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Abstract The aim of the present paper is to establish a stability result for the
so called Mountain Pass type solutions of the following class of semilinear elliptic
variational inequalities

(Pn)



un ∈ H1
0 (Ω), un ≤ ψn in Ω

〈Anun, v − un〉 − λ

∫
Ω

un(x)(v − un)(x)dx

≥
∫

Ω

pn(x, un(x))(v − un)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψn in Ω,

where Ω is an open bounded subset of RN (N ≥ 1) with a sufficiently smooth
boundary and λ is a real parameter. Moreover, for any n ∈ N, An is a uniformly
elliptic operator, ψn belongs to H1(Ω), (ψn)|∂Ω ≥ 0 and pn is a continuous real
function which satisfies some general superlinear and subcritical growth conditions
at zero and at infinity.

1 Introduction and main results

In the last years an extensive literature has been developed concerning stability
results for semilinear elliptic equations and existence results for semilinear elliptic
variational inequalities. The aim of our paper is to establish a stability result for
the following class of semilinear elliptic variational inequalities
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(Pn)



un ∈ H1
0 (Ω), un ≤ ψn in Ω

〈Anun, v − un〉 − λ

∫
Ω

un(x)(v − un)(x)dx

≥
∫

Ω

pn(x, un(x))(v − un)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψn in Ω,

where Ω is an open bounded subset of RN (N ≥ 1) with a sufficiently smooth
boundary and λ is a real parameter. Moreover, for any n ∈ N, An is a uniformly
elliptic operator, ψn belongs to H1(Ω), (ψn)|∂Ω ≥ 0 and pn is a continuous real
function which satisfies some general superlinear and subcritical growth conditions
at zero and at infinity.

More precisely, some stability results in the framework of semilinear elliptic
equations were obtained in [6, 7] for uniformly elliptic operators (Dall’Aglio and
Tchou in [6] deal with the nonlinear case, while in [7] the linear case is considered)
and in [2] in the more general framework of Dirichlet forms.

On the other hand, some existence results for problem (Pn), for any fixed
n ∈ N, were obtained in [8] when λ < λ̃1 and in [9] when λ ≥ λ̃1, where λ̃1 is the
first eigenvalue of −∆ in H1

0 (Ω).
As far as the authors know, the only previous results about stability for vari-

ational inequalities are due to Boccardo and Capuzzo Dolcetta (see [3, 4]). In
particular we extend the result obtained in [3], since Boccardo and Capuzzo Dol-
cetta consider a problem of the kind (Pn) with λ = 0 and pn(·, un(·)) = pn(·), that
is the linear case.

As for our paper, we find a nontrivial non-negative solution un of problem
(Pn) by using the penalization method (see [1]) and the Mountain Pass Theorem
(see [10]) as in [8].By giving suitable convergence conditions for (An)n, (ψn)n and
(pn)n as n goes to infinity (see (H5)−(H7)) and introducing an auxiliary problem
(An) (see section 4), we obtain a stability result for the solutions (un)n of problems
((Pn))n, that is we get a nontrivial non-negative solution u of the following limit
problem

(P)



u ∈ H1
0 (Ω), u ≤ ψ in Ω

〈Au, v − u〉 − λ

∫
Ω

u(x)(v − u)(x)dx

≥
∫

Ω

p(x, u(x))(v − u)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψ in Ω,

as weak limit in H1
0 (Ω) of a subsequence of (un)n.

2 Preliminaries

Let Ω be an open bounded subset of RN (N ≥ 1) with a sufficiently smooth
boundary. Let H1

0 (Ω) be the usual Sobolev space with the norm

‖ v ‖=
(∫

Ω

| ∇v(x) |2 dx
) 1

2



A stability result for Mountain Pass type 389

and let 〈·, ·〉 be the pairing between H1
0 (Ω) and its dual space H−1(Ω).

Let us denote by E(c1, c2), where c1 and c2 are positive constants, the class of
the operators of the kind

B = −
N∑

i,j=1

Di (bij(x)Dj)

with bij : Ω → R verifying the following conditions

(B1) bij is measurable in Ω, ∀ i, j = 1, . . . , N ;

(B2) bij(x) = bji(x) a.e. x in Ω,∀ i, j = 1, . . . , N, i 6= j;

(B3) c1|ξ|2 ≤
N∑

i,j=1

bij(x)ξiξj ≤ c2|ξ|2 ∀ξ ∈ RN a.e. x in Ω.

Let

An = −
N∑

i,j=1

Di

(
a
(n)
ij (x)Dj

)
and

A = −
N∑

i,j=1

Di (aij(x)Dj)

in E(c1, c2), for any n ∈ N.
One can easily check that

|a(n)
ij (x)| ≤ c2 a.e. x in Ω, ∀ i, j = 1, . . . , N, ∀ n ∈ N. (1)

We recall the notion of G-convergence for the operators of the class E(c1, c2):

Definition 1. We will say that the sequence (An)n G-converges to A and we will
write An

G−→ A if, for any T ∈ H−1(Ω), (A−1
n T )n weakly converges to A−1T in

H1
0 (Ω).

Let λ1,n > 0 and λ1 > 0 be respectively the first eigenvalue of the operator
An and A in H1

0 (Ω) with Dirichlet boundary conditions, for any n ∈ N. Finally
let λ̃1 > 0 be the first eigenvalue of the operator −∆ in H1

0 (Ω) with Dirichlet
boundary conditions. By the uniform ellipticity of An and A and by the variational
characterization of the eigenvalues, i.e.

λ1,n = inf
v∈H1

0 (Ω)\{0}

〈Anv, v〉∫
Ω

v2(x)dx

and

λ1 = inf
v∈H1

0 (Ω)\{0}

〈Av, v〉∫
Ω

v2(x)dx
,
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one has

c1
c2
λ1 ≤ λ1,n ≤

c2
c1
λ1, ∀n ∈ N. (2)

For any operator B ∈ E(c1, c2) and for any λ <
c1
c2
λ1 the following inequalities

hold:

c̃1||u||2 ≤ 〈Bu, u〉 − λ

∫
Ω

u2(x)dx ≤ c̃2||u||2, (3)

where c̃1 := min
{
c1, c1 −

λ

λ1
c2

}
and c̃2 := max

{
c2, c2

(
1− λc2

λ1c1

)}
.

Furthermore it is well-known that the sequence (λ1,n)n converges to λ1 as n goes
to infinity, if the operators An G-converge to A in E(c1, c2) (see [6]).

Let us denote by F(a1, a2, a3, r), where a1, a2, a3 and r are positive constants,
the class of the functions f : Ω× R → R which verify the following conditions

(F1) f(·, ·) is continuous in Ω× R ;

(F2) | f(x, ξ) |≤ a1 + a2 | ξ |s, ∀(x, ξ) ∈ Ω× R,

with 1 < s < N+2
N−2 if N ≥ 3, 1 < s if N = 1, 2;

(F3) f(x, ξ) = o(| ξ |) as ξ → 0, ∀ x ∈ Ω .

Moreover, putting

F (x, ξ) :=
∫ ξ

0

f(x, t)dt, ∀(x, ξ) ∈ Ω× R,

we assume that

(F4) 0 < (s+ 1)F (x, ξ) ≤ ξf(x, ξ), ∀ (x, ξ) ∈ Ω× R, ξ ≥ r;

(F5) F (x, ξ) ≥ a3 | ξ |s+1, ∀ (x, ξ) ∈ Ω× R, ξ ≥ r.

Choosing a4 = a1r + 2sa2r
s, by (F1), (F2) and (F5) one has

(F6) F (x, ξ) ≥ a3 | ξ |s+1 − a4, ∀ (x, ξ) ∈ Ω× R+.

Finally, for any function g : Ω× R → R we define

g(x, ξ) =

{
0 if ξ < 0
g(x, ξ) if ξ ≥ 0,

for any x ∈ Ω. It is easy to check that, if g is a function belonging to the class
F(a1, a2, a3, r), then g is in F(a1, a2, a3, r) too.
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3 The existence result of a nontrivial non-negative
solution for problem (Pn)

Let us consider the following family of semilinear variational inequalities

(Pn)



un ∈ H1
0 (Ω), un ≤ ψn in Ω

〈Anun, v − un〉 − λ

∫
Ω

un(x)(v − un)(x)dx

≥
∫

Ω

pn(x, un(x))(v − un)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψn in Ω,

where Ω is an open bounded subset of RN (N ≥ 3) with a sufficiently smooth
boundary and λ is a real parameter. Moreover, for any n ∈ N, An is an operator
of the class E(c1, c2), ψn belongs to H1(Ω), with (ψn)|∂Ω ≥ 0 and pn : Ω×R → R
belongs to the class F(a1, a2, a3, r).

In case that ψn(x) ≥ 0 on Ω, it is obvious that u0 ≡ 0 is a trivial solution of
problem (Pn), for any n ∈ N.

One can state the following

Theorem 1. Let λ <
c1
c2
λ1. Let An ∈ E(c1, c2) and pn ∈ F(a1, a2, a3, r), for any

n ∈ N. Moreover, let the following hypotheses hold

(H1) ψn ∈ H1
0 (Ω), ψn ≥ 0 in Ω, ∀ n ∈ N;

(H2) ∃ v ∈ H1
0 (Ω), 0 ≤ v ≤ ψn in Ω, ∀ n ∈ N such that

c̃2 ‖ v ‖2≤ 2
(
a3

∫
Ω

|v(x)|s+1dx− a4|Ω|
)

;

(H3) s < 2 in (F2) and (F4);

(H4) ∃ v0 ∈ H1
0 (Ω) such that ψn ≤ v0 in Ω, ∀ n ∈ N.

Then, for any n ∈ N, there exists a nontrivial non-negative solution un of problem
(Pn).

Remark 1. We need λ < λ1,n, for any n ∈ N, in order to obtain estimates
independent of n. By (2), λ <

c1
c2
λ1 is a sufficient condition for our request. If the

sequence of operators (An)n G-converges to an operator A in E(c1, c2) and λ1 is
the first eigenvalue of A, then (λ1,n)n converges to λ1 as n goes to ∞. So we could
substitute the condition λ <

c1
c2
λ1 with λ < λ1, which implies λ < λ1,n for n large

enough. In this case we obtain a result of existence of a nontrivial non-negative
solution for problem (Pn) for n large enough.

We have decided to consider only the case N ≥ 3 as, for N = 1, 2, the results are the same,
even using easier arguments.
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Remark 2. We need that the constant a3 in (F5) is independent of n. So we
cannot deduce (F5) from (F4) as usual, but we have to assume it.

Remark 3. Hypotheses (H2) and (H4) are not empty. Indeed, taking a non-
zero non-negative function ṽ in H1

0 (Ω) and a bounded sequence (µn)n in R+ such
that inf

n∈ N
µn > 1, one can choose ψn = µnṽ, for any n ∈ N. Then, putting

v0 = sup
n∈ N

µnṽ and v = inf
n∈ N

µnṽ, (H2) and (H4) hold, since s > 1.

The method of finding the solution un for problem (Pn) relies on the consider-
ation of a family of ‘penalized’ equations associated, in a standard way, with (Pn)
(see [1]). Indeed, one can prove that any penalized equation possesses a solution of
‘Mountain Pass type’ and that a sequence chosen in this family actually converges
to a nontrivial non-negative solution un of (Pn), suitably using some estimates
from below and from above for the H1

0 (Ω)-norm of the solutions of the penalized
equations. As mentioned before, we apply the following Mountain Pass Theorem
(see [10]):

Mountain Pass Theorem: Let E be a real Banach space and J ∈ C1(E,R).
Suppose J satisfies (PS) condition, i.e.

∀ (um)m ∈ H1
0 (Ω) such that (J(um))m is bounded and J ′(um) → 0

in H−1(Ω) as m→∞, there exists a subsequence of (um)m strongly

converging in H1
0 (Ω).

Furthermore let J satisfy J(0) = 0 and the following assumptions

(J1) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α;

(J2) there exists an e ∈ E \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ α which can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

where
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

First of all, for any n ∈ N, let us introduce the ‘penalized’ problem associated
with (Pn), that is, for any ε > 0, the weak equation

(Pn)ε



uεn ∈ H1
0 (Ω) such that

〈Anuεn, v〉 − λ

∫
Ω

uεn(x)v(x)dx

+
1
ε

∫
Ω

(uεn − ψn)+(x)v(x)dx =
∫

Ω

pn(x, uεn(x))v(x)dx

∀v ∈ H1
0 (Ω),
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where f+ denotes the positive part of the function f . Let us note that the last
integral is well defined for all v ∈ H1

0 (Ω) as a consequence of (F2) and of the
continuous embedding of H1

0 (Ω) into L2∗(Ω).

In order to look for non-negative solutions of problem (Pn)ε it is convenient to
modify it with the following one:

(Pn)ε



uεn ∈ H1
0 (Ω) such that

〈Anuεn, v〉 − λ

∫
Ω

uεn(x)v(x)dx

+
1
ε

∫
Ω

(uεn − ψn)+(x)v(x)dx =
∫

Ω

pn(x, u
ε
n(x))v(x)dx

∀v ∈ H1
0 (Ω).

Actually in order to look for solutions of (Pn)ε, we study the critical points of the
real functional Iεn defined on H1

0 (Ω) in this way

Iεn(v) =
1
2
〈Anv, v〉−

λ

2

∫
Ω

v2(x)dx+
1
ε

∫
Ω

∫ v(x)

0

(t−ψn(x))+dtdx−
∫

Ω

Pn(x, v(x))dx,

where

Pn(x, ξ) :=
∫ ξ

0

pn(x, t)dt, ∀(x, ξ) ∈ Ω× R.

One can easily check that Iεn belongs to C1(H1
0 (Ω),R) and that the pairing 〈(Iεn)′(uεn), v〉

coincides with the difference between the first and the second member in (Pn)ε.
At this point, to prove Theorem 1, let us verify that the functional Iεn satisfies all
the hypotheses of the Mountain Pass Theorem.

Proof. (of Theorem 1) Let us proceed by steps.

Step 1. The functional Iεn verifies, for any n ∈ N and for any ε > 0, the conditions

Iεn(0) = 0, (4)

Iεn(v) ≥ α for some ρ, α > 0, ∀v ∈ H1
0 (Ω), ‖ v ‖= ρ. (5)

Proof. Let us fix n ∈ N and ε > 0.Property (4) is trivial. As for (5), let us note
that the positivity of ψn on Ω yields
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∫
Ω

∫ v(x)

0

(t− ψn(x))+dtdx =
∫
{x∈Ω:v(x)≥ψn(x)}

∫ v(x)

ψn(x)

(t− ψn(x))dtdx ≥ 0, (6)

for all v ∈ H1
0 (Ω).

As a consequence of (F2) and (F3), one gets that

∀δ > 0 ∃ c(δ) > 0 such that Pn(x, ξ) ≤
δ

2
| ξ |2 + c(δ) | ξ |s+1, (7)

∀ (x, ξ) ∈ Ω× R, ∀ n ∈ N.

Then, by using (6),(7), (3) and by choosing ρ > 0 such that c̃1 −
δ

λ̃1

> 2c(δ)csρs−1

(cs denoting the embedding Sobolev constant of H1
0 (Ω) into Ls+1(Ω)), for all

v ∈ H1
0 (Ω) such that ‖ v ‖= ρ, one has

Iεn(v) ≥ 1
2
〈Anv, v〉 −

λ

2

∫
Ω

v2(x)dx−
∫

Ω

Pn(x, v(x))dx

≥ c̃1
2
‖ v ‖2 − δ

2λ̃1

‖ v ‖2 − c(δ)cs ‖ v ‖s+1

=
(

1
2

(
c̃1 −

δ

λ̃1

)
− c(δ)csρs−1

)
ρ2.

So Step 1 is proved.

Remark 4. Note that the positive constant α is independent of ε and of n and
this fact will be used in the proof of Theorem 1.

Step 2. There exists an element e ∈ H1
0 (Ω) \ {0} such that Iεn(e) ≤ 0 , for any

n ∈ N and for any ε > 0.

Proof. Let us fix n ∈ N and ε > 0. Let e = v as in (H2). Observe that e 6≡ 0.
Moreover, 0 ≤ e ≤ ψn in Ω implies

∫
Ω

∫ e(x)

0

(t− ψn(x))+dtdx =
∫
{x∈Ω:e(x)≥ψn(x)}

∫ e(x)

ψn(x)

(t− ψn(x))dtdx = 0.

So, by (3) and (F6), one has

Iεn(e) ≤
c̃2
2
‖ e ‖2 −a3

∫
Ω

|e(x)|s+1dx+ a4|Ω|.

Then Step 2 follows from (H2).

Step 3. For any n ∈ N and for any ε > 0, Iεn satisfies the Palais-Smale condition,
i.e.
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for any (um)m ∈ H1
0 (Ω) such that (Iεn(um))m is bounded and

(PS) (Iεn)
′(um) → 0 in H−1(Ω) as m→∞, there exists a subsequence

of (um)m strongly converging in H1
0 (Ω).

Proof. Let us fix n ∈ N, ε > 0 and β ∈
(

1
s+1 ,

1
2

)
. By the properties of (um)m

one deduces

Iεn(um)− β〈(Iεn)′(um), um〉 ≤ Kn,ε + βMn,ε ‖ um ‖, (8)

where Kn,ε,Mn,ε are positive constants independent of m.
By definition of Iεn, (Iεn)

′ and by (3), (F1), (F4) one gets

Iεn(um)− β〈(Iεn)′(um), um〉

≥ c̃1

(
1
2
− β

)
‖ um ‖2 −1

ε

∫
{x∈Ω:um(x)≥ψn(x)}

(1− β)ψn(x)um(x)dx

+(s+ 1)
(
β − 1

s+ 1

) ∫
{x∈Ω:um(x)≥r}

Pn(x, um(x))dx− Kn,r

≥ c̃1

(
1
2
− β

)
‖ um ‖2 − 1− β

ε

√
λ̃1

‖ ψn ‖L2(Ω)‖ um ‖ −Kn,r,

(9)

for any m ∈ N, where Kn,r is a positive constant independent of m.

Finally, combining (8) and (9), one gets

‖ um ‖2≤ Cn,ε ‖ um ‖ +Dn,ε,

for any m ∈ N, for suitable positive constants Cn,ε and Dn,ε independent of m.
Thus (um)m is bounded in H1

0 (Ω). At this point, Step 3 easily follows from a
standard argument based on the compact embedding of H1

0 (Ω) into Lp(Ω) for
p ∈ [2, 2∗).

Step 4. For any n ∈ N and for any ε > 0, there exists a solution uεn of problem
(Pn)ε such that

Iεn(u
ε
n) = inf

γ∈Γ
max
t∈[0,1]

Iεn(γ(t)),

where Γ = {γ ∈ C([0, 1],H1
0 (Ω)) : γ(0) = 0, γ(1) = e}.

Moreover

Iεn(u
ε
n) ≥ α.
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Proof. It is a consequence of Steps 1, 2, 3 and of the Mountain Pass Theorem.

Step 5. For any n ∈ N and for any ε > 0, uεn is a nontrivial non-negative
solution of problem (Pn)ε.

Proof. Let us fix n ∈ N and ε > 0. uεn 6≡ 0 as it is a Mountain Pass type critical
point.
In order to prove that uεn ≥ 0, let us take v = (uεn)

− in (Pn)ε. It follows that

〈Anuεn, (uεn)−〉 − λ

∫
Ω

uεn(x)(u
ε
n)
−(x)dx

+
1
ε

∫
Ω

(uεn − ψn)+(x)(uεn)
−(x)dx =

∫
Ω

pn(x, u
ε
n(x))(u

ε
n)
−(x)dx.

(10)

By the definition of (uεn)
− and of pn(·, ·) and using (3), (10) yields

0 = 〈Anuεn, (uεn)−〉 − λ

∫
Ω

uεn(x)(u
ε
n)
−(x)dx ≥ c̃1||(uεn)−||2,

from which we obtain uεn ≥ 0. The non-negativity of uεn and the definition of
pn(·, ·) yield Step 5.

Step 6. There exists a constant K1 > 0 such that ||uεn|| ≥ K1, for any n ∈ N and
for any ε > 0.

Proof. Let us fix n ∈ N and ε > 0. Let us take v = uεn in (Pn)ε. It follows that

〈Anuεn, uεn〉 − λ

∫
Ω

(uεn)
2(x)dx

+
1
ε

∫
Ω

(uεn − ψn)+(x)uεn(x)dx =
∫

Ω

pn(x, uεn(x))u
ε
n(x)dx.

(11)

Arguing as in Step 1 we obtain

∀δ > 0 ∃ c(δ) > 0 such that pn(x, ξ) ≤ δ | ξ | + c(δ) | ξ |s (12)

for any (x, ξ) ∈ Ω× R.
By using the non-negativity of uεn, (3), the variational characterization of λ̃1 and

(12), one has

c̃1||uεn||2 ≤
∫

Ω

pn(x, uεn(x))u
ε
n(x)dx

≤ δ||uεn||2L2(Ω) + c(δ)||uεn||s+1
Ls+1(Ω)

≤ δ

λ̃1

||uεn||2 + c(δ)cs||uεn||s+1.
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By choosing δ such that δ < c̃1λ̃1, we can conclude that ||uεn|| is bounded from
below as s+ 1 > 2.

Step 7. There exists a constant K2 > 0 such that Iεn(u
ε
n) ≤ K2, for any n ∈ N

and for any ε > 0.

Proof. Let us fix n ∈ N and ε > 0.By Step 4 with γ(t) = tv, where v is as in
(H2), we obtain

Iεn(u
ε
n) ≤ max

t∈[0,1]
Iεn(tv).

From the fact that 0 ≤ tv ≤ ψn in Ω, from the definition of Pn and by (3) one has

Iεn(u
ε
n) ≤ max

t∈[0,1]

{
1
2
〈Antv, tv〉 −

λ

2

∫
Ω

(tv)2(x)dx
}
≤ max
t∈[0,1]

c̃2
2
||tv||2 ≤ c̃2||v||2.

So Step 7 is proved as the right member of the previous relation is independent of
n and ε.

Step 8. There exists a constant K3 > 0 such that ||uεn|| ≤ K3, for any n ∈ N and
for any ε > 0.

Proof. Let us fix n ∈ N and ε > 0. By Step 7 one has

1
2
〈Anuεn, uεn〉 −

λ

2

∫
Ω

(uεn)
2(x)dx+

1
ε

∫
Ω

∫ uε
n(x)

0

(t− ψn(x))+dtdx ≤

≤ K2 +
∫

Ω

Pn(x, uεn(x))dx.

(13)

By the non-negativity of uεn, by (13), (F2), (F4), using the fact that uεn is a
solution of (Pn)ε in particular with v = uεn and that s+ 1 > 2, we obtain

1
2
〈Anuεn, uεn〉 −

λ

2

∫
Ω

(uεn)
2(x)dx+

1
2ε

∫
{x∈Ω:uε

n(x)≥ψn(x)}
(uεn − ψn)2(x)dx

≤ K2 + Cr|Ω|+
1

s+ 1

∫
Ω

pn(x, uεn(x))u
ε
n(x)dx

= K2 + Cr|Ω|+
1

s+ 1

[
〈Anuεn, uεn〉 − λ

∫
Ω

(uεn)
2(x)dx

]

+
1

s+ 1
1
ε

∫
Ω

(uεn − ψn)+(x)uεn(x)dx

≤ K2 + Cr|Ω|+
1

s+ 1

[
〈Anuεn, uεn〉 − λ

∫
Ω

(uεn)
2(x)dx

]

+
1
2ε

∫
Ω

(uεn − ψn)+(x)uεn(x)dx,

(14)
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where Cr is a positive constant independent of n and ε.
By (14), (H4), the fact that uεn is a solution of (Pn)ε with v = v0, (F2) and (1),
we obtain

(
1
2
− 1
s+ 1

) [
〈Anuεn, uεn〉 − λ

∫
Ω

(uεn)
2(x)dx

]

≤ K2 + Cr|Ω|+
1
2ε

∫
{x∈Ω:uε

n(x)≥ψn(x)}
(uεn − ψn)(x)ψn(x)dx

≤ K2 + Cr|Ω|+
1
2ε

∫
{x∈Ω:uε

n(x)≥ψn(x)}
(uεn − ψn)(x)v0(x)dx

= K2 + Cr|Ω| −
1
2
〈Anuεn, v0〉+

λ

2

∫
Ω

uεn(x)v0(x)dx+
1
2

∫
Ω

pn(x, uεn(x))v0(x)dx

(15)

≤ K2 + Cr|Ω|+
c2
2
||v0|| ||uεn||+

λ

2

∫
Ω

uεn(x)v0(x)dx+
a1

2
||v0||L1

+
a2

2
||v0||

L(
2∗
s )′ (Ω)

||(uεn)s||L 2∗
s (Ω)

.

Therefore, by (15), (3), the variational characterization of λ̃1 and the continuous
embedding of H1

0 (Ω) into L2∗(Ω), one has

c̃1

(
1
2
− 1
s+ 1

)
||uεn||2

≤ K2 + Cr|Ω|+
c2
2
||v0|| ||uεn|| +

λ

2

∫
Ω

uεn(x)v0(x)dx+
a1

2
||v0||L1

+
a2

2
||v0||

L( 2∗
s )′ (Ω)

||(uεn)s||L 2∗
s (Ω)

≤ K2 + Cr|Ω|+
c2
2
||v0|| ||uεn||+

λ

2λ̃1

||v0|| ||uεn||+
a1

2
||v0||L1

+
ã2

2
||v0||

L( 2∗
s )′ (Ω)

||uεn||s,

(16)

where ã2 is a positive constant independent of n and ε.
Finally, Step 8 follows from (H3).

Step 9. There exists a constant K4 > 0 such that ‖ (uεn − ψn)+ ‖L2(Ω)≤ K4
√
ε,

for any n ∈ N and for any ε > 0.
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Proof. Let us fix n ∈ N and ε > 0. Taking v = uεn in (Pn)ε, we obtain

1
ε

∫
Ω

(uεn − ψn)+(x)uεn(x)dx

= −〈Anuεn, uεn〉+ λ

∫
Ω

(uεn)
2(x)dx+

∫
Ω

pn(x, uεn(x))u
ε
n(x)dx.

(17)

Using the non-negativity of ψn, (17), (3), (F2) and the compact embedding of
H1

0 (Ω) into Lp(Ω) for p ∈ [1, 2∗), we deduce

1
ε

∫
Ω

((uεn − ψn)+)2(x)dx

≤ 1
ε

∫
Ω

(uεn − ψn)+(x)uεn(x)dx

= −〈Anuεn, uεn〉+ λ

∫
Ω

(uεn)
2(x)dx+

∫
Ω

pn(x, uεn(x))u
ε
n(x)dx

≤ −c̃1 ‖ uεn ‖2 +a1||uεn||L1(Ω) + a2||uεn||s+1
Ls+1(Ω)

≤ ã1||uεn||+ ã2||uεn||s+1,

where ã1 and ã2 are positive constants independent of n and ε.
So Step 9 follows from Step 8.

Step 10. There exists a sequence (εk)k converging to 0 as k goes to ∞ such
that (uεkn )k weakly converges in H1

0 (Ω) to some un 6≡ 0 and un ≥ 0, for any
n ∈ N.

Proof. Let us fix n ∈ N. First of all, by Step 8, there exists a sequence (uεkn )k
weakly converging in H1

0 (Ω) to some un as εk goes to 0. Therefore, as εk goes to
0,

uεkn → un in L2(Ω)

and uεkn → un a.e. in Ω.

Moreover, by Step 5, uεkn ≥ 0 for any εk > 0 and therefore un ≥ 0.
We claim that un is not identically zero. Indeed, from the fact that uεkn is a non-
negative solution of problem (Pn)ε with ε = εk, using (3) and Step 6, we obtain

c̃1K
2
1 ≤ c̃1 ‖ uεkn ‖2

≤ 〈Anuεkn , uεkn 〉 − λ

∫
Ω

(uεkn )2(x)dx ≤
∫

Ω

pn(x, uεkn (x))uεkn (x)dx.
(18)

By (F1), (F2) and the weak convergence in H1
0 (Ω) of (uεkn )k to un, one has
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∫
Ω

pn(x, uεkn (x))uεkn (x)dx→
∫

Ω

pn(x, un(x))un(x)dx

as εk → 0. If un was identically zero, then, going to the limit as εk → 0 in (18),
we get a contradiction. So un 6≡ 0.

Step 11. The element un given by Step 10 is a nontrivial non-negative
solution of problem(Pn), for any n ∈ N.

Proof. Let us fix n ∈ N. As uεkn is a solution of (Pn)εk , taking v − uεkn as test
function, one gets

〈Anuεkn , v − uεkn 〉 − λ

∫
Ω

uεkn (x)(v − uεkn )(x)dx

+
1
εk

∫
Ω

(uεkn − ψn)+(x)(v − uεkn )(x)dx

=
∫

Ω

pn(x, uεkn (x))(v − uεkn )(x)dx.

(19)

Arguing as in Step 10, we have∫
Ω

pn(x, uεkn (x))(v − uεkn )(x)dx→
∫

Ω

pn(x, un(x))(v − un)(x)dx (20)

and
λ

∫
Ω

uεkn (x)(v − uεkn )(x)dx→ λ

∫
Ω

un(x)(v − un)(x)dx (21)

as εk goes to 0.
The weak lower semicontinuity of 〈Anu, u〉 yields

lim inf
εk→0

〈Anuεkn , v − uεkn 〉 ≤ 〈Anun, v − un〉. (22)

Finally taking v ≤ ψn in Ω, we have

1
εk

∫
Ω

(uεkn − ψn)+(x)(v − uεkn )(x)dx ≤ 0. (23)

Taking the liminf in (19) as εk goes to 0, by (20), (21), (22) and (23) we get

〈Anun, v − un〉 − λ

∫
Ω

un(x)(v − un)(x)dx

≥
∫

Ω

pn(x, un(x))(v − un)(x)dx,

for any v ∈ H1
0 (Ω), v ≤ ψn in Ω. Now let us prove that un ≤ ψn in Ω: this fact

follows by Step 9 and by the strong convergence in L2(Ω) of (uεkn )k to un. So un
is a solution of the variational inequality (Pn). ut
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4 The stability result

In this section we will prove the main result of this paper, i.e. the stability result
for the Mountain Pass type solutions (un)n of the problems ((Pn))n. In other
words, we consider the following problem

(P)



u ∈ H1
0 (Ω), u ≤ ψ in Ω

〈Au, v − u〉 − λ

∫
Ω

u(x)(v − u)(x)dx

≥
∫

Ω

p(x, u(x))(v − u)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψ in Ω,

where A ∈ E(c1, c2), p ∈ F(a1, a2, a3, r) and ψ ∈ H1(Ω) with ψ|∂Ω ≥ 0, and we
prove the following

Theorem 2. Let λ <
c1
c2
λ1. Let An, pn be as in Theorem 1, un the solution of

problem (Pn) given by Theorem 1, for any n ∈ N, A an operator belonging to
E(c1, c2) and p a function in the class F(a1, a2, a3, r). Moreover, let us assume
(H1), (H2), (H3), (H4) and the following hypotheses

(H5) ψn → ψ weakly in H1(Ω), as n→∞;

(H6) An
G−→ A, as n→∞;

(H7) pn(x, v(x)) → p(x, v(x)) as n→∞ a.e. in Ω and uniformly

on bounded set of H1
0 (Ω);

(H8) ∃ M > 0 such that ||Anψn||
L

2∗
s (Ω)

≤M, ∀ n ∈ N.

Then there exists a subsequence of (un)n weakly converging in H1
0 (Ω) to a function

u which is a nontrivial non-negative solution of problem (P).

Remark 5. It is easy to check that problem (P) has a Mountain Pass type solution
in a quite analogous way as (Pn). Then, from Theorem 2, we can deduce that
either the Mountain Pass type solutions (un)n of problems ((Pn))n converge, up to
subsequence, to a solution of (P) which still is of Mountain Pass type, or problem
(P) has at least two different solutions.

Remark 6. Hypotheses (H2) and (H5) assure that ψ is not identically zero.

Remark 7. In (H7) we require that

there exists a set N of zero measure such that ∀x ∈ Ω \N,

∀ B bounded set of H1
0 (Ω) and ∀η > 0 there exists n = n(η, x,B)

such that ∀n ≥ n we have |pn(x, v(x))− p(x, v(x))| < η, ∀v ∈ B.
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This assumption holds, in particular, if

pn(x, ξ) → p(x, ξ)

as n → ∞, a.e. in Ω and uniformly on bounded intervals of R (see [2], Remark
4.2).

Remark 8. Hypothesis (H8) is not empty. Indeed, it is enough to take ṽ in
Remark 3 sufficiently regular. In order to have (H5), we can assume that the
sequence (µn)n of Remark 3 is converging.

First of all, we will prove that the sequence (un)n is bounded from above and
from below in H1

0 (Ω). Then, denoting by u the weak limit of a subsequence of
(un)n in H1

0 (Ω), we will introduce the following auxiliary problem

(An)



un ∈ H1
0 (Ω), un ≤ ψn in Ω

〈Anun, v − un〉 − λ

∫
Ω

u(x)(v − un)(x)dx

≥
∫

Ω

p(x, u(x))(v − un)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψn in Ω.

After proving that the sequence (un)n of solutions of problems ((An))n weakly
converges in H1

0 (Ω) to a solution u of the following problem

(A)



u ∈ H1
0 (Ω), u ≤ ψ in Ω

〈Au, v − u〉 − λ

∫
Ω

u(x)(v − u)(x)dx

≥
∫

Ω

p(x, u(x))(v − u)(x)dx

∀v ∈ H1
0 (Ω), v ≤ ψ in Ω,

we will conclude the proof of Theorem 2 by showing that u = u.

Proof. (of Theorem 2) Let us proceed by steps.

Step 1. There exists K5 > 0 such that ||un|| ≥ K5, for any n ∈ N.

Proof. Let us fix n ∈ N. As un is a solution of (Pn), taking v ≡ 0 as test
function, one has

〈Anun, un〉 − λ

∫
Ω

u2
n(x)dx ≤

∫
Ω

pn(x, un(x))un(x)dx. (24)

By (24), (3), (F2) and the compact embedding of H1
0 (Ω) into Ls+1(Ω) one gets

c̃1||un||2 ≤
∫

Ω

pn(x, un(x))un(x)dx

≤ a1||un||L1(Ω) + a2||un||s+1
Ls+1(Ω) ≤ ã1||un||+ ã2||un||s+1,
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where ã1, ã2 are positive constants independent of n.
Step 1 follows from the fact that s > 1.

Step 2. There exists K6 > 0 such that ||un|| ≤ K6, for any n ∈ N.

Proof. Let us fix n ∈ N. By Step 10 of Theorem 1, we have that there ex-
ists (uεkn )k such that uεkn → un weakly in H1

0 (Ω) as εk → 0. The weakly lower
semicontinuity of || · || and Step 8 of Theorem 1 yield

K3 ≥ lim inf
εk→0

||uεkn || ≥ ||un||,

where K3 is independent of n.

Step 3. The sequence (un)n of solutions of the auxiliary problems ((An))n weakly
converges in H1

0 (Ω) to a solution u of problem (A).

Proof. By Lions-Stampacchia Theorem (see [5]), for any fixed n ∈ N there
exists a unique solution un of problem (An). Arguing as in Theorem 1 of [3] with
gn(·) = λu(·) + p(·, u(·)), we obtain that

un → u weakly in H1
0 (Ω),

as n goes to ∞, where u is a solution of problem (A).

Remark 9. Let us observe that Boccardo and Capuzzo Dolcetta in [3] require
that gn ∈ L2(Ω) and ||Anψn||L2(Ω) is bounded for any n ∈ N, while we assume
the same kind of hypotheses in L

2∗
s (Ω). We remark that one can use the same

arguments of [3] in case that L2(Ω) is replaced by Lp(Ω), where p ∈ [1, 2∗).

Step 4. There exists a subsequence of (un)n weakly converging in H1
0 (Ω) to a

function u which is a nontrivial non-negative solution of problem (P).

Proof. First of all, let us prove that

pn(·, un(·)) → p(·, u(·)) in L
2∗

2∗−1 (Ω). (25)

By Step 2, up to subsequences, un → u in L
2∗s

2∗−1 (Ω), un → u a.e. in Ω as n goes
to ∞ and there exists h ∈ L

2∗s
2∗−1 (Ω) such that

|un(x)| ≤ h(x) a.e. x in Ω, for any n ∈ N. (26)

Therefore, by (F1) and (H7), one has

pn(x, un(x)) → p(x, u(x)) (27)

a.e. in Ω, as n goes to ∞. Hence (25) follows by (27), (26) and (F2).
Now let us prove that

||un − un|| → 0 as n goes to ∞. (28)

By (B3) and using the fact that un is solution of (Pn) with v = un and un is
solution of (An) with v = un, we obtain:
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||un − un||2 ≤
1
c1
〈An(un − un), un − un〉

≤ λ

c1

∫
Ω

(un − u)(x)(un − un)(x)dx+

+
1
c1

∫
Ω

[pn(x, un(x))− p(x, u(x))] (un − un)(x)dx.

(29)

By (25), Steps 2, 3 and the continuous embedding of H1
0 (Ω) into L2∗(Ω), taking

the limit in (29) as n goes to ∞, one gets (28).
On the other hand (28) and Step 3 yield

un → u weakly in H1
0 (Ω).

Then u ≡ u, so u is a solution of problem (P).
Finally, arguing as in Step 10 of Theorem 1, one can prove that u ≥ 0 and u 6≡ 0.

ut
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