II Esonero

Cognome	
Nome	
Matricola	

Esercizio 1 [6 punti]. La forza di compressione per un certo cemento è ipotizzata essere una variabile casuale $X \sim N(\mu, \sigma^2)$ con $\sigma^2 = 10^3$. In 12 misure è stato trovato un valore di media campionaria di 3250.

- 1. Quanto dovrebbe essere la confidenza per avere un intervallo di confidenza per μ di ampiezza 30 ?[**3 punti**]
- 2. Quante misure bisognerebbe fare per avere un intervallo al %95 di confidenza e di ampiezza 15? [3 punti]

Esercizio 2 [6 punti]. Una variable casuale X prende i valori 0, 1, 2 con probabilità $1-3\theta, \theta, 2\theta$ rispettivamente, $\theta \in (0, 1/3)$. In 10 osservazioni indipendenti sono stati osservati i seguenti valori $\{0, 2, 2, 2, 1, 2, 0, 0, 1, 1\}$.

- 1. Trovare lo stimatore di massima verosimiglianza per θ e il suo valore numerico in base al campione. [4 punti]
- 2. Lo stimatore trovato è corretto ? [2 punti]

Nome:	

Esercizio 3 [6 punti]. Sia $X \sim N(\mu, 4)$ l'indice di inquinamento di un certo impianto. La legge fissa il massimo indice di inquinamento a 30.

- 1. Il responsabile dell'impianto vuole mostrare che μ soddisfa le regolamentazione prendendo un campione di 100 valori. Il valore campionario trovato è pari a 28. Quale ipotesi H_0 e H_1 dovra' testare (significatività uguale %5)? Quanto sarà il p-value del test? [3 punti]
- 2. Se invece il valore campionario fosse stato 30.3 l'agenzia per l'ambiente potrebbe concludere che l'impianto è inquinante? [3 punti]

Nome:	
-	

Esercizio [7 punti]. In 12 pazienti sono stai misurati l'età x e l'indice di rischio trombosi Y con i seguenti risultati"

$$\sum_{i} x_{i} = 596; \quad \sum_{i} x_{i}^{2} = 32435; \quad \sum_{i} y_{i} = -5.2; \quad \sum_{i} y_{i}^{2} = 4.3; \quad \sum_{i} x_{i} y_{i} = -188.58.$$

- 1. Trovare il coefficiente di correlazione r_{xy} ; [1 punti]
- 2. È ragionevole ipotizzare una regressione lineare tra Y e x?[2 punti]
- 3. Se la risposta precendente è si trovare la retta di regressione. [2 punti]
- 4. Quale sarà il valore da predire per un paziente di 60 anni? [2 punti]

Nome:	<u>:</u>	

Esercizio 5 [7 punti]. Una tabella di contingenza per una coppia di variabili casuali (X, Y) con valori (A, B, C, D) e (Y_+, Y_-) rispettivamente ha prodotto i seguenti valori per le frequenze assolute in un campione di 5000 misure:

YX	A	В	C	D
Y_{-}	2291	1631	282	79
Y_{+}	325	332	48	12

Si pensa che le frequenze teoriche (probabilità congiunte) debbano essere le seguenti:

YX	A	В	C	D
Y_{-}		0.381		
Y_{+}	0.070	0.072	0.012	0.005

- 1. Testare l'ipotesi fatta. [3 punti]
- 2. Testare l'ipotesi che la distribuzione della variabile X sia quella teorica (derivata dalla tabella). [4 punti]