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Abstract

We study the mixing time of the Glauber dynamics for
general spin systems on bounded-degree trees, includ-

ing the Ising model, the hard-core model (independent
sets) and the antiferromagnetic Potts model at zero

temperature (colorings). We generalize a framework,

developed in our recent paper [18] in the context of
the Ising model, for establishing mixing time O(n log n),
which ties this property closely to phase transitions in

the underlying model. We use this framework to obtain
rapid mixing results for several models over a signifi-

cantly wider range of parameter values than previously
known, including situations in which the mixing time is

strongly dependent on the boundary condition.

1 Introduction

1.1 Spin systems on trees

Spin systems capture a wide range of probabilistic mod-
els studied in statistical physics, applied probability, ar-

tificial intelligence and elsewhere. A (nearest neigh-

bor) spin system on a graph G = (V, E) is specified by

a finite set S of spin values, a symmetric pair poten-

tial U : S × S → R ∪ {∞}, and a singleton potential
W : S → R. A configuration σ ∈ SV of the system as-

signs to each vertex (site) x ∈ V a spin value σx ∈ S.

The probability of finding the system in configuration σ
is determined by the Gibbs distribution

µ(σ) ∝ exp
[
−

(∑
xy∈E

U(σx, σy) +
∑

x∈V
W (σx)

)]
.

Thus the pair potential specifies the likelihood of seeing
a given pair of spins at adjacent sites, while the single-

ton potential specifies the likelihood of seeing a given
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spin. Note that setting U(s1, s2) = ∞ corresponds to a

hard constraint, i.e., spin values s1, s2 are forbidden to
be adjacent. We denote by Ω ⊆ SV the set of all valid

spin configurations, i.e., those for which µ(σ) > 0. We

will give several concrete examples in a moment.
Usually G is a finite portion of some regular lattice,

such as Z
d. In this paper we concentrate on what

is known in statistical physics as the Bethe lattice T
b,

i.e., G is a complete rooted tree in which each interior

vertex has b ≥ 2 children.† Spin systems on trees are
not only a useful simplification of their more classical

counterparts on Z
d, but have recently attracted a lot of

attention in their own right as the canonical example
of models on “non-amenable” graphs (i.e., those whose

boundary is of comparable size to their volume) — see,
e.g., [1, 2, 3, 8, 15].

A boundary condition corresponds to fixing the spins

at the leaves of G to some specified values (e.g., all
are set to the same value s). This allows us to formal-

ize the central concept of a phase transition. If we let

the size of the tree G grow to infinity, the Gibbs dis-
tribution tends to a limit known as the (infinite-volume)

Gibbs measure. This limit may or may not depend on the
boundary condition: i.e., there may be either a unique

Gibbs measure, or multiple Gibbs measures (“phases”)

corresponding to different boundary conditions. Infor-
mally, the existence of multiple Gibbs measures corre-

sponds to the fact that the spin configuration on the

leaves can have a non-zero influence on the spin at the
root even as the depth of the tree tends to infinity. A

phase transition occurs when an infinitesimal change in
the potentials leads to a switch from a unique Gibbs

measure to multiple Gibbs measures. See, e.g., [7] for

more background.
We now illustrate the above ideas with some con-

crete examples. The following four spin systems are

among the most widely studied in the literature, and
will serve as the motivating examples in this paper:

†Strictly speaking, in the Bethe lattice all vertices (including the

root) have degree b + 1; for convenience we assume that the root has

degree b. This difference is purely technical and does not affect our

results.



A. The (ferromagnetic) Ising model

There are two spin values S = {±1}, and the potentials

are U(s1, s2) = −βs1s2, W (s) = 0, where β is the
inverse temperature. Thus Ω = {±1}V . The Gibbs

distribution µ assigns higher weight to configurations

in which many neighboring spins are aligned with
one another. This effect increases with β, so that at

high temperatures (low β) the spins behave almost

independently, while at low temperatures (high β) large
connected regions of equal spins tend to form.

In fact, as is well known [23], a phase transition
occurs at the critical value β = β0 = 1

2 ln( b+1
b−1 ); in other

words, in the “high temperature” region β ≤ β0 there is

a unique Gibbs measure independent of the boundary
condition, but as soon as β > β0 we get (at least) two

different Gibbs measures corresponding to the +1 and

−1 boundary conditions respectively; i.e., if the leaves
are +1 then the root has probability bounded away

from 1
2 of being +1.

B. The hard-core model (independent sets)

This has been used in statistical physics as a model
of lattice gases [7], and also in other areas such as

the modeling of communication networks [13]. Again

there are just two spins S = {0, 1}, and we refer to
a site as occupied if it has spin value 1 and unoccupied

otherwise. The potentials are U(1, 1) = ∞, U(1, 0) =
U(0, 0) = 1, W (1) = L and W (0) = 0, where L ∈ R.
The hard constraint here means that no two adjacent

sites may be occupied, so Ω can be identified with the
set of all independent sets in G. Also, the aggregated

potential of a valid configuration is proportional to the

number of occupied sites. Hence the Gibbs distribution
takes the simple form µ(σ) ∝ λN(σ), where N(σ) is

the number of occupied sites and the parameter λ =
exp(−L) > 0, which controls the density of occupation,
is referred to as the “activity.”

The hard-core model also undergoes a phase tran-

sition at a critical activity λ = λ0 = bb

(b−1)b+1 (see, e.g.,

[24, 13]). For λ ≤ λ0 there is a unique Gibbs mea-

sure independent of the boundary condition, while for
λ > λ0 there are (at least) two distinct phases, corre-

sponding to the “odd” and “even” boundary conditions
respectively. The even (odd) boundary condition is ob-

tained by making the leaves of the tree all occupied if

the depth is even (odd), and all unoccupied otherwise.
For λ > λ0, the probability of occupation of the root in

the infinite-volume Gibbs measure differs for odd and

even boundary conditions.

C. The (ferromagnetic) Potts model

This model was introduced by Potts [22] as a general-
ization of the Ising model to more than two spin values;

see [28] for a survey. Here S = {1, 2, . . . , q} and the po-

tentials are U(s1, s2) = −2βδs1,s2
, W (s) = 0. Thus the

spin at each site can take one of q possible values, and

the aggregated potential of any configuration depends
on the number of adjacent pairs of equal spins. Note

that the Ising model is the special case q = 2. There are

no hard constraints, so Ω = SV .
Qualitatively the behavior of this model is similar to

that of the Ising model, though less is known in precise

quantitative terms. Again there is a phase transition at
a critical β = β0, which depends on b and q, so that for

β > β0 (and indeed for β ≥ β0 when q > 2) there are
multiple phases. This value β0 does not in general have

a closed form, but it is known [8] that β0 < 1
2 ln( b+q−1

b−1 )
for all q > 2. (For q = 2, this value is exactly β0 for the
Ising model as quoted earlier.)

D. The antiferromagnetic Potts model (colorings)

In this model S = {1, 2, . . . , q}, and the potentials

are U(s1, s2) = 2βδs1,s2
, W (s) = 0, where β is

the inverse temperature. This is analogous to the
Ising and Potts models except that the interactions are

antiferromagnetic, i.e., neighbors with unequal spins are

favored. The most interesting case of this model is
when β = ∞ (i.e., zero temperature), which introduces

hard constraints. Thus if we think of the q spin values
as colors, Ω is the set of proper colorings of G, i.e.,

assignments of colors to vertices so that no two adjacent

vertices receive the same color. The Gibbs distribution is
uniform over proper colorings. In this model it is q that

provides the parameterization. This model has been

widely studied not only in statistical physics, but also
in computer science because of its connection to graph

coloring. See, e.g., [3] for an informative account.
For colorings on the b-ary tree it is well known that,

when q ≤ b + 1, there are multiple Gibbs measures;

this follows immediately from the existence of “frozen
configurations,” i.e., colorings in which the color of

every internal vertex is forced by the colors of the leaves

(see, e.g., [3]). Recently it has been proved that, as
soon as q ≥ b + 2, the Gibbs measure is unique [12].

1.2 Glauber dynamics

While classical statistical physics focused on static ques-

tions about the infinite volume Gibbs measure (such as
the existence of a phase transition), the emphasis in re-

cent years has shifted towards the study of the Glauber

dynamics, a local Markov chain on the set of spin con-
figurations Ω of a finite graph G. For definiteness, we

describe the “heat-bath” version of Glauber dynamics:
at each step, pick a site x u.a.r., and replace the spin at x
by a random spin drawn from the conditional distribu-

tion given the spins of its neighbors. It is easy to check
that this dynamics converges to µ as its stationary distri-

bution, providing both an algorithm for sampling from



the Gibbs distribution and a plausible model for the ac-
tual evolution of the physical system. The key question

in the study of the dynamics is to determine the mixing

time, i.e., the number of steps until the distribution is

close to µ, starting from an arbitrary configuration.

Recent developments in statistical physics have re-
vealed a remarkable connection between the mixing

time and phase transitions in the special case of the

Ising model: for the Ising model on an n-vertex square
in Z

2 (which also has a phase transition at a critical β0),

when β < β0 the mixing time with arbitrary bound-
ary conditions is O(n log n) (which is optimal), but as

soon as β > β0 there are boundary conditions for which

the mixing time jumps to exp(Ω(
√

n )) [17]. This con-
forms with the intuition that the existence of multiple

phases creates a “bottleneck” which dramatically slows

down mixing. For the Ising model on trees the situa-
tion is even more interesting (see [2, 18]): on an n-

vertex b-ary tree, the mixing time remains O(n log n)
for all boundaries,‡ not only for β ≤ β0 but in fact for

all β < β1, where β1 = 1
2 ln

(√
b+1√
b−1

)
> β0. As soon as

β > β1, the mixing time for certain boundaries becomes

n1+Ω(1), and the exponent is unbounded as β → ∞.
Thus there is again a sharp transition in mixing behav-

ior, but it occurs inside the multiple-phase region.§

Finally, in the low temperature region β ≥ β1, the
mixing time is heavily influenced by the boundary con-

dition: recently, we proved that with the +1 (or, sym-
metrically, −1) boundary condition, the mixing time re-

mains O(n log n) throughout this region (and hence for

all values of β) [18]. This formalizes the intuition that
the boundary condition breaks the symmetry between

the two phases at low temperatures, thus eliminating

the bottleneck and enabling rapid mixing.
The above discussion of the Ising model highlights

two central issues in the study of the Glauber dynamics
for general models. Firstly, for which range of parame-

ter values is the mixing time “optimal” (i.e., O(n log n))
for arbitrary boundary conditions? In particular, does
this range extend throughout the region of uniqueness

of the Gibbs measure, and even beyond (as it does for

the Ising model)?¶ And secondly, for parameter values
outside this range, are there natural boundary condi-

tions for which the mixing time is still optimal?
In this paper we present a unified framework for

‡Throughout, a mixing time of O(n log n) hides constants that

depend only on the potentials and on the degree b.
§This second critical value β1 has other interpretations in terms

of extremality of the Gibbs measure and the threshold for noisy data

transmission on the tree [6].
¶Far into the uniqueness region — e.g., for the Ising model at very

high temperatures — it is easy to see using the Dobrushin Uniqueness

Condition that the mixing time is O(n log n) (see, e.g., [27]).

answering such questions for general spin systems on
trees. The framework is adapted and extended from

our earlier paper [18] on the Ising model, where we
bounded the log-Sobolev constant (and hence the mix-

ing time) in terms of two simple quantities derived

from the Gibbs measure, leading to a clean criterion
for O(n log n) mixing time.† Using this framework, we

are able to substantially extend the range of parameter

values for which O(n log n) mixing time is known for
the models described above, and explicitly relate this to

properties of the Gibbs measure. In the case of specific
boundaries, these are apparently the first results of this

kind for any of these models. Beyond providing new re-

sults for specific models, our goal is also to demonstrate
the wide applicability of our framework.

1.3 Our results
In this subsection we state our results and explain how

they relate to previous work.

A. The Ising model

Our results for this model are outlined above, and were
derived in our recent paper [18].

B. The hard-core model (independent sets)

The Glauber dynamics for the hard-core model on trees

is known to have mixing time polynomial in n at all

activities λ > 0 with free boundaries [11]. Moreover,
a rather general result of Luby and Vigoda [14, 26]

ensures a mixing time of O(n log n) when λ < 2
b−1 , with

arbitrary boundaries. This latter result actually holds
for any graph G of maximum degree b + 1.

In this paper, we prove results for the hard-core
model that mirror those stated above for the Ising

model. First, we show that the mixing time is O(n log n)
for all activities λ ≤ λ0 (and indeed beyond), with
arbitrary boundary conditions. Second, for the even (or

odd) boundary condition, we get the same result for all

activities λ:

THEOREM 1.1. For the hard-core model on the n-vertex

b-ary tree, the mixing time of the Glauber dynamics is

O(n log n) in both of the following situations:

(i) the boundary condition is arbitrary, and λ ≤
max

{
λ0,

1√
b−1

}
;

(ii) the boundary condition is even (or odd), and λ > 0
is arbitrary.

†A recent paper of Jerrum et al. [11] provides alternative tools

based on decomposition ideas for bounding the log-Sobolev constant;

those tools work in much more general settings, but give substantially

weaker bounds than ours for the scenarios discussed in this paper. In

particular, it seems unlikely that those methods are sensitive enough

to isolate the regime where the mixing time is O(n log n).



Part (ii) of this theorem is analogous to our ear-
lier result that the mixing time for the Ising model with

+1-boundary is O(n log n) at all temperatures. This is
in line with the intuition that the even boundary elimi-

nates the only bottleneck in the dynamics. Part (i) iden-

tifies a region in which the mixing time is insensitive to
the boundary condition. We would expect this to hold

throughout the low-activity region λ ≤ λ0, and indeed,

by analogy with the Ising model, also in some interme-
diate region beyond this. Our bound in part (i) confirms

this behavior: note that the quantity 1√
b−1

exceeds λ0

for all b ≥ 5, and indeed for large b it grows as Θ( 1√
b
)

compared to the Θ( 1
b ) growth of λ0. Thus for b ≥ 5 we

establish O(n log n) mixing time in a region above the
critical value λ0. To the best of our knowledge this is the

first such result. (Note that the result of [14, 26] men-

tioned earlier establishes O(n log n) mixing time only
for λ < 2

b−1 , which is less than λ0 for all b and so

does not even cover the whole uniqueness region.) We

also mention that our analysis in this region has con-
sequences for the infinite volume Gibbs measure itself,

implying that when λ ≤ 1√
b−1

any Gibbs measure that

is the limit of finite Gibbs distributions for some fixed

boundary configuration is extremal, again a new result.
(For results on extremality with specific boundary con-

ditions, see [4, 16].) We elaborate on this point in the
full version of the paper, where we also derive similar

results for an arbitrary system with two spin values.

C. The (ferromagnetic) Potts model

Little is known about the Glauber dynamics for the Potts
model on trees, beyond the facts that the mixing time is

O(n log n) for arbitrary boundaries at very high temper-
atures (by the Dobrushin Uniqueness Condition), and is

Ω(n1+ε) for some boundaries at very low temperatures

(combining results in [2, 21]). In this paper, we prove:

THEOREM 1.2. The mixing time of the Glauber dynamics

for the Potts model on an n-vertex b-ary tree is O(n log n)
in all of the following situations:

(i) the boundary condition is arbitrary and β <

max
{

β0,
1
2 ln(

√
b+1√
b−1

)
}
;

(ii) the boundary condition is constant (e.g., all sites on

the boundary have spin 1) and β is arbitrary;

(iii) the boundary condition is free (i.e., the boundary

spins are unconstrained) and β < β1, where β1 is

the solution to the equation e2β1−1
e2β1+q−1

· e2β1−1
e2β1+1

= 1
b .

Part (i) of this theorem shows that we get O(n log n)
mixing time for arbitrary boundaries throughout

the uniqueness region; also, since 1
2 ln(

√
b+1√
b−1

) ≥

1
2 ln( b+q−1

b−1 ) > β0 when q ≤ 2(
√

b + 1), this result ex-
tends into the multiple phase region for many combina-

tions of b and q. Part (ii) of the theorem is an analog
of our earlier result that the mixing time of the Ising

model with +1-boundaries is O(n log n) at all temper-

atures. Part (iii) is of interest for two reasons. First,
since β1 > β0 always, it exhibits a natural boundary

condition under which the mixing time is O(n log n) be-

yond the uniqueness region (but not for arbitrary β) for

all combinations of b and q. Second, because of an inti-

mate connection between the free boundary case and
so-called “reconstruction problems” on trees [20] (in

which the edges are noisy channels and the goal is to

reconstruct a value transmitted from the root), we ob-
tain an alternative proof of the best known value of the

noise parameter under which reconstruction is impossi-

ble [21]. As we observe later, a slight strengthening of
part (iii) marginally improves on this threshold.

D. The antiferromagnetic Potts model (colorings)

The sharpest result known for the Glauber dynamics

on colorings is due to Vigoda [25], who shows that
for arbitrary boundary conditions the mixing time is

O(n log n) provided q > 11
6 (b + 1). This result actually

holds not only for trees but for any n-vertex graph G of
maximum degree b + 1.‡ In this paper, we extend this

rapid mixing result throughout the uniqueness region,
i.e., all the way down to the “critical” value q = b + 2
for which the Gibbs measure remains unique.

THEOREM 1.3. The mixing time of the Glauber dynamics

for colorings on the n-vertex b-ary tree is O(n log n) for

arbitrary boundary conditions and q ≥ b + 2.

Note that this result is optimal: when q = b+1, it is not

too hard to construct boundary conditions under which
the Glauber dynamics is not connected.

The remainder of the paper is organized as follows.
After some basic definitions in Section 2, in Section 3

we extend the analytic framework from our previous
paper to general spin systems on trees, defining the

quantities κ and γ and relating them to the mixing time.

Then in Sections 4, 5 and 6 we specialize the analysis to
the hard-core, colorings and Potts models respectively.

Owing to space limitations, some details are left for the

full version.

‡A recent sequence of papers [5, 19, 9] have reduced the required

number of colors further for general graphs, under the assumption

that the maximum degree is Ω(log n). The current state of the art

requires q ≥ (1 + ε)(b + 1), for arbitrarily small ε > 0 [10], but these

results do not apply in our setting where the degree b + 1 is fixed.



2 Preliminaries

For b ≥ 2, let T
b denote the infinite rooted b-ary tree

(in which every vertex has b children). We will be
concerned with (complete) finite subtrees T that are

initial portions of T
b, i.e., share the same root; if T has

depth m then it has n = (bm+1−1)/(b−1) vertices, and
its boundary ∂T consists of the children (in T

b) of its

leaves, i.e., |∂T | = bm+1. We identify subgraphs of T
with their vertex sets, and write E(A) for the edges

within a subset A, and ∂A for the boundary of A (i.e.,

the neighbors of A in (T ∪ ∂T ) \ A).
Consider a spin system on T specified by spin

values S, pair potential U and singleton potential W as

in the Introduction. Let τ ∈ ST
b

be a spin configuration
on the infinite tree T

b. We denote by Ωτ
T the set of

configurations σ ∈ ST∪∂T that agree with τ on ∂T ;
i.e., τ specifies a boundary condition on T . The spin

at x is denoted σx. For any η ∈ Ωτ
T and any subset

A ⊆ T , the Gibbs distribution on A conditional on the
configuration outside A being η is denoted µη

A and is

defined as follows: if σ ∈ Ω agrees with η outside A
then

µη
A(σ) ∝ exp

[
−

( ∑

xy∈E(A∪∂A)

U(σx, σy) +
∑

x∈A

W (σx)
)]

; (1)

otherwise, µη
A(σ) = 0. In particular, when A = T ,

µη
T = µτ

T is simply the Gibbs distribution on the whole

of T with boundary condition τ . We will assume that

µη
A is well defined (i.e., that the expression in (1) is

positive for at least one σ) for every A, τ and η (even

when µτ
T (η) = 0); we call the spin system permissive in

this case. (Note that this is an issue only for systems

with hard constraints.) All the examples in this paper

are clearly permissive. We usually abbreviate Ωτ
T and

µτ
T to Ω and µ respectively. When there are hard

constraints (i.e., U(s1, s2) = ∞ for some s1, s2) we

remove invalid configurations (i.e., those for which
µ(σ) = 0) from Ω.

The (heat-bath) Glauber dynamics is the following
Markov chain on Ω = Ωτ

T . In configuration η ∈ Ω,

transitions are made as follows:

(i) pick a vertex x ∈ T u.a.r., and a spin value s chosen

from the distribution of the spin at x conditional on
the spins of its neighbors (i.e., s has the distribution

of the spin at x in µη
{x});

(ii) go to configuration ηx,s obtained from η by setting

the spin at x to s.

It is a well-known fact (and easily checked) that the
Glauber dynamics is ergodic and reversible w.r.t. the

Gibbs distribution µ = µτ
T , and so converges to the

stationary distribution µ. We measure the rate of
convergence by the mixing time:

tmix = min{t : ‖P t(σ, · ) − µ‖ ≤ 1
2e for all σ ∈ Ω}, (2)

where P t(σ, · ) denotes the distribution of the dynamics

after t steps starting from configuration σ, and ‖ · ‖ is
variation distance. (The constant 1

2e in this definition is

for algebraic convenience only.)
When we say that the mixing time of the Glauber

dynamics is O(n log n) for some boundary condition τ ,

we mean that for all finite T , the mixing time for µτ
T is

≤ cn logn for a constant c that depends only on b and

the potentials.

3 A framework for O(n log n) mixing time

In [18] we developed a criterion for O(n log n) mixing
time of the Glauber dynamics on trees, and used it to

analyze the Ising model both for arbitrary boundary

conditions and in the important special case of +1-
boundaries. This criterion generalizes immediately to

arbitrary spin systems, as we describe in this section
along with some useful extensions.

The key ingredients are two quantities, which we

call κ and γ, that bound the rate of percolation of
disagreements down and up the tree respectively. Both

are properties of the collection of Gibbs distributions

{µτ
T }, where τ is fixed and T ranges over all finite

complete subtrees of T
b. To define κ and γ we need

a little notation. For a vertex x ∈ T , write Tx for
the (maximal) subtree rooted at x. When x is not

the root of T , let µs
Tx

denote the Gibbs distribution

in which the parent of x has its spin fixed to s and
the configuration on the bottom boundary of Tx is

specified by τ (the global boundary condition on T )§.
For two distributions µ1, µ2 on Ω, ‖µ1−µ2‖x denotes the
variation distance between the projections of µ1 and µ2

onto the spin at x, i.e., ‖µ1 − µ2‖x = 1
2

∑
s∈S |µ1(σx =

s) − µ2(σx = s)|. Recall that ηx,s is the configuration η
with the spin at x set to s.

DEFINITION 3.1. For a collection of Gibbs distributions

{µτ
T } as above, define κ ≡ κ({µτ

T }) and γ ≡ γ({µτ
T }) by

(i) κ = supT maxz,s,s′ ‖µs
Tz

− µs′

Tz
‖z;

(ii) γ = supT max ‖µηy,s

A −µηy,s′

A ‖z, where the maximum

is taken over all subsets A ⊂ T , all boundary

configurations η, all sites y ∈ ∂A, all neighbors z ∈
A of y, and all spins s, s′ ∈ S.

§We do not specify the configuration in the rest of T \ Tx as it has

no influence on the distribution inside Tx once the spin at the parent

of x is fixed.



Remark: Note that κ is the same as γ, except that the max-

imization is restricted to A = Tz and the boundary vertex y

being the parent of z; hence always κ ≤ γ. Since κ involves

Gibbs distributions only on maximal subtrees Tz, it may de-

pend on the boundary condition τ at the bottom of the tree.

By contrast, γ bounds the worst-case probability of disagree-

ment for an arbitrary subset A and arbitrary boundary config-

uration around A, and hence depends only on the potentials

of the system and not on τ . It is the dependence of κ on τ

that opens up the possibility of an analysis that is specific to

the boundary condition.

The intuition for these definitions comes from the

following claim, which relates κ and γ to the rate of

disagreement percolation in the tree. For any T and

site x ∈ T , write T̃x for Tx \ {x}, the subtree Tx

excluding its root, and µs
T̃x

for the Gibbs distribution

when the spin at x is fixed to s. Also, for ` ≤
height(x) + 1 write Bx,` for the subtree (or “block”) of

height ` − 1 rooted at x (i.e., Bx,` has ` levels). For
two configurations σ, σ′ ∈ Ω, let |σ − σ′|x,` denote the

number of sites ` levels below x (i.e., on the bottom

boundary of Bx,`) at which σ and σ′ differ. Note that
|σ − σ′| ≤ b`.

CLAIM 3.2. For every x ∈ T and all ` ≤ height(x) + 1
the following hold:

(i) For all s, s′, there is a coupling ν = νs,s′

of µs
T̃x

and µs′

T̃x

for which Eν |σ − σ′|x,` ≤ (κb)`.

(ii) For any η, η′ ∈ Ω that have the same spin value at

the parent of x, ‖µη
Bx,`

− µη′

Bx,`
‖x ≤ γ` · |η − η′|x,`.

The proof of this claim follows from a standard re-
cursive coupling along paths in the tree: see [18,

Claim 4.4]. Part (i) shows that κ bounds the probability

of a disagreement percolating down the tree: i.e., when
we fix a disagreement at x and recursively couple the

distributions on the children of x, the expected propor-
tion of disagreements after ` levels is at most κ`. Simi-

larly, from part (ii) we see that γ bounds the probability

of a disagreement percolating up the tree: i.e., when we
fix a single disagreement at level ` below x, the proba-

bility of this disagreement reaching x is at most γ`.

We now state a theorem that will be our main
analytical tool. The theorem gives a sufficient condition

for O(n log n) mixing time in terms of the quantities κ
and γ.

THEOREM 3.3. Consider an arbitrary (permissive) spin
system and a boundary condition τ (a configuration

on T
b). If κ ≡ κ({µτ

T }) and γ ≡ γ({µτ
T }) satisfy

max{γκb, γ} < 1 then the mixing time of the associated

Glauber dynamics is O(n log n).

Proof: The proof follows by combining Theorems 3.4
and 5.1 of [18]¶, which together imply that, under the

above conditions on κ and γ, the logarithmic Sobolev

constant of the dynamics is Ω( 1
n ). By standard facts

relating the log-Sobolev constant to the mixing time,

this implies that the mixing time is O(n log n).

Theorem 3.3 tells us that, to prove O(n log n) mix-

ing time, it is enough to estimate the quantities κ and γ
for the spin system and boundary condition in question.

As we shall see, this can be done using calculations
specific to the situation at hand. In [18] we carried

out these calculations for the Ising model with various

boundary conditions; our goal in this paper is to per-
form analogous calculations for some other important

models, thus demonstrating the utility of the approach.

For some of these other models, we will require two
minor but useful generalizations of the above frame-

work, which we now describe. Both generalizations
stem from the observation that the role of the defini-

tions of κ and γ is to obtain the bounds on disagreement

percolation stated in Claim 3.2. In fact, in Theorem 3.3
we can replace κ and γ by any two values κ′ and γ′ for

which the upper bounds in parts (i) and (ii) of Claim 3.2

are O((κ′b)`) and O(γ′`) respectively (where the O( · )
hides constants independent of `). The arguments lead-

ing to Theorem 3.3 are easily seen to hold in this slightly
looser setting.

Our first generalization (which will be particularly

useful for “non-attractive” systems, including systems
with hard constraints) is to consider two levels of

the tree at a time, rather than a single level as in

Definition 3.1. Accordingly, define

κ2 = sup
T

max
z,w≺z,

s1,s′

1
,s2,s′

2

√
‖µs1

Tz
− µ

s′

1

Tz
‖z · ‖µs2

Tw
− µ

s′

2

Tw
‖w ,

(3)
where w ≺ z denotes “w is a child of z.” In fact, we

may restrict the maximization to sites z of even (or

odd) height. With this definition, it is easy to see that
the upper bound in Claim 3.2(i) for the probability of

disagreement percolating down the tree can be replaced
by (κ2)

2(`/2−1)b` = O((κ2b)
`). We therefore get the

following generalization of Theorem 3.3:

THEOREM 3.3′ . In the setting of Theorem 3.3, if κ2 and

γ satisfy max{γκ2b, γ} < 1 then the mixing time of the

associated Glauber dynamics is O(n log n).

¶These theorems are stated for the special case of the Ising model.

However, it is easily seen that their proofs make no use of the specific

form of the Ising potentials, and thus apply to arbitrary permissive

spin systems on trees.



Our second generalization exploits the fact that,
when deriving the bound on upward percolation in

part (ii) of Claim 3.2, it is enough to control the
probability of a disagreement percolating upwards one

level from y to z only when z is sufficiently far from the

boundary and the root of Bx,`. Let γ̂ be defined in the
same way as γ, but with the maximization restricted to

sets A that include the full subtree of depth d rooted

at z under the orientation in which y is the parent of z;
here d is an implicit parameter whose value may change

from model to model, but will in each case be a constant
independent of the size of T . Then the probability of

disagreement percolating one level upwards to z, where

z is at distance at least d from the boundary and root
of Bx,`, is bounded by γ̂. Thus it is easy to modify the

proof of Claim 3.2 so that the factor γ` in part (ii) is

replaced by γ̂`−2d = O(γ̂`). Similarly, we define κ̂ as
before but with the maximization restricted to z that are

at distance at least d from the boundary of T . Whenever
we use γ̂, we will also use κ̂ with the same value of d
so that we still have κ̂ ≤ γ̂. This leads to our second

generalization of Theorem 3.3:

THEOREM 3.3′′ . In the setting of Theorem 3.3, if κ̂ and

γ̂ satisfy max{γ̂ κ̂b, γ̂} < 1 then the mixing time of the

associated Glauber dynamics is O(n log n).

4 Independent sets (hard-core model)

In this section, we will prove that the mixing time of

the Glauber dynamics for sampling independent sets is
O(n log n) in all the situations covered by Theorem 1.1

in the Introduction.

In light of Theorem 3.3, in order to show O(n log n)
mixing time it is enough to bound the quantities κ and γ
such that max {γκb, γ} < 1, where κ and γ can also
be replaced by their variants as explained in Section 3.

Thus, Theorem 1.1 will follow from:

LEMMA 4.1. For the independent sets model with activity

parameter λ:

(i) For all values of λ, we have γ̂ < λ
1+λ (for some choice

of the implicit parameter d in γ̂). In addition, for

λ ≤ λ0 and every ε > 0, we have γ̂ ≤ 1+ε
b (again for

some d = d(ε)).

(ii) For λ > λ0, when τ is the 0-boundary condition (i.e.,

all sites are unoccupied), we have κ2 ≤ 1
b .

Recall that κ̂ ≤ γ̂, so from part (i) of this lemma we

conclude that γ̂ κ̂b < 1 when ( λ
1+λ )2 ≤ 1

b , i.e., when

λ ≤ 1√
b−1

, and also whenever λ ≤ λ0. Since also

γ̂ < 1 for all finite λ, part (i) of Theorem 1.1 follows
using Theorem 3.3′′. This also dispenses with part (ii)

of Theorem 1.1 in the region λ ≤ λ0. The remainder

of part (ii) (when λ > λ0) follows immediately from
part (ii) of the above lemma, using Theorem 3.3′ and

the fact that γ < 1. (Note that analyzing the 0-boundary
for all depths of T handles both odd and even boundary

conditions.)

Recall that the calculation of κ and γ involves
bounding the effect of changing the spin of a bound-

ary site on an inside neighbor (measured in terms of

variation distance). Consider a subset A, an arbitrary
boundary configuration η, and sites y ∈ ∂A and z ∈ A
as in Definition 3.1. We need to compare two distribu-

tions, µηy,s

A and µηy,s′

A . In the first, the site y is occupied

(spin value s = 1) and in the second y is unoccupied
(spin value s′ = 0). Now, from the definition of the

hard-core model, in the first distribution the site z is

unoccupied with certainty, and hence the variation dis-
tance between the two distributions at z is exactly the

probability that z is occupied in the second distribution

(where y is unoccupied, or equivalently, where the edge
connecting y and z is removed). Let pz stand for this

last probability. To summarize, for any subset A, any
two adjacent sites y ∈ ∂A and z ∈ A, and any boundary

configuration η,

‖µηy,1

A − µηy,0

A ‖z = µηy,0

A (σz = 1) ≡ pz. (4)

Our main goal in the rest of this section is to bound the
probability of occupation pz for the relevant values of λ
and global boundary condition τ .

Proof of Lemma 4.1 part (i)
We start with the easy observation that, for any sub-

set A, any boundary configuration η and any site z ∈ A,
µη

A(σz = 1) ≤ λ
1+λ , simply because the r.h.s. is the prob-

ability of z being occupied when all its neighbors are un-

occupied, and if one of its neighbors is occupied than z
is unoccupied with certainty. Using (4), we deduce that

γ ≤ λ
1+λ . We can strengthen this to γ̂ < λ

1+λ by notic-

ing that equality is achieved in the above only when all
neighbors of z are unoccupied with certainty, which can

happen only if all neighbors of z are in ∂A or adjacent
to ∂A. So by taking d = 3 in the definition of γ̂ we are

done.

We go on to consider the case λ ≤ λ0, i.e., when
the infinite-volume Gibbs measure is unique. Here, in

order to bound γ̂, we consider subsets A that include

the full subtree Bz,d of height d rooted at z, where d
is a large enough constant; in fact, w.l.o.g. we may

take A to be exactly such a subtree. Recall that we are
interested in pz, the probability that z is occupied when

its parent y is unoccupied, or equivalently, when Bz,d is

disconnected at its root z from the rest of T . We need
to show that pz ≤ 1+ε

b for every boundary condition η
on the bottom of Bz,d.



Now since we only consider the case λ ≤ λ0,
where by definition the Gibbs measure is unique, if we

let the depth d of Bz,d grow then the corresponding
sequence of probabilities pz converges to some value p0

independent of the boundary configuration η. It is

therefore enough to show that p0 ≤ 1
b , since then for

large enough d we will have pz ≤ 1+ε
b , as required.

The calculation of p0 can be done by recursively

calculating the sequence pz as was done in, e.g., [13]
and as we did for the Ising model in [18]. Let Rz =

pz

1−pz
stand for the ratio of probabilities that the site z

is occupied and unoccupied respectively, given that its

parent is unoccupied. A simple calculation verifies that

Rz = λ
∏

w≺z

(
1

1+Rw

)
, where Rw is computed w.r.t.

A = Bw,d−1 and the same η. For each λ, we thus define

the function

J(a) = λ

(
1

1 + a

)b

(5)

and conclude that R0 ≡ p0

1+p0
must be a fixed point of J .

Notice that since J is monotonically decreasing and

J(0) = λ > 0, it has a unique fixed point for every λ; we
denote this fixed point by a0 = a0(λ). Now uniqueness

of the Gibbs measure is equivalent to the fixed point a0

being attractive (which corresponds to the existence of
the limit p0). This in turn corresponds to the derivative

of J at a0 being at least −1; indeed, when λ = λ0 is

critical the derivative at a0 = a0(λ0) is exactly −1.

Now let J ′(a) = ∂J(a)
∂a . We will make use of

the fact that J ′(a0) = J ′(R0) ≥ −1 for λ ≤ λ0 in

order to establish that p0 ≤ 1
b . First note that, by a

straightforward calculation,

J ′(a) = −b · J(a)

1 + a
. (6)

Thus, since R0 is a fixed point of J , we have −J ′(R0) =

b · J(R0)
1+R0

= b · R0

1+R0
= bp0. On the other hand, since

−J ′(R0) = −J ′(a0) ≤ 1, we conclude that p0 ≤ 1
b ,

as required. This completes the proof of part (i) of
Lemma 4.1.

Proof of Lemma 4.1 part (ii)

In this part, the boundary condition τ is set to all-0
and λ > λ0, meaning that the Gibbs measure is not

unique or equivalently, as we saw in the previous part,

J ′(a0) < −1.
Once again, our aim is to calculate the probabilities

of occupation pz. Here, however, A is a maximal
subtree Tz and the bottom boundary condition is τ
(rather than arbitrary). We start by noticing that since τ
is the all-0 configuration, then Rz = J (`)(0), where J (`)

stands for the `-fold composition of J and ` is the

distance of z from the bottom boundary of T . However,

this time the sequence Rz does not converge since a0

is not an attractive fixed point. In fact, the sequence

oscillates around a0. It hence makes sense to look at
two separate sequences, one for even heights and one

for odd heights. This leads us to analyze the function

J2(a) ≡ J (2)(a) ≡ J(J(a)), which corresponds to
jumping two levels at a time. Notice that for a site z

at height 2` from the bottom, Rz = J
(`)
2 (0). Let us now

describe some properties of the function J2 (see Fig. 1):

1. J2 is continuous and increasing on [0,∞), with

J2(0) = λ/(1 + λ)b and supa J2(a) = λ.

2. a0 (the unique fixed point of J) is a fixed point

of J2.

3. If λ ≤ λ0 then a0 is the unique fixed point of J2. If
λ > λ0 then J2 has three fixed points a1 < a0 < a2,

where J(a1) = a2 and J(a2) = a1.

4. The derivative J ′
2(a) ≡ ∂J2(a)

∂a is continuous, and

for λ > λ0, J ′
2(a) is monotonically increasing on

[0, a1] with J ′
2(a1) < 1.

a a01 a2 a

a

J (a)2

Figure 1: Curve of the function J2(a), used in the proof

of Lemma 4.1, for λ > λ0. The points a1, a0, a2 are the
fixed points of J2 in increasing order.

It is thus easy to see that, for example, for λ > λ0,

J
(`)
2 (0) converges to a1 from below, i.e, for all sites z

whose height is even, Rz ≤ a1. Similarly, if the height

of z is odd, Rz ≥ a2. We will use the properties

of J2 in order to bound κ2 by 1
b . Recall that κ2

2 =
maxw≺z ‖µ1

Tz
− µ0

Tz
‖z · ‖µ1

Tw
− µ0

Tw
‖w = maxw≺z pzpw,

and that it is enough to consider sites z whose height
in T is odd. We will show that, for every site z of odd

height, and every child w of z, pzpw ≤ 1
b2 .

Again we show a connection between the deriva-
tive, this time of J2, and the relevant probabilities of oc-

cupation, i.e., pzpw. Using (6) to calculate J ′
2(a) gives:



J ′
2(a) = J ′(J(a)) · J ′(a) = b

(
J(J(a))

1 + J(a)

)
· b

(
J(a)

1 + a

)

= b2 · J2(a)

a
· J(a)

1 + J(a)
· a

1 + a
.

Recalling that z is the parent of w, together with the fact

that since τ is uniformly 0 we have Rw = Rw′ for any
child w′ of z, we observe that Rz = J(Rw). Therefore,

J ′
2(Rw) = b2 · J2(Rw)

Rw
· Rz

1+Rz
· Rw

1+Rw
= b2 · J2(Rw)

Rw
·

pzpw. Now, since z is of odd height then w is of even
height and therefore Rw ≤ a1. Notice that this means

J2(Rw) ≥ Rw, because J is continuous with J(0) > 0
and a1 is the smallest fixed point of J . Combining this
with the fact that J ′

2(Rw) < 1 (since Rw ≤ a1), we

conclude that pzpw ≤ 1
b2 . This completes the proof of

part (ii) of Lemma 4.1.

5 Colorings (antiferromagnetic Potts model at zero
temperature)

In this section we will prove Theorem 1.3: that the mix-
ing time of the Glauber dynamics for sampling proper

colorings is O(n log n) for all boundary conditions pro-

vided that the number of colors q ≥ b+2, i.e., whenever
the infinite-volume Gibbs measure is unique. In order

to again make use of the machinery from Section 3 in-

volving κ and γ, we prove the following:

LEMMA 5.1. For the colorings model with q colors, if

the infinite-volume Gibbs measure is unique then for

every ε > 0 we have γ̂ ≤ 1+ε
q−1−ε (for a suitable choice

d = d(ε) of the implicit constant in γ̂).

Since in [12] it was shown that the Gibbs measure is
unique for all q ≥ b + 2, we conclude that for these

values of q, γ̂ ≤ 1+ε
q−1−ε < 1

b . Theorem 1.3 now follows

from Theorem 3.3′′ and κ̂ ≤ γ̂.

Remark: The fact that γ̂ < 1

b
means not only that the

influence of any boundary configuration on the spin at the

root decays with the distance of the boundary from the

root (as is already implied by the fact the Gibbs measure is

unique), but that it decays exponentially fast. This fact is of

independent interest, and to the best of our understanding

was not obvious from the proof of uniqueness given in [12].

Proof of Lemma 5.1: Recall that in order to bound γ̂,

we need to consider a subset A that includes the full

subtree of depth d rooted at z, and bound the variation

distance maxs,s′ ‖µηy,s

A −µηy,s′

A ‖z for an arbitrary bound-

ary configuration η, where y is the (unique) neighbor
of z in ∂A.

Now it is easy to see that for the colorings model,

‖µηy,s

A − µηy,s′

A ‖z = max{µηy,s

A (σz = s′), µηy,s′

A (σz = s)}.

This can be shown as follows. Notice that for every

color s′′ that differs from both s and s′, µηy,s

A (σz = s′′) =
1−µηy,s

A
(σz=s′)

1−µηy,s′

A
(σz=s)

·µηy,s′

A (σz = s′′). Hence, if µηy,s

A (σz = s′) ≥

µηy,s′

A (σz = s), then µηy,s

A (σz = s′′) ≤ µηy,s′

A (σz = s′′) for
every s′′ 6= s′ and so the event E = {σz = s′} maximizes

the expression |µηy,s

A (E)−µηy,s′

A (E)| over all events E that

only depend on σz .
It is now convenient to consider the distribution

induced by removing the edge from z to y (i.e., with

a “free” condition at y). Call this distribution µηy,∗

A .

Let pz(s) = µηy,∗

A (σz = s), and notice that for the

colorings model µηy,s

A (σz = s′) = pz(s′)
1−pz(s) simply because

µηy,s

A ( · ) = µηy,∗

A (· |σz 6= s) in this model. Thus,

maxs,s′ ‖µηy,s

A − µηy,s′

A ‖z = maxs,s′ µηy,s

A (σz = s′) =

maxs,s′

pz(s′)
1−pz(s) .

So to obtain the claimed bound on γ̂ we have to

show that, for all sets A as above, and all boundary

configurations η, maxs,s′

pz(s′)
1−pz(s) ≤ 1+ε

q−1+ε . It is at this

point that we use the assumption that the Gibbs mea-
sure is unique. This means that, if d (the depth of the

full subtree contained in A) is large enough, the dis-
tribution pz( · ) is arbitrarily close to the uniform dis-

tribution, regardless of the boundary configuration η.

Thus, for every ε > 0 there exists a (large enough) con-
stant d such that pz(s) ≤ 1+ε

q for all colors s. Hence,

maxs,s′

pz(s′)
1−pz(s) ≤ 1+ε

q−1−ε , as required.

6 Ferromagnetic Potts model

In this section we will prove that, for the Potts model,

the mixing time is O(n log n) in all the situations de-
scribed in Theorem 1.2. As in the discussion of other

models in previous sections, we use the machinery from
Section 3. The following lemma sets out the relevant

properties of κ and γ; the proof uses similar ideas to

those in the proofs of Lemmas 4.1 and 5.1 and is left
for the full version.

LEMMA 6.1. For the Potts model with q colors at inverse

temperature β the following hold:

(i) γ ≤ e2β−1
e2β+1

− δ, where δ = δ(b, q, β) ≥ 0 with

equality if and only if q = 2. Furthermore, δ(b, q, β)
is increasing in q and decreasing in b and β. [The

exact definition of δ(b, q, β) is rather involved and

will be given in the full version of the paper].

(ii) If β < β0 (i.e., the Gibbs measure is unique) then

γ̂ < 1
b (for an appropriate choice of d, the implicit

constant in γ̂).



(iii) If β ≥ β0 and the boundary condition τ is constant,

then κ ≤ 1
b .

(iv) If the boundary condition τ is free, then κ =
e2β−1

e2β+q−1
.

Part (i) of Theorem 1.2 follows from parts (i)
and (ii) of Lemma 6.1 and the fact that for any bound-

ary condition κ ≤ γ. Part (ii) of Theorem 1.2 follows

from parts (ii) and (iii) of the lemma and the fact that
γ < 1 (as is apparent from part (i) of the lemma). Fi-

nally, part (iii) of Theorem 1.2 follows from parts (i)

and (iv) of the lemma. In fact, in light of the bound
on γ from part (i), the range of β in part (iii) of Theo-

rem 1.2 can be improved slightly by letting β1 be the so-

lution to the equation e2β1−1
e2β1+q−1

( e2β1−1
e2β1+1

− δ) = 1
b , where

δ = δ(b, q, β) is as in part (i) of Lemma 6.1. We note that
this modified definition of β1 is only marginally larger

than the original definition of β1 in Theorem 1.2, and

we mention it only in order to show that we can go
further than the original threshold, a fact that is inter-

esting due to its implication for the reconstruction prob-
lem [20] as mentioned in the Introduction. We elabo-

rate on this point in the full version of the paper.
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