II Esonero

Cognome	
Nome	
Matricola	

Esercizio 1. Una popolazione è distribuita secondo la normale $\mathcal{N}(170,64)$.

- Calcolare il percentile 95% della popolazione¹ . [**2 punti**]. **Risp:** $170 + 8 \times 1.64 \approx 183, 3$
- Sia \bar{X}_4 la media campionaria di un campione di numerosità 4. Qual'è la funzione generatrice di \bar{X}_4 ? [3 punti] Risp: $M(t) = \exp(170t + \frac{1}{2}16t^2)$.
- Trovare n tale che il 95% delle volte la media campionaria \bar{X}_n di un campione di taglia n soddisfa $\bar{X}_n \leq 172$? [**2 punti**] **Risp:** $n \geq 16 \times (1,64)^2 = 43,03$.

 $^{^{1}}z_{5\%} \approx 1,64 \text{ e } z_{2,5\%} \approx 1,96.$

Nome:	_

Esercizio 2.

- 1. La funzione generatrice M(t) della distribuzione $\operatorname{Gamma}(n,\lambda)$ è data dall'espressione $M(t) = \left(\frac{\lambda}{\lambda t}\right)^n$, $t < \lambda$. Dedurre che la somma di n variabili $\operatorname{Exp}(\lambda)$ indipendenti è distribuita come la $\operatorname{Gamma}(n,\lambda)$. [**3 punti**]
- 2. Sia $X \sim \text{Gamma}(100,1)$. Calcolare approssimativamente $\mathbb{P}(X \geq 116,4)$. [3 punti] Risp:

$$\mathbb{P}(X \ge 116, 4) = \mathbb{P}\left(\frac{X - 100}{10} \ge 1, 64\right) = 0.05$$

Nome:		

Esercizio 3.

• Due campioni presi da due popolazione normali differenti $\mathcal{N}(\mu_1, \sigma^2), \mathcal{N}(\mu_2, \sigma^2)$ hanno fornito rispettivamente i seguenti valori: (3,4,5,8) e (1,2,3,3,6). Trovare un intervallo di confidenza al 95% per la differenza $\mu_1 - \mu_2$ supponendo nota σ^2 . [4 punti]

Risp: $2 \pm 1,96\sigma \sqrt{\frac{1}{4} + \frac{1}{5}} = 2 \pm 1,314 \sigma$

• L'intervallo di confidenza al 95% per la media di una popolazione normale ottenuto da un campione (X_1, \ldots, X_n) sapendo la deviazione standard σ è sempre più piccolo dell'intervallo di confidenza ottenuto dallo stesso campione senza conoscere σ . Vero o falso ? Giustificare [3 punti]

Risp: Falso

Nome:			

Esercizio 4.

- (a) Calcolare lo stimatore di massima verosimiglianza per il parametro λ di una Poisson $Po(\lambda)$. [3 punti] Risp: \bar{X}
- (b) Quanto vale l'errore quadratico medio dello stimatore trovato ? [${\bf 3}$ punti] Rips: λ/n

Nome:	
	_

Esercizio 5. Per testare l'ipotesi $\mathbb{P}(\text{testa}) \leq 1/2$ una moneta viene lanciata 6 volte ottenendo 5 teste.

- L'ipotesi viene rifiutata ? Quanto vale il p-dei-dati ? NO, $\sim 10\%$ punti3
- È corretto pensare il p-dei-dati come la probabilità che l'ipotesi che $\mathbb{P}(\text{testa}) \leq 1/2$ sia vera ? Giustificare. [**2 punti**]

Risp: NO

• Calcolare la probabilità di commettere un errore di seconda specie supponendo $\mathbb{P}(\text{testa}) = 2/3$. [**2 punti**]

Risp: $\mathbb{P}_{p=\frac{2}{3}}(6 \text{ teste}) = 0.087.$