SOLUZIONI

1. Sia
$$f(x) = \begin{cases} -(e^4 + 1)x + \frac{1}{2}e^4 & \text{se } x \le \frac{1}{2} \\ (\lambda x^2 + x)e^{\frac{2}{x}} - x & \text{se } x > \frac{1}{2} \end{cases}$$

Trovare il valore di λ per cui risulta continua e, per tale valore, disegnarne il grafico.

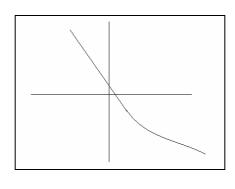
Si ha $f\left(\frac{1}{2}\right) = -\frac{1}{2}$ e $\lim_{x \to \frac{1}{2}^+} f\left(x\right) = \left(\frac{\lambda}{4} + \frac{1}{2}\right) e^{-\frac{1}{2}}$. Quindi la continuità della funzione si ha per $\lambda = -2$. Poiché per $x \le \frac{1}{2}$ la funzione rappresenta una retta, studiamo il grafico della funzione $f(x) = \left(-2x^2 + x\right) e^{\frac{2}{x}} - x$, con $x > \frac{1}{2}$. Poiché il polinomio $-2x^2 + x$ risulta negativo per $x > \frac{1}{2}$, la funzione è sempre negativa per $x > \frac{1}{2}$. Inoltre si ha $\lim_{x \to +\infty} f(x) = -\infty$. Ancora si ha

$$f'(x) = \left(\frac{-4x^2 + 5x - 2}{x}\right)e^{\frac{2}{x}} - 1.$$

Poiché f'(x) < 0 per ogni $x > \frac{1}{2}$, la funzione è strettamente decrescente per $x > \frac{1}{2}$. Essendo $\lim_{x \to \frac{1}{2}^+} f'(x) = \lim_{x \to \frac{1}{2}^-} f'(x) = -(e^4 + 1)$, la funzione risulta derivabile in $\frac{1}{2}$. Infine, per $x > \frac{1}{2}$, si ha

$$f''(x) = -\frac{4e^{\frac{2}{x}}}{x^3} (x^2 - x + 1)(x - 1).$$

Poiché f''(x) > 0 per $x \in \left(\frac{1}{2}, 1\right)$ e f''(x) < 0 per $x \in \left(1, +\infty\right)$, la funzione è concava in $\left(\frac{1}{2}, 1\right)$ e convessa in $\left(1, +\infty\right)$; 1 è un punto di flesso.



 $\mathbf{2}$. Tra tutti i rettangoli di perimetro fissato pari a 2p, determinare quello di area massima.

Sia x la lunghezza della base del rettangolo. Allora l'altezza misurerà p - x. L'area sarà A(x) = x(p-x). Si ha A'(x) = p-2x, da cui risulta che $\frac{p}{2}$ è un punto di massimo assoluto. Quindi il rettangolo di area massima è il quadrato di lato $\frac{p}{2}$.

3. Verificare (applicando *solo* la definizione) che $\lim_{n\to\infty} \frac{\sqrt{n^2+1}}{n} = 1$.

Occorre verificare che $\forall \varepsilon > 0 \exists v_{\varepsilon} > 0 / \forall n > v_{\varepsilon} \Rightarrow 1 - \varepsilon < \frac{\sqrt{n^2 + 1}}{n} < 1 + \varepsilon$. La prima delle due disequazioni è soddisfatta per ogni numero naturale, mentre la seconda è soddisfatta $\forall n > \frac{1}{\sqrt{\varepsilon(2 + \varepsilon)}}$. Quindi il limite è verificato ponendo $v_{\varepsilon} = \frac{1}{\sqrt{\varepsilon(2 + \varepsilon)}}$.

4. Siano $f \in g$ due funzioni invertibili nell'intervallo I tali che $f(x) = \frac{1}{g(x)} \quad \forall x \in I$. Dette $\bar{f} \in \bar{g}$ le rispettive funzioni inverse, dimostrare che $\bar{f}(y) = \bar{g}\left(\frac{1}{y}\right)$ nel rispettivo intervallo.

Sia $y = f(x) = \frac{1}{g(x)}$, da cui si ricava $g(x) = \frac{1}{y}$. Quindi si ha $x = \overline{f}(y) = \overline{g}\left(\frac{1}{y}\right)$.

1. Determinare, nel piano di Gauss, tutti i numeri complessi z che soddisfano l'equazione $\overline{z} = z^7$. (Sugg: moltiplicare entrambi i membri per z, quindi sfruttare la rappresentazione trigonometrica dei numeri complessi)

Moltiplicando entrambi i membri dell'equazione per z si ottiene $|z| = z^8$

Posto $z = |z|(\cos(\operatorname{Arg} z) + i\sin(\operatorname{Arg} z))$ l'equazione diventa

$$|z| = |z|^8 \left(\cos(8\operatorname{Arg} z) + i\sin(8\operatorname{Arg} z)\right).$$

Osservato che il numero z=0 è una soluzione dell'equazione, questa equivale, per $z\neq 0$ alla seguente

$$1 = |z|^{7} \left(\cos(8\operatorname{Arg}z) + i\sin(8\operatorname{Arg}z)\right)$$

cioè

$$\begin{cases} |z|^7 \cos(8\operatorname{Arg} z) = 1\\ |z|^7 \sin(8\operatorname{Arg} z) = 0 \end{cases}$$

Dalla seconda equazione si ha $\operatorname{Arg} z = \frac{k\pi}{8}$, $k \in \mathbb{Z}$. Sostituendo tali valori nella prima equazione, segue che k deve essere necessariamente pari, cioè k = 2h, $h \in \mathbb{Z}$, e inoltre

$$|z|^7 = 1 \Longrightarrow |z| = 1$$
.

Quindi i numeri complessi che soddisfano l'equazione sono, oltre lo 0, i seguenti sei

$$\cos\left(\frac{h\pi}{4}\right) + i\sin\left(\frac{h\pi}{4}\right), \quad h = 0, 1, 2, 3, 4, 5, 6, 7.$$

2. Calcolare
$$\lim_{x\to 0} \left(\frac{1}{2x} - \frac{1}{\log(1+x) - \log(1-x)} \right).$$

Dalle formule di MacLaurin $\log(1+x) = x - \frac{x^2}{2} + o(x^2)$ e $-\log(1+x) = x + \frac{x^2}{2} + o(x^2)$ si ha

$$\lim_{x \to 0} \left(\frac{1}{2x} - \frac{1}{\log(1+x) - \log(1-x)} \right) = \lim_{x \to 0} \left(\frac{1}{2x} - \frac{1}{2x + o(x^2)} \right) = \lim_{x \to 0} \frac{o(x)}{2x} \left(\frac{1}{1 + o(x)} \right) = 0.$$

3. Risolvere la seguente equazione
$$\sum_{k=1}^{\infty} \frac{x+1}{k \, x \, (k+1)} = 1.$$

L'equazione può essere scritta in forma equivalente $\frac{x+1}{x}\sum_{k=1}^{\infty}\frac{1}{k(k+1)}=1$. La serie a primo membro è telescopica e quindi converge ad 1; per cui l'equazione equivale a $\frac{x+1}{x}=1$, e quindi non ammette soluzioni.

4. Stabilire, giustificando le risposte, se siano vere o false le seguenti affermazioni: $\int_{\pi/2}^{x} \frac{\sin^2 t}{t} dt < \int_{\pi}^{x} \frac{\sin^2 t}{t} dt \quad \forall x > 0 \,, \quad \int_{-\pi/2}^{x} \frac{\sin^2 t}{t} dt < \int_{\pi}^{x} \frac{\sin^2 t}{t} dt \quad \forall x > 0 \,.$

Siano $f(x) = \int_{\pi/2}^{x} \frac{\sin^2 t}{t} dt$, $g(x) = \int_{\pi}^{x} \frac{\sin^2 t}{t} dt$, $h(x) = \int_{-\pi/2}^{x} \frac{\sin^2 t}{t} dt$. Le funzioni f e g sono definite in $(0, +\infty)$, mentre la funzione h è definita in $(-\infty, 0)$. Allora la seconda disuguaglianza è falsa non potendo essere messe in relazione tra loro le funzioni g e h. Le funzioni f e g, primitive di una stessa funzione positiva, sono strettamente crescenti e differiscono per una costante. Poiché $f\left(\frac{\pi}{2}\right) = 0$, $g(\pi) = 0$ segue che f(x) > g(x) e quindi anche la prima disuguaglianza è falsa.