III Appello

Cognome	
Nome	
Matricola	

Esercizio 1.

- Sia X una variabile aleatoria di tipo Weibull: $f_X(x) = \lambda c x^{c-1} e^{-\lambda x^c}, \ x>0, \ \text{con } \lambda, c>0.$ Far vedere che se $Z=\lambda X^c$ allora $Z\sim \text{Exp}(1).$ [3 punti]
- \bullet Quanto vale il 75% percentile di Z ? [${\bf 2}$ punti]

Nome:		
_		

Esercizio 2.

- (A) 5 studenti di un master finiscono gli studi e iniziano a lavorare in finanza. Quattro di loro riferiscono che il loro salario iniziale è di 95K, 106K, 106K e 118K (Euro) rispettivamente. Il quinto studente non dice niente. Quale delle seguenti risposte è giusta: [3 punti]
 - (a) la mediana del salario iniziale dei 5 studenti può essere qualsiasi numero tra 95K e 118K;
 - (b) la mediana è 106K;
 - (c) la mediana è 106.5K;
 - (d) la mediana può essere più grande di 118K.

- (B) Un campione di taglia n ha media e deviazione standard campionaria uguali a 50 e 7 rispettivamente. Dire se le seguenti affermazioni sono vere o false: [3 punti]
 - (a) almeno il 75% del campione si trova tra 36 e 64;

vero falso;

(b) meno del 15% del campione si trova sotto 15;

vero

falso.

Nome:	_

Esercizio 3. Siano $\{X_i\}_{i=1}^n$ variabile aleatorie i.i.d. con varianza finita σ^2 . Si consideri la statistica campionaria $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ dove \bar{X} è la media campionaria.

- S^2 è uno stimatore corretto di σ^2 ? [3 punti]
- Mostrare che $S=\sqrt{S^2}$ è uno stimatore distorto di $\sigma.$ [3 punti]
- Supponendo che le variabili $\{X_i\}_{i=1}^n$ siano tutte $\mathcal{N}(0,\sigma^2)$ quanto vale $\text{Cov}(S^2,\bar{X})$? [**2** punti]

Nome:	
	_

Esercizio 4.

- Si consideri una popolazione con distribuzione di Weibull $f_X(x) = 2\lambda x e^{-\lambda x^2}$, $\lambda > 0$. Dato un campione di numerosità n costruire uno stimatore di massima verosimiglianza per il parametro λ . [3 punti]
- $\bullet\,$ Lo stimatore costruito è corretto ? [${\bf 3}$ ${\bf punti}$]

Esercizio 5. Un dado viene lanciato 60 volte ottenendo 15 volte il numero 4. Il dado e' onesto o ci sono troppi 4 ? [**5 punti**]