1. Dimostrare che per ogni $x \in (0, +\infty)$ la funzione $g(x) = x - 1 - x \log x$ è non positiva $(g(x) \le 0)$. Quindi, dimostrare che per ogni $x \in (0, 1)$ la funzione $f(x) = \frac{\log x}{x - 1}$ risulta maggiore strettamente di 1 (f(x) > 1).

Si ha $g'(x) = -\log x$. Dal segno di tale funzione si deduce che g ammette un massimo nel punto x = 1 e si ha g(1) = 0; segue che per ogni $x \in (0, +\infty)$ $g(x) \le 0$.

Si ha $f'(x) = \frac{g(x)}{x(x-1)^2}$. Dal segno di tale funzione si deduce che f è strettamente decrescente in

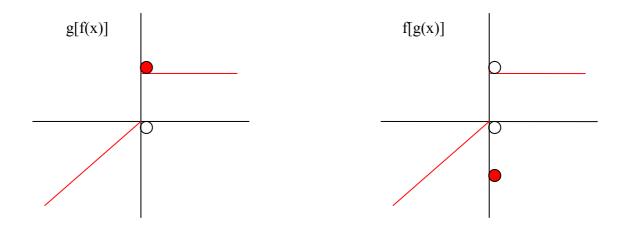
- (0, 1). Poiché $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{1}{x} = 1$, segue che per ogni $x \in (0, 1)$ f(x) > 1.
- 2. Studiare l'invertibilità della funzione $f(x) = \sin(\pi + e^x)$ rispettivamente nell'intervallo $I_1 = \left[\log \frac{\pi}{2}, \log \frac{3\pi}{2}\right]$ e $I_2 = \left[\log \pi, \log 2\pi\right]$.

Si ha $f'(x) = e^x \cos\left(\pi + e^x\right)$. Tale funzione risulta non negativa per $-\frac{\pi}{2} + 2k\pi \le \pi + e^x \le \frac{\pi}{2} + 2k\pi$ $k \in \mathbb{N}$ cioè $-\frac{3\pi}{2} + 2k\pi \le e^x \le -\frac{\pi}{2} + 2k\pi$ $k \in \mathbb{N}$ e quindi $\log\left(-\frac{3\pi}{2} + 2k\pi\right) \le x \le \log\left(-\frac{\pi}{2} + 2k\pi\right)$ $k \in \mathbb{N}$.

Per k=1 si ottiene allora che la derivata di f è non negativa nell'intervallo $\left[\log\frac{\pi}{2},\log\frac{3\pi}{2}\right]$ annullandosi solo agli estremi; segue che f sarà in tale intervallo strettamente monotona e quindi ivi invertibile. Poiché la derivata di f cambia di segno nell'intervallo $I_2 = \left[\log\pi,\log2\pi\right]$ non può essere ivi iniettiva.

3. Siano $f(x) = \begin{cases} x \sec x < 0 \\ 1 \sec x \ge 0 \end{cases}$ e $g(x) = \begin{cases} x \sec x \ne 0 \\ -1 \sec x = 0 \end{cases}$. Disegnare il grafico delle funzioni composte f[g(x)] = g[f(x)].

$$f[g(x)] = \begin{cases} g(x) \sec g(x) < 0 \\ 1 & \sec g(x) \ge 0 \end{cases} = \begin{cases} g(x) \sec x \le 0 \\ 1 & \sec x > 0 \end{cases} = \begin{cases} x & \sec x < 0 \\ -1 & \sec x = 0 \\ 1 & \sec x > 0 \end{cases}$$
$$g[f(x)] = \begin{cases} f(x) \sec f(x) \ne 0 \\ -1 & \sec f(x) = 0 \end{cases} = \begin{cases} f(x) \ \forall \ x \in \mathbb{R} \\ 1 & \text{mai} \end{cases} = \begin{cases} x & \sec x < 0 \\ 1 & \sec x \ge 0 \end{cases}$$



- **4.** Sia *f* illimitata inferiormente e decrescente nel rispettivo dominio (illimitato superiormente). Dimostrare, mediante la definizione di funzione divergente, che $\lim_{x\to +\infty} f(x) = -\infty$. Il risultato continua a valere senza l'ipotesi della decrescenza?
- **5.** Denotiamo con D_f il dominio di f. Poiché f è illimitata inferiormente allora $\forall M>0 \,\exists\, x_M\in D_f\,/\,f(x_M)<-M$ esiste (altrimenti sarebbe limitata inf.). Inoltre, essendo f decrescente in D_f si ha che $\forall x\in D_f$ con $x>x_M\Rightarrow f(x)< f(x_M)<-M$. Riassumendo si ha $\forall M>0 \,\exists\, x_M>0/\,\forall x\in D_f$ con $x>x_M\Rightarrow f(x)<-M$ che equivale a scrivere $\lim_{x\to +\infty}f(x)=-\infty$.

Senza l'ipotesi della decrescenza il risultato in generale non vale. Infatti la funzione $f(x) = \log x$ è illimitata inf. ma non diverge a $-\infty$ per $x \to +\infty$.

UNIVERSITÀ DEGLI STUDI ROMA TRE - Facoltà di Ingegneria PROVA D'ESAME DI ANALISI MATEMATCA 1 Collegio Didattico di Ingegneria Meccanica - 11 gennaio 2007

Cognome e nome	
Autorizzo ad esporre il mio nome nell'elenco degli elaborati sufficienti. Firma _	

- Anno di immatricolazione: 2006 2005 prima del 2005
- **1**. Dimostrare che per ogni $x \in (0, +\infty)$ la funzione $g(x) = 1 + x \log x x$ è non negativa $(g(x) \ge 0)$. Quindi, dimostrare che per ogni $x \in (1, +\infty)$ la funzione $f(x) = \frac{\log x}{x 1}$ risulta minore strettamente di 1 (f(x) < 1).
- 2. Studiare l'invertibilità della funzione $f(x) = \cos(\pi + e^x)$ rispettivamente nell'intervallo $I_1 = \left\lceil \log \frac{\pi}{2}, \log \frac{3\pi}{2} \right\rceil$ e $I_2 = \left\lceil \log \pi, \log 2\pi \right\rceil$
- 3. Siano $f(x) = \begin{cases} 0 & \text{se } x \le 0 \\ x & \text{se } x > 0 \end{cases}$ e $g(x) = \begin{cases} 1 & \text{se } x < 0 \\ -x & \text{se } x \ge 0 \end{cases}$. Disegnare il grafico delle funzioni composte f[g(x)] = g[f(x)].
- **4**. Sia f illimitata superiormente e crescente nel rispettivo dominio (illimitato superiormente). Dimostrare, mediante la definizione di funzione divergente, che $\lim_{x\to +\infty} f(x) = +\infty$. Il risultato continua a valere senza l'ipotesi della crescenza?

UNIVERSITÀ DEGLI STUDI ROMA TRE - Facoltà di Ingegneria PROVA D'ESAME DI ANALISI MATEMATICA 2 Collegio Didattico di Ingegneria Meccanica - 11 gennaio 2007

Cognome e nome	-
Acconsento al trattamento dei miei dati per le attività connesse. Firma	
Anno di immatricolazione: 2005 2004 prima del 2004	

- 1. Determinare l'equazione differenziale che ha come integrale generale la seguente funzione $y = e^x (c_1 \cos 2x + c_2 \sin 2x + x)$, $\forall c_1, c_2 \in \mathbb{C}$.
- 2. Calcolare il dominio e l'espressione esplicita della seguente funzione $\int_{-\frac{1}{2}}^{x} \frac{dt}{\sqrt{t^2 + t + \frac{37}{4}}}.$
- **3**. Sia f(x) = o[g(x)] e g(x) = o[h(x)] entrambe per $x \to x_0$. Stabilire, dimostrandolo, se siano vere o false le seguenti affermazioni: f(x) = o[h(x)] per $x \to x_0$, f(x) = o[g(x)h(x)] per $x \to x_0$.
- **4**. Sia $\sum_{k=0}^{\infty} a_k$ una serie a termini di segno positivo e l > 1. Dimostrare che se $\forall \epsilon > 0$ si ha $\sqrt[k]{a_k} > l$ allora la serie diverge.