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Abstract
We prove a finite volume lower bound of the order

√
log N on the delocalization of a disordered

continuous spin model (resp. effective interface model) in d = 2 in a box of size N . The
interaction is assumed to be massless, possibly anharmonic and dominated from above by a
Gaussian. Disorder is entering via a linear source term. For this model delocalization with
the same rate is proved to take place already without disorder. We provide a bound that is
uniform in the configuration of the disorder, and so our proof shows that disorder will only
enhance fluctuations.

1 Introduction

Our model is given in terms of the formal infinite-volume Hamiltonian

H[η] (ϕ) =
1
2

∑
i,j

p(i− j)V (ϕi − ϕj)−
∑

i

ηiϕi (1)

where the pair potential V (t) is assumed to be twice continuously differentiable with an upper
bound V ′′(t) ≤ c and V (t) = V (−t), i.e symmetric. A configuration ϕ = (ϕi)i∈Λ ∈ RΛ can be
viewed either as a continuous spin configuration or as an ”effective interface”. The η = (ηi)i∈Λ

denotes an arbitrary fixed configuration of external fields.
We do not assume a lower bound on the curvature of the potential, in particular it might
change sign and V (t) might possess several minima. This is identical to [9] and unlike to
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results based on the Brascamp-Lieb inequalities [3, 4] which need the curvature to be strictly
positive.
Our result will be valid for all choices of the potential V (t) and the random field configurations
η for which the integrals in finite volume are well-defined. For simplicity let us assume that V

grows faster than linear to infinity, i.e. lim|x|↑∞
V (x)
|x|1+ε = ∞. This guarantees the existence of

the finite volume measure for all arbitrary fixed choices of η ∈ RΛ.
Finally p(·) is the transition kernel of an aperiodic, irreducible random walk X on Zd, assumed
to be symmetric and, for simplicity, finite range.
Define, correspondingly the quenched finite volume Gibbs measures µϕ̂

N [η], in a square Λ ≡ ΛN

of sidelength 2N + 1, centered at the origin to be

µϕ̂
N [η](F (ϕ))

:=
∫

dϕΛF (ϕΛ, ϕ̂Λc)e−
1
2

P
i,j∈Λ p(i−j)V (ϕi−ϕj)−

P
i∈Λ,j∈Λc p(i−j)V (ϕi−ϕ̂j)+

P
i∈Λ ηiϕi

Zϕ̂
Λ [η]

(2)

where ϕ̂ is a boundary condition, η a fixed ”frozen” configuration of random fields in Λ and
Zϕ̂

Λ is the normalization factor.
What kind of behavior of delocalization resp. localization is expected to occur in a massless
disordered model in dimension d = 2? As a motivation, consider the Gaussian nearest neighbor
case first, i.e. V (x) = x2

2 and p(i− j) = 1
2d for i and j nearest neighbors. Then, for any fixed

configuration ηΛ, the measure µϕ̂
N [η] is a Gaussian measure with covariance matrix (−∆Λ)−1

and expectation∫
µϕ̂

N [η](dϕx)ϕx =
∑
y∈Λ

(−∆Λ)−1
x,yηy +

∑
y∈Λc,|x−y|=1

(−∆Λ)−1
x,yϕ̂y. (3)

For every x and y in Zd, d ≥ 3, the limit of (−∆Λ)−1
x,y as Λ ↗ Zd exists and it is finite, diverges

like log N in d = 2. Taking for simplicity the random fields ηy to be i.i.d. standard Gaussians,
denote their expectations by E, we see that mean at the site 0 of the random interface is itself
a Gaussian variable as a linear combination of Gaussians and has variance

σ2
0 =

∑
y∈Λ

((−∆Λ)−1
0,y)2. (4)

This should diverge as
∫ N

r(log r)2dr ∼ N2(log N)2 when the sidelength N of the box diverges
to infinity. In dimension d > 2, we have

∫ N
rd−1(r−(d−2))2dr, so the interface stays bounded

in d > 4.
In particular the explicit computation shows that delocalization is enhanced by randomness
in the Gaussian model. It is however not clear whether this phenomenon is still present in an
anharmonic model where a separation of the influence caused by the ηi’s is not possible and
the minimizer of the Hamiltonian cannot be computed in a simple way. A priori one might
not exclude the possibility that, depending on the interaction V , a symmetrically distributed
random field possibly stabilizes the interface.
We show in this note that this is not the case and the divergence is at least as strong as in
the model without disorder, for any fixed field configuration. The method is typically two-
dimensional. Hence it does not show in the present form that in three or four dimensions
disorder will cause an anharmonic localized interface to diverge. The latter would be a con-
tinuous spin-analogue of the result in [2] obtained for discrete disordered SOS-models. In
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that paper the existence of stable two-dimensional SOS-interfaces was excluded, using a soft
martingale argument in the spirit of [1]. A disadvantage of that method however lies in the
inability to give explicit fluctuation lower bounds on the behavior of the interface in finite
volume.
The present proof is based on a ”two-dimensional” Mermin-Wagner type argument involving
the entropy inequality (see [9]). The result is a quenched result, uniformly for all (and not only
almost all) configuration of the disorder fields. We stress that such a ”quenched instability” at
any field configuration can only hold in d = 2, as the Gaussian interface shows. Indeed, for
the Gaussian interface the instability of the interface is caused by fluctuations w.r.t. disorder
of the groundstate, while the Gibbs fluctuations relative to the groundstate stay bounded.
So the dimensionality of our result is correct.

1.1 Result and proof

Theorem 1.1 Suppose d = 2. Suppose that η ∈ RΛ is an arbitrary fixed configuration of
fields. Then there exists a constant c, independent of η, such that

µ0
N [η]

(
|ϕ0| ≥ T

√
log N

)
≥ e−cT 2

. (5)

Remark: This generalizes the inequality of [9] to the case of arbitrary linear disorder fields.
We thus see that the interface is to (at least) one side ”at least as divergent” as in the case
without disorder.
Remark 2: Let us suppose that η are symmetrically distributed random variables, possibly
non-i.i.d. with any dependence structure. Then we have as a corollary the averaged one-sided
bound ∫

P(dη)µ0
N [η]

(
ϕ0 ≥ T

√
log N

)
≥ e−cT 2

/2. (6)

This follows immediately from the Theorem, by symmetry. Note that no integrability as-
sumptions on the distribution of the random fields are needed, given the lower bound on the
potential we assume.

Proof: As in [9] we take a test-configuration ϕ̄, to be chosen later, that interpolates between
ϕ̄0 = R and ϕ̄x ≡ 0 for x ∈ Λc

N . We define the shifted measure Êto be µ0
N ;ϕ̄[η](·) = µ0

N [η](·+ϕ̄).
Note that ϕ̄ does not depend on η.
Let us drop the boundary condition from our notation and write µN [η] ≡ µ0

N [η] in the following.
Using the entropy-inequality we have

µN [η](|ϕ0| ≥ R)

=
∑

s=±1

µN [η](sϕ0 ≥ R)

=
∑

s=±1

µN [sη](ϕ0 ≥ R)

=
∑

s=±1

µN ;ϕ̄[sη](ϕ0 ≥ 0)

≥
∑

s=±1

µN [sη](ϕ0 ≥ 0) exp
(
− 1

µN [sη](ϕ0 ≥ 0)

(
H(µN ;ϕ̄[sη]|µN [sη]) + e−1

))
.

(7)
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It remains to control the relative entropy

H(µN ;ϕ̄[sη]|µN [sη]) =
∫

µN ;ϕ̄[sη](dϕ) log
(dµN ;ϕ̄[sη]

dµN [sη]
(ϕ)
)
. (8)

The strategy of the proof is to show that we may choose R = R(N) diverging with N so
that inf ϕ̄:ϕ̄0=R and

ϕ̄x≡0 for x∈Λc
N

H(µN ;ϕ̄[sη]|µN [sη]) ≤ Const , uniformly in N . This is identical to the

case without disorder. Further we show below that the bound is also uniform in the field
configuration η.
Turning to the relative entropy we note that the appearing partition functions cancel and so

dµN ;ϕ̄[sη]
dµN [sη]

(ϕ) = exp
(
−H0

Λ[sη](ϕ− ϕ̄) + H0
Λ[sη](ϕ)

)
. (9)

Therefore

H(µN ;ϕ̄[sη]|µN [sη]) =
∫

µN [sη](dϕ)
(
−H0

Λ[sη](ϕ) + H0
Λ[sη](ϕ + ϕ̄)

)
. (10)

We rewrite the integrand of (10) in the form

−H0
Λ[sη](ϕ) + H0

Λ[sη](ϕ + ϕ̄)

=
1
2

∑
i,j∈Λ

p(i− j)
(
V (ϕi − ϕj)− V (ϕi − ϕj + ϕ̄i − ϕ̄j)

)
+

∑
i∈Λ,j∈Λc

p(i− j)
(
V (ϕi)− V (ϕi + ϕ̄i)

)
− s

∑
i∈Λ

ηiϕ̄i.

(11)

We use now the symmetrization trick brought to our attention by Yvan Velenik (cf. [8, 5])
which here simply consists in estimating

H(µN ;ϕ̄[sη]|µN [sη]) ≤
∑

s′=±1

H(µN ;ϕ̄[s′η]|µN [s′η]). (12)

We note that the s′-sum over the random potential term simply vanishes since it is independent
of ϕ and hence ∑

s′=±1

s′
∑
i∈Λ

ηiϕ̄i = 0. (13)

Finally, to estimate the other term we make apparent the quenched measure µN [η]+µN [−η]
2 and

use its symmetry.
So we have that

2
∫

µN [η] + µN [−η]
2

(dϕ)
(
V (ϕi − ϕj)− V (ϕi − ϕj + ϕ̄i − ϕ̄j)

)
≤ 2

∫
µN [η] + µN [−η]

2
(dϕ)V ′(ϕi − ϕj)(ϕ̄i − ϕ̄j) + c(ϕ̄i − ϕ̄j)2

= c(ϕ̄i − ϕ̄j)2.

(14)
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This gives

H(µN ;ϕ̄[sη]|µN [sη]) ≤ c

2

∑
i,j∈Λ

p(i− j)(ϕ̄i − ϕ̄j)2 + c
∑

i∈Λ,j∈Λc

p(i− j)ϕ̄2
i (15)

for both s = ±1. Keeping only the s-term in inequality (7) for which µN [sη](ϕ0 ≥ 0) ≥ 1
2 one

obtains in fact

µN [η](|ϕ0| ≥ R)

≥ 1
2

exp
(
−2
( c

2

∑
i,j∈Λ

p(i− j)(ϕ̄i − ϕ̄j)2 + c
∑

i∈Λ,j∈Λc

p(i− j)ϕ̄2
i + e−1

))
. (16)

This is exactly the same bound as in the case of vanishing η. It remains to choose ϕ̄ optimal.
Denoting by X a random walk with the transition kernel p, we choose as in [9], ϕ̄i = RPi[T{0} <
τΛN

], where Pi is the measure of the random walk started in the point i, T{0} = min{n : Xn =
0} and τΛN

= min{n : Xn /∈ ΛN}. Taking into account the estimate [7]

Pi[T{0} < τΛN
] ' ln(|i|+ 1)

ln(N + 1)

gives indeed

inf
ϕ̄:ϕ̄0=R and

ϕ̄x≡0 for x∈Λc
N

(
c

2

∑
i,j∈ΛN

p(i− j)(ϕ̄i − ϕ̄j)2 + c
∑

i∈ΛN ,j∈Λc
N

p(i− j)ϕ̄2
i

)
≤ Const

R2

log N
. (17)

Choosing R = T
√

log N one obtains (5). �
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