Psi(\nabla u) d x}{\int_{\Omega}|\nabla u|^{2} d x} \rightarrow \frac{1}{2} \quad \text { as } \quad u \rightarrow 0 \quad \text { in } \quad H_{0}^{1}(\Omega)
$$

Then, as in the case $\underset{J}{\Psi}(\xi)=\frac{1}{2}|\xi|^{2}$ treated in [3], we deduce that there exist $\varrho>0$ and $\alpha>0$ such that $\bar{J}(u) \geq \alpha$ whenever $\|u\|=\varrho$. On the other hand, there exists $e \in H_{0}^{1}(\Omega)$ with $e \geq 0$ a.e. in Ω such that

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \bar{J}(t e) & =-\infty \\
\sup \{\bar{J}(t e): t \geq 0\} & <\frac{1}{N} S^{\frac{N}{2}},
\end{aligned}
$$

where

$$
S=\inf \left\{\int_{\Omega}|\nabla u|^{2} d x: u \in H_{0}^{1}(\Omega),\|u\|_{2^{*}}=1\right\}
$$

Again, this is proved in [3] in the case $\Psi(\xi)=\frac{1}{2}|\xi|^{2}$, but by $\left(\Psi_{3}\right)$ the assertion is true also in our case.

By the mountain pass theorrem, there exist a sequence $\left(u_{k}\right)$ in $H_{0}^{1}(\Omega)$ and a sequence $\left(w_{k}\right)$ in $H^{-1}(\Omega)$ strongly convergent to 0 such that

$$
\begin{align*}
\int_{\Omega} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla v d x-\lambda \int_{\Omega} u_{k}^{+} v d x-\int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}-1} v d x & =\left\langle w_{k}, v\right\rangle \quad \forall v \in H_{0}^{1}(\Omega), \tag{3.1}\\
\lim _{k \rightarrow \infty}\left(\int_{\Omega} \Psi\left(\nabla u_{k}\right) d x-\frac{\lambda}{2} \int_{\Omega}\left(u_{k}^{+}\right)^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}} d x\right) & =c \in\left[\alpha, \frac{1}{N} S^{\frac{N}{2}}[.\right. \tag{3.2}
\end{align*}
$$

From (3.1), we get

$$
\begin{equation*}
\int_{\Omega} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k} d x-\lambda \int_{\Omega}\left(u_{k}^{+}\right)^{2} d x-\int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}} d x=\left\langle w_{k}, u_{k}\right\rangle \tag{3.3}
\end{equation*}
$$

We claim that $\left(u_{k}\right)$ is bounded in $H_{0}^{1}(\Omega)$. By contradiction, up to a subsequence we may assume that $\left\|u_{k}\right\| \rightarrow \infty$. From (3.2) it follows that

$$
\lim _{k \rightarrow \infty}\left[\frac{\int_{\Omega} \Psi\left(\nabla u_{k}\right) d x}{\left\|u_{k}\right\|^{2^{*}}}-\frac{\lambda \int_{\Omega}\left(u_{k}^{+}\right)^{2} d x}{2\left\|u_{k}\right\|^{2^{*}}}-\frac{1}{2^{*}} \int_{\Omega}\left(\frac{u_{k}^{+}}{\left\|u_{k}\right\|}\right)^{2^{*}} d x\right]=0
$$

By $\left(\Psi_{3}\right)$ we deduce that $\left(u_{k}^{+} /\left\|u_{k}\right\|\right)$ is convergent to 0 strongly in $L^{2^{*}}(\Omega)$ and weakly in $H_{0}^{1}(\Omega)$. On the other hand, by (3.2) and (3.3) we have

$$
\begin{aligned}
\int_{\Omega}\left[\left(2^{*}-2\right) \Psi\left(\nabla u_{k}\right)+\left(2 \Psi\left(\nabla u_{k}\right)-\Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}\right)\right] & d x-\lambda\left(\frac{2^{*}}{2}-1\right) \int_{\Omega}\left(u_{k}^{+}\right)^{2} d x \\
& =2^{*} c-\left\langle w_{k}, u_{k}\right\rangle+o(1)
\end{aligned}
$$

By (2.2) and (2.3) it follows that there exist $\tilde{\mu}>0$ and $C \in \mathbb{R}$ such that

$$
\tilde{\mu} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x \leq \lambda\left(\frac{2^{*}}{2}-1\right) \int_{\Omega}\left(u_{k}^{+}\right)^{2} d x+C
$$

whence

$$
\tilde{\mu} \leq \lambda\left(\frac{2^{*}}{2}-1\right) \int_{\Omega}\left(\frac{u_{k}^{+}}{\left\|u_{k}\right\|}\right)^{2} d x+o(1)
$$

Since $\left(u_{k}^{+} /\left\|u_{k}\right\|\right)$ is strongly convergent to 0 in $L^{2}(\Omega)$, a contradiction follows. Therefore $\left(u_{k}\right)$ is bounded in $H_{0}^{1}(\Omega)$, hence convergent, up to a subsequence, to some u weakly in $H_{0}^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$.

If we set

$$
\mu_{k}=\lambda u_{k}^{+}+\left(u_{k}^{+}\right)^{2^{*}-1}
$$

we have that $\left(\mu_{k}\right)$ is bounded in $L^{\frac{2 N}{N+2}}(\Omega)$, in particular (2.8) is satisfied. By Lemma 2.2 we have that, up to a further subsequence,

$$
\lim _{k \rightarrow \infty} \Psi^{\prime}\left(\nabla u_{k}(x)\right)=\Psi^{\prime}(\nabla u(x)) \quad \text { a.e in } \quad \Omega .
$$

In particular, $\left(\Psi^{\prime}\left(\nabla u_{k}\right)\right)$ is convergent to $\Psi^{\prime}(\nabla u)$ weakly in $L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$.
Passing to the limit as $k \rightarrow \infty$ in (3.1), we get that

$$
\int_{\Omega} \Psi^{\prime}(\nabla u) \cdot \nabla v d x-\lambda \int_{\Omega} u^{+} v d x-\int_{\Omega}\left(u^{+}\right)^{2^{*}-1} v d x=0 \quad \forall v \in H_{0}^{1}(\Omega)
$$

namely that u is a critical point of \bar{J}, hence a nonnegative weak solution of (\mathcal{P}) by Proposition 3.1.

It is left to prove that u is not trivial. Arguing by contradiction, let us assume that $u=0$ a.e. in Ω. Since (2.2) implies (2.9), from Lemma 2.3 we deduce that

$$
\limsup _{k \rightarrow \infty} \int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x \leq 0
$$

Then from

$$
\left(\frac{1}{2}-\frac{1}{2^{*}}\right) \int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}} d x=\bar{J}\left(u_{k}\right)+\int_{\Omega}\left[\frac{1}{2} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\Psi\left(\nabla u_{k}\right)\right] d x-\frac{1}{2}\left\langle w_{k}, u_{k}\right\rangle,
$$

we get

$$
\frac{1}{N} \int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}} d x \leq \bar{J}\left(u_{k}\right)+o(1)
$$

On the other hand, by (2.5) we have that $\left(\nabla u_{k}(x)\right)$ is convergent to 0 a.e. in Ω. Since (Ψ_{2}) implies (2.10), from Lemma 2.3 we deduce that

$$
\liminf _{k \rightarrow \infty} \int_{\Omega}\left[\Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k}-\left|\nabla u_{k}\right|^{2}\right] d x \geq 0
$$

Then we have

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{k}\right|^{2} d x & \leq \int_{\Omega} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla u_{k} d x+o(1) \\
& =\int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}} d x+o(1) \\
& \leq\left(\int_{\Omega}\left(u_{k}^{+}\right)^{2^{*}} d x\right)^{\frac{2^{*}-2}{2^{*}}}\left(\int_{\Omega}\left|u_{k}\right|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}+o(1) \\
& \leq \frac{1}{S}\left(N \bar{J}\left(u_{k}\right)\right)^{\frac{2}{N}} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x+o(1)
\end{aligned}
$$

Combining this fact with (3.2), we deduce that $\left(u_{k}\right)$ is convergent to 0 strongly in $H_{0}^{1}(\Omega)$. In turn, this implies that $c=0$, while (3.2) asserts that $c>0$. Therefore u is not trivial and the proof is complete.

4. Existence of a nontrivial solution

In this section we are concerned with the existence of (possibly sign-changing) nontrivial solutions u of (\mathcal{P}). Let $\left(\lambda_{k}\right)$ denote the sequence of the eigenvalues of $-\Delta$ with homogeneous Dirichlet condition, repeated according to multiplicity. We will prove the second result stated in the introduction.

Proof of Theorem 1.2. Since the case $0<\lambda<\lambda_{1}$ is already contained in Theorem 1.1, we may assume that $\lambda \geq \lambda_{1}$. Let $k \geq 1$ be such that $\lambda_{k} \leq \lambda<\lambda_{k+1}$ and let e_{1}, \ldots, e_{k} be eigenfunctions of $-\Delta$ associated to $\lambda_{1}, \ldots, \lambda_{k}$, respectively. Finally, let $E_{-}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ and $E_{+}=E_{-}^{\perp}$.

Consider the functional J defined in (1.1). We aim to apply the linking theorem [9]. Since

$$
\frac{\int_{\Omega} \Psi(\nabla u) d x}{\int_{\Omega}|\nabla u|^{2} d x} \rightarrow \frac{1}{2} \quad \text { as } \quad u \rightarrow 0 \quad \text { in } \quad H_{0}^{1}(\Omega)
$$

as in the case $\Psi(\xi)=\frac{1}{2}|\xi|^{2}$ treated in [4], we deduce that there exist $\varrho>0$ and $\alpha>0$ such that $J(u) \geq \alpha$ whenever $u \in E_{+}$with $\|u\|=\varrho$. On the other hand, there exists $e \in H_{0}^{1}(\Omega) \backslash E_{-}$such that

$$
\begin{aligned}
\lim _{\substack{\|u\| \rightarrow \infty \\
u \in \mathbb{R} e \oplus E_{-}}} J(u) & =-\infty \\
\sup \left\{J(t e+v): t \geq 0, v \in E_{-}\right\} & <\frac{1}{N} S^{\frac{N}{2}}
\end{aligned}
$$

Again, this is proved in [4] in both cases (a) and (b) (in case (a), the condition $N \geq 5$ needs to be required, see also [7, Corollary 1]) when $\Psi(\xi)=\frac{1}{2}|\xi|^{2}$, but by $\left(\Psi_{3}\right)$ the assertion is true also in our case. Finally, it is clear that $J(u) \leq 0$ for every $u \in E_{-}$.

By the linking theorem, there exist a sequence $\left(u_{k}\right)$ in $H_{0}^{1}(\Omega)$ and a sequence $\left(w_{k}\right)$ in $H^{-1}(\Omega)$ strongly convergent to 0 such that

$$
\begin{aligned}
\int_{\Omega} \Psi^{\prime}\left(\nabla u_{k}\right) \cdot \nabla v d x-\lambda \int_{\Omega} u_{k} v d x-\int_{\Omega}\left|u_{k}\right|^{2^{*}-2} u_{k} v d x=\left\langle w_{k}, v\right\rangle \quad \forall v \in H_{0}^{1}(\Omega), \\
\lim _{k \rightarrow \infty}\left(\int_{\Omega} \Psi\left(\nabla u_{k}\right) d x-\frac{\lambda}{2} \int_{\Omega} u_{k}^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left|u_{k}\right|^{2^{*}} d x\right)=c \in\left[\alpha, \frac{1}{N} S^{\frac{N}{2}}[\right.
\end{aligned}
$$

At this point, we can continue, up to minor changes, as in the proof of Theorem 1.1. In particular, $\left(u_{k}\right)$ is bounded in $H_{0}^{1}(\Omega)$, hence weakly convergent, up to a subsequence, to some weak solution u of (\mathcal{P}). Moreover u turns out to be nontrivial.

Acknowledgements

The author thanks Prof. Marco Degiovanni for very helpful hints and stimulating discussions.

References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[2] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597.
[3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[4] A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 463-470.
[5] G. Dal Maso and F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), 405-412.
[6] M. Degiovanni, Variational methods for functionals with lack of strict convexity, in Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001), D. Lupo, C. Pagani and B. Ruf, eds., 127-139, Progress in Nonlinear Differential Equations and their Applications, 54, Birkhäuser, Boston, Inc., Boston, Ma, 2003.
[7] F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differential Equations 2 (1997), 555-572.
[8] A. D. Ioffe, On lower semicontinuity of integral functionals. II, SIAM J. Control Optim. 15 (1977), 991-1000.
[9] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, R.I., 1986.
[10] H.-C. Wu, Continuum mechanics and plasticity, in CRC Series: Modern Mechanics and Mathematics, Chapman \& Hall/CRC, Boca Raton, FL., 2005.

Paola Magrone
Dipartimento di Matematica
Università degli Studi Roma Tre
Largo San Leonardo Murialdo 1
00147 Roma
Italia
e-mail: magrone@mat.uniroma3.it
Received: 13 February 2008.
Accepted: 29 July 2008.

[^0]: Supported by MURST, Project "Variational Methods and Nonlinear Differential Equations".

