
Identifying interacting pairs of sites in infinite range Ising

models

Antonio Galves∗, Enza Orlandi †and Daniel Yasumasa Takahashi ‡

June 23, 2010

Abstract

We consider Ising models (pairwise interaction Gibbs probability measures) in

Zd with an infinite range potential. We address the problem of identifying pairs of

interacting sites from a finite sample of independent realizations of the Ising model.

The sample contains only the values assigned by the Ising model to a finite set of sites

in Zd. Our main result is an upperbound for the probability with our estimator to

misidentify the pairs of interacting sites in this finite set.

1 Introduction

The class of Ising models is a popular family of exponential distributions on the set of

binary configurations supported by a finite or a countable set of sites. The law of the Ising

model is characterized by a pairwise potential, i.e., a family of real numbers J(i, j) indexed

by pairs of sites (i, j). Originally introduced in statistical mechanics as a mathematical

model for ferromagnetism, the Ising model has been extensively used, for instance, in

computer vision (Woods, 1978, Besag, 1993), image processing (Cross and Jain, 1983),

neuroscience (Schneidman et al., 2006), and as a general model in spatial statistics (Ripley,

1981). The references given above are just starting points of a huge literature. For a recent

statistical physics oriented survey of rigorous mathematical results on Gibbs distributions,

including Ising models, we refer the reader to Presutti (2009).
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In this article we consider Ising models having Zd as set of sites and with an infinite

range potential. This means that we may have pairs of interacting sites (i, j), with |i− j|

as big as we want, provided that they satisfy some minor requirements that will be given

in Section 2. By interacting sites, we mean that J(i, j) 6= 0. We address the statistical

problem of identifying these pairs of interacting sites, given a finite sample of independent

realizations of the Ising model.

The Ising model is supported by the set of infinite configurations {−1,+1}Zd
. However,

from an applied statistics point of view, we cannot observe more than the projection of

the Ising model on a finite subset of sites. Therefore, our sample will be constituted by

the values that a finite sequence of independent realizations of the Ising model assign to

a fixed finite set of sites. As a consequence, we can only identify pairs of interacting sites

belonging to the finite set of sites we observe. This finite set of sites is arbitrary. The idea

is to make its size increase together with the size of the sample.

We introduce an estimator for the set of interacting pairs of sites belonging to the finite

set we observe. This estimator can be informally described as follows. For each site i in

the observed finite set we estimate the conditional probability of the model in i, given the

remaining sites in the finite set. Then we compare this empirical conditional probability

with the empirical conditional probability on the same site i given the remaining sites

with the exception of another site j, with j 6= i. If the two conditional probabilities

are statistically equal, we conclude that J(i, j) = 0. By statistically equal we mean that

the weighted difference between the two empirical probabilities is smaller than a certain

threshold value, which depends on the size of the sample and on the number of observed

sites.

The main result of present article is an upperbound for the probability of misidentifying

the pairs of interacting sites in this finite set using our estimator. The proof of this theorem

has two ingredients, which are interesting by themselves.

The first ingredient is an upperbound for the probability of misidentification for the

Ising model with finite range potential. This is the content of Theorem 3. This theorem

applies to the usually considered situation (Ravikumar et al., 2010, Bento and Montanari,

2009, Bresler et al., 2008) where the totality of interacting sites are observed in the sample.

The second ingredient in the proof of our main theorem is a coupling result given in

Theorem 4. It says that we can couple together an Ising model with infinite range potential
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and an Ising model with truncated finite range potential in such a way that the probability

of discrepancy at a fixed site i vanishes as the set of observed sites diverges to Zd. As a

consequence of this result, we are able to bound above the probability of misidentification

due to the fact that we are able to observe a finite set of sites, not the entire set of

interacting sites. The proof of this result uses Dobrushin’s contraction method but this

result, as far as we know, has not been presented in the literature. For a presentation of

the contraction method in its original framework we refer the reader to Dobrushin (1968).

As a byproduct of our results, we also obtain an identification theorem for the case of

the Ising model on a finite set of points. This finite case was recently studied in several

papers, including Ravikumar et al. (2010), Bento and Montanari (2009), Bresler et al.

(2008). The case of the Ising model with finite range and homogenous potential was

recently studied by Csiszar and Talata (2006) using a BIC like approach. A comparative

discussion of our results versus the ones presented in the above mentioned papers will be

done in Section 4.

This paper is organized as follows. Notation, definitions and results are presented in

Section 2. In Section 3 we illustrate our theoretical results with a simulation experiment.

Final remarks and a discussion of recent related results are given in Section 4. The

proofs of the theorems are presented in the Appendix 1. Finally, Appendix 2 contains the

pseudocode describing the algorithm to simulate the samples for the simulation study.

2 Notation, definitions and results

Definition 1. A pairwise potential is a family J = {J(i, j) : (i, j) ∈ Zd × Zd} of real

numbers which satisfy the conditions

J(i, i) = 0, J(i, j) = J(j, i), sup
i∈Zd

∑
j∈Zd

|J(i, j)| <∞. (1)

Let A = {−1, 1} be the basic binary set and S = AZd
be the set of spin configurations

on the lattice Zd. Fixed configurations will be denoted by lower case letters x, . . . whereas

the capital letter X will denote a random field. A point i ∈ Zd will be called a site. For

any i ∈ Zd, x(i) will denote the value of the configuration x at site i. Given a subset F of

Zd, we shall also denote x(F ) = {x(i) : i ∈ F} and similarly for X.

Definition 2. The Ising model with pairwise potential J is a random element X with
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values on S, which distribution satisfies

P (X(i) = x(i)|X(j) = x(j) , j 6= i) =
1

1 + exp(−2
∑

j∈Zd J(i, j)x(i)x(j))
,

for all i ∈ Zd and for any fixed x ∈ S.

In the above definition the left hand side of the above equality denotes a version of the

conditional probability of X(i) given that X(j) = x(j) , j 6= i.

Let F be a finite subset of Zd. We shall use the shorthand notation p(x(F )) and

p(x(i)|x(F )) to denote, respectively, the probability P(X(F ) = x(F )) and the conditional

probability P(X(i) = x(i)|X(F \ {i}) = x(F \ {i})).

Definition 3. The interaction neighborhood G(i) of a site i ∈ Zd is defined as

G(i) =
{
j ∈ Zd : J(i, j) 6= 0

}
.

Let BL(i) = {j ∈ Zd : |i− j| ≤ L} be the ball of radius L ≥ 1 centered at site i ∈ Zd,

where | · | is the maximum norm. Our goal in this paper is to infer G(i) ∩BL(i) from the

values of X1(BL(i)), . . . , Xn(BL(i)), when n and L are suitably scaled, where X1, . . . , Xn

are independent realizations of the Ising model X.

To do this, let us introduce for any finite set F the empirical probability measure

p̂n(x(F )) =
1
n

n∑
k=1

1{Xk(F ) = x(F )},

where 1 denotes the indicator function. Given any site j ∈ Zd, we will also define the

empirical conditional probability

p̂n(x(j)|x(F \ {j})) =
p̂n(x(F ∪ {j}))
p̂n(x(F \ {j}))

,

if p̂n(x(F \ {j})) > 0 and p̂n(x(j)|x(F \ {j})) = 0, otherwise.

For any fixed configuration x(BL(i)) and any j ∈ BL(i) we define the empirical

weighted distance between the conditional probabilities as follows

D̂n(x(BL(i)), j) =
∣∣p̂n(x(i)|x(BL(i) \ {i}))− p̂n(x(i)|x(BL(i) \ {i, j}))

∣∣ p̂n(x(BL(i) \ {i}) .

(2)

Note that D̂n(x(BL(i)), j) is a function of the sample X1, . . . , Xn and is therefore a random

variable.

We can now define our estimator.
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Definition 4. For any site i and range L ≥ 1 the interaction neighborhood estimator is

defined as follows

V̂ L
n (i) =

{
j ∈ BL(i) : max

x(BL(i))
D̂n(x(BL(i)), j) > ε

}
.

where the threshold ε is a suitable positive real number.

Our first theorem shows that for a convenient threshold ε, defined as a function of L

and n, the estimated interaction neighborhood V̂ L
n (i) recovers perfectly the set G(i), when

L and n are suitably scaled.

Theorem 1. Let i ∈ Zd and X1(BL(i)), . . . , Xn(BL(i)) be the projections of independent

realizations of an Ising model whose pairwise potential satisfies conditions

sup
i∈Zd

∑
j∈Zd

|J(i, j)| = r < 1 (3)

and

lim
L→∞

sup
i∈Zd

∑
j∈Zd,|j−i|>L

|J(i, j)|e(2L)d
= 0. (4)

Under these assumptions, if we choose the threshold ε = ε(L, n) as

ε(L, n) = C

√
(2L)d

n

(
1 + e2

e2

)−(2L)d

, (5)

where C > 0 is an arbitrary constant and

Ln =
1
2

(0.79 log n)1/d,

then for any i ∈ Zd the following assertions hold

(i) for any j ∈ G(i), limn→∞ P
(
j ∈ V̂ Ln

n (i)
)

= 1;

(ii) for any j /∈ G(i), limn→∞ P
(
j /∈ V̂ Ln

n (i)
)

= 1.

Theorem 1 follows from an upperbound for the probability of misidentification of points

in a suitably defined subset of G(i) ∩BL(i), which holds for any choice of the sample size

n, box size L, and threshold ε. This is the content of the next theorem. To state it we

need some extra definitions.
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Given an integer L ≥ 1 and a pairwise potential J , we denote JL the truncated

potential defined as follows. For any pair of sites i and j

JL(i, j) =


J(i, j) if |i− j| ≤ L

0 , otherwise.
(6)

We shall also denote XL the corresponding Ising model with pairwise potential JL.

Let F be a finite subset of Zd. As before, we shall use the shorthand notation pL(x(F ))

and pL(x(i)|x(F )) to denote, respectively, the probability P(XL(F ) = x(F )) and the

conditional probability P(XL(i) = x(i)|XL(F \ {i}) = x(F \ {i})).

Definition 5. Given a site i ∈ Zd and integers L and n, let

D(x(BL(i)), j) =
∣∣pL(x(i)|x(BL(i) \ {i}))− pL

(
x(i)|x(BL(i) \ {i, j})

)∣∣ pL(x(BL(i)\{i})).

The interaction neighborhood V L(i) of i is defined as

V L(i) =
{
j ∈ BL(i) : max

x(BL(i))
D(x(BL(i)), j) > 2ε

}
, (7)

where ε denotes the same threshold appearing in Definition 4.

Theorem 2. Let i ∈ Zd, L ≥ 1, and X1(BL(i)), . . . , Xn(BL(i)) be the local projections of

independent realizations of a Ising model whose pairwise potential satisfies

sup
i∈Zd

∑
j∈Zd

|J(i, j)| = r < 1. (8)

Then for any site i ∈ Zd and any threshold value ε > 0, we have

P
(
V̂ L

n (i) 6= V L(i)
)

≤ 4 exp

(
− nε2

8v + 4
3ε

+ 2(2L)d

)
+

1
1− r

n(2L)d

sup
i∈Zd

∑
j∈Zd,|j−i|>L

|J(i, j)|

 , (9)

where

v = sup
x(BL(i))

sup
j∈BL(i)

(
1− pL

(
x(i)|x(BL(i) \ {i, j})

)
pL(x(BL(i) \ {j}))

)
. (10)

Theorem 2 applies also when the interaction graph is embedded in a finite set Λ and

we analyze a sample with the values the Ising model assigns to a smaller subset of sites in

Λ. This is the content of the following corollary.
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Corollary 1. Let i ∈ Λ ⊂ Zd, L ≥ 1, and X1(BL(i) ∩ Λ), . . . , Xn(BL(i) ∩ Λ) be the

projections of independent realizations of a Ising model whose pairwise potential satisfies

J(i, j) = 0 for j ∈ Zd \ Λ (11)

and

sup
i∈Λ

∑
j∈Λ

|J(i, j)| = r < 1. (12)

Then for any site i ∈ Λ and any threshold value ε > 0, we have

P
(
V̂ L

n (i) 6= V L(i)
)

≤ 4 exp

(
− nε2

8v + 4
3ε

+ 2(2L)d

)
+

1
1− r

n(2L)d

sup
i∈Λ

∑
j∈Λ,|j−i|>L

|J(i, j)|

 , (13)

where v is defined in (10).

The first ingredient in the proof of Theorem 2 is an upperbound for the probability of

misidentification of interacting pairs in the case of a finite range interaction. This is given

in the next theorem.

Theorem 3. Let i ∈ Zd, L ≥ 1, and X1(BL(i)), . . . , Xn(BL(i)) be the projections of

independent realizations of a Ising model whose pairwise potential satisfies

J(i, j) = 0, if |i− j| > L. (14)

Then for any site i ∈ Zd and any threshold value ε > 0, we have

P
(
V̂ L

n (i) 6= V L(i)
)
≤ 4 exp

(
− nε2

8v + 4
3ε

+ 2(2L)d

)
,

where

v = sup
x(BL(i))

sup
j∈BL(i)

(1− p
(
x(i)|x(BL(i) \ {i, j})

)
p(x(BL(i) \ {j}))).

The second ingredient in the proof of Theorem 2 is a coupling result. To state it we

first need to introduce the notion of coupling. This is done as follows.

Let X be a Ising model with pairwise potential J . For a fixed integer L ≥ 1, let JL

be the corresponding truncated potential defined as in (6).

Definition 6. A coupling between X and XL is a random element (X̃, X̃L) taking values

on S × S such that
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1. X̃ has the same law as X;

2. X̃L has the same law as XL.

The following theorem says that we can sample together X and XL in such a way that

the probability of discrepancy at the origin vanishes as L diverges.

Theorem 4. If J is pairwise potential which satisfies condition (8), i.e.,

sup
i∈Zd

∑
j∈Zd

|J(i, j)| = r < 1

and JL is defined as in (6), then there exist a coupling (X̃, X̃L) such that for any i ∈ Zd

the following inequality holds

P
(
X̃(i) 6= X̃L(i)

)
≤ 1

1− r
sup
i∈Zd

∑
j∈Zd\BL(i)

|J(i, j)|. (15)

3 Simulation experiments

This section presents simulation experiments results that illustrates Theorem 2.

The experiment was done with the Ising model on B3(0), where B3(0) ∈ Zd is the

box with width 7 centered at the origin. The set of pairs of interaction sites was chosen

randomly as follows. Each pair of sites (i, j) inside B3(0) was included in the set of

interacting pairs with probability 0.1, independently of the others, with the restriction

that the degree of each site was bounded above by 4. For each pair of interaction site we

took J(i, j) = 0.2. The set of interacting pairs considered in the experiment is represented

in Figure 1.

Samples of the Ising model on this finite graph were generated using a Gibbs sampler.

More precisely, we considered the Markov chain (Yt, Y
′
t ) taking values on {−1,+1}2B3(0).

The algorithm we used to generate the samples is described in the pseudocode Sample

Generator presented in Appendix 2. We start with initial configurations Y0(i) = +1 and

Y ′0(i) = −1 for all i ∈ B3(0). We run the Markov chain until the first time t ≥ 1 such

that Yt = Y ′t . At this time the Markov chain is in the stationary state and therefore the

common configuration attained by Yt and Y ′t is a realization of the Ising model.

The goal of simulation experiment was to identify the sites in B1(0) interacting with

site (0, 0). Observe that there are two sites outside B1(0) which interact with (0, 0),
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Figure 1: Graph representing the interacting pairs of sites. The vertices represent the sites and the

presence of edges between the vertices represent the existence of interaction. The sites interacting

with site (0, 0) are indicated with bold grey edges.

namely (0, 3) and (2, 0). We considered 39 different sample sizes, n = 500 + 250k, where

k = 0, . . . , 38 for the estimator V̂ 1
n (0). The threshold used in the estimator V̂ 1

n (0) was

ε(L, n) = C

√
1
n

with C ∈ [0.06, 0.09]. The probabilities of type 1 errors (false positives) and type 2 errors

(false negatives) were estimated by repeating the experiments 2000 times for each sample

size. The result is presented in Figure 2.

4 Discussion

Ising systems with infinite range potential are natural candidates to model population of

neurons, protein networks, large computer networks, social networks, just to mention a

few examples. This is due to the fact that the interaction potential describing the Ising

model encodes the structure of conditional independence among the components of the

system.

The examples mentioned above present all the following characteristics. They are

supported by a very large number of components. The activity of all the components
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Figure 2: Graph of estimated probabilities of false positive and false negative identification using

the estimator V̂ 1
n (0) for different sample sizes.

of the system cannot be observed simultaneously. Even worse, there is no clear a priori

candidate for the range of interactions between pairs of components.

Summarizing, in those systems, only a small set of components is observed, even if

these components are under the influence of the totality of non-observed components.

This leads naturally to the following statistical question. Given a sample with the values

assigned to a finite set of sites by a finite sequence of independent realizations of the Ising

model on Zd, how can we identify pairs of interacting sites belonging to this finite subset?

This is precisely the question we address here. For the best of our knowledge, the present

article is the first one to address this problem.

We use Zd to represent the set of components of the system. This is just to have

a convenient definition of distance between sites. However, it should be clear from our

proofs that many other metric structures between the sites could be used instead of the

`∞ distance considered here without significant change in the results of this article. Also,

instead of using the `∞-ball BL(i) as set of observed sites, we could use any increasing

sequence of finite sets ΛL ⊂ Zd such that ∪∞L=1ΛL = Zd. It is an easy exercise to translate

our results to this general framework.

Recently, Ravikumar et al. (2010), Bento and Montanari (2009), Bresler et al. (2008),

and Csiszar and Talata (2006) addressed the problem of identification of interacting sites

in the case of random fields, either on a finite set of sites or on an infinite set but with a

finite range interaction. Let us briefly discuss these results.
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Csiszar and Talata (2006) consider the case of homogeneous finite range Markov ran-

dom fields in Zd. They use what they call the Pseudolikelihood Information Criterion

(PIC) to identify the interaction neighborhood of a site. The homogeneity of the model

makes it possible to use as a sample the values assigned to a finite set of sites by a unique

realization of the Markov random field. The finiteness of the range of the Markov random

field implies that the interaction neighborhood of a site will be entirely observed when the

sample size increases. Therefore, they do not need to control the effect of non-observed

sites as we do. In our Theorem 2 this corresponds to the second term of the upperbound.

They prove the consistency of their identification procedure when the size of the set of

observed sites diverges. They do not give any explicit upperbound for the probability of

misidentification when we only observe a finite set of sites. The asymptotic nature of the

result presented in Csiszar and Talata (2006) it is an important difference between this ar-

ticle and ours. An interesting feature of their result is that it holds even when the Markov

random field has phase transition. It is enough to apply the algorithm to a pure phase of

the model to correctly identify the interaction neighborhood. This feature is also shared

by our approach in the case of finite range Ising model. We recall that our Theorem 3

does not assume Dobrushin’s condition and therefore holds also for finite range potentials

with arbitrary high interaction values. In statistical physics language, Theorem 3 holds

also for low temperature Ising models exhibiting phase transition.

Bresler et al. (2008) propose an algorithm which is similar in spirit to ours but without

the weighting parameter. This article studies the problem in the case of random field on

a finite set of sites. This paper does not consider the situation in which the number of

sites supporting the probability measure increases when the sites of samples diverges. The

fact the set of sites is finite and fixed plays a crucial role in their approach and cannot be

applied in an obvious way to the infinite range case considered in the present paper.

Ravikumar et al. (2010) consider the `1 pseudolikelihood estimator of the Ising model

with increasing sample size and number of interacting sites. They assume that the totality

of the interacting sites is observed. Their algorithm seems to be fast enough in practice.

However, their incoherence condition assumption seems to be very restrictive and difficult

to check even for simple models. The very interesting article Bento and Montanari (2009)

shows that the probability that such a condition is satisfied for large random graphs is

very small.
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In Bento and Montanari (2009) it is conjectured that the existence of efficient low

complexity algorithm seems to be related to the absence of phase transition at least in

the case of Ising models. This discussion is outside of the scope of the present article.

However, it is worth mentioning that in our Theorems 1 and 2 we assume Dobrushin’s

condition (8) which implies absence of phase transition (cf. Dobrushin (1968) or Presutti

(2009)). In our case this condition is crucial to obtain an upper bound for the probability

of discrepancy in a fixed finite region between the coupled versions of the infinite range

and the truncated finite range potential Ising models. This makes it possible with high

probability to identify pairs of interacting sites without inspecting distant pairs of sites.

In particular, even in the case of a finite but very large set of sites our algorithm only

needs to test pairs of sites belonging to a much smaller finite region. This is precisely the

content of our Corollary 1. As a consequence our algorithm only needs to check a small

set of sites, which is computationally less demanding than testing pairwise interaction in

the whole set of sites.

To conclude, we observe that our coupling approach can be used to extend in a straight-

forward way the results of Ravikumar et al. (2010), Bento and Montanari (2009), Bresler

et al. (2008), for the case of Ising model of infinite range interaction. To do this we just

need to be sure that Dobrushin’s condition (8) is satisfied.
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Appendix 1

Proof of Theorem 1

We will first prove that

lim
n→∞

V Ln
n (i) = G(i). (16)
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For this we observe that for any i ∈ Zd

max
x(BL(i)\{i})

pL(x(BL(i) \ {i})) ≥ 2−(2L)d+1

and for any j ∈ BL(i) such that J(i, k) 6= 0 we have

∣∣pL(x(i)|x(BL(i) \ {i}))− pL
(
x(i)|x(BL(i) \ {i, j})

)∣∣
≥ 2e2r

(1 + e2r)2
|J(i, j)| min

x(j)∈{−1,+1}
pL(x(j)|x(BL(i) \ {i, j})).

Also

min
x(j)∈{−1,+1}

pL(x(j)|x(BL(i) \ {i, j})) ≥ 1
1 + e2r

.

From the above inequalities, we have

max
x(BL(i))

D(x(BL(i)), j) ≥ 4e2r

(1 + e2r)3
|J(i, j)|2−(2L)d

.

If j ∈ G(i), the right hand side of the last inequality is strictly positive. Therefore,

from the above inequality a sufficient condition for this site j to belong to V L(i) is that

4e2r

(1 + e2r)3
|J(i, j)|2−(2L)d ≥ ε(L, n).

Hence, to equality (16) holds it is enough that

lim
n→∞

ε(Ln, n)
2−(2Ln)d = 0. (17)

It is easy to check that the above condition holds for Ln ≤ 1
2 (0.79 log n)1/d and with the

threshold

ε(Ln, n) = C

√
(2Ln)d

n

(
1 + e2

e2

)−(2Ln)d

as defined in (5).

Now, we will prove

lim
n→∞

P
(
V̂ Ln

n (i) 6= V L
n (i)

)
= 0. (18)

For this, we have from inequality (9) in Theorem 2 that if we prove

lim
n→∞

− nε(Ln, n)2

8v + 4
3ε(Ln, n)

+ 2(2Ln)d = −∞, (19)

where v is defined in (10), and also that

lim
n→∞

n(2Ln)d

sup
i∈Zd

∑
j∈Zd,|j−i|>Ln

|J(i, j)|

 = 0, (20)
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we prove (18).

To prove (19), we first observe that

1− p
(
x(i)|x(BL(i) \ {i, j})

)
≥ 1

1 + e2r

and

sup
x(BL(i)\{j})

p(x(BL(i) \ {j})) ≥ 2−(2L)d+1.

From these inequalities we have that

v ≥
(

2
1 + e2r

)
2−(2L)d

.

The above inequality implies that for L ≤ 1
2(0.79 log n)1/d we have

v ≥
(

2
1 + e2r

)
2−(2L)d ≥ 4

3
ε(L, n).

Therefore, we can bound below the first term in the exponent of the upperbound (9) as

follows
nε(L, n)2

8v + 4
3ε(L, n)

≥ nε(L, n)2

9v
. (21)

From (21), to obtain (19) it is enough that

lim
L,n→∞

−nε(L, n)2

9v
+ 2(2L)d = −∞.

This implies that

ε(L, n) > C

√
2(2L)dv

n
. (22)

We will now find an upper bound for v.

From condition (8) it follows that

1− p
(
x(i)/x(BL(i) \ {i, j})

)
≤ e2r

1 + e2r

and

p(x(BL(i) \ {j})) ≤
(

e2r

1 + e2r

)(2L)d−1

.

These inequalities imply that

v ≤
(

1 + e2r

e2r

)−(2L)d

.

From the above inequality and the fact that r < 1, the choice of ε(L, n) in (5) satisfies

(19).

To prove (20), note that L = 1
2(0.79 log n)1/d implies that n < e(2L)d

. This concludes

the proof of Theorem 1.

14



Proof of Theorem 2 and Corollary 1

Let the integer L ≥ 1 be fixed and let (X̃1, X̃
L
1 ), . . . , (X̃n, X̃

L
n ) be n independent copies

of the pair (X̃, X̃L) which existence is guaranteed by Theorem 4. The random elements

X̃1, . . . , X̃n are independent copies of the Ising model X with pairwise potential J . The

random elements X̃L
1 , . . . , X̃

L
n are independent copies of the Ising model XL with truncated

pairwise potential JL defined as in (6).

Let us indicate explicitly the sample in all the statistics and events appearing in The-

orem 2 as functions either of the sample X̃1, . . . , X̃n or of the sample X̃L
1 , . . . , X̃

L
n . We

start with notation of the empirical probability measures p̂n, as follows

p̂n(x(F ))[X̃1, . . . , X̃n] =
1
n

n∑
k=1

1{X̃k(F ) = x(F )}

p̂n(x(F ))[X̃L
1 , . . . , X̃

L
n ] =

1
n

n∑
k=1

1{X̃L
k (F ) = x(F )}.

To simplify the writing we shall use the short notation

X̃ = (X̃1, . . . , X̃n) and X̃L = (X̃L
1 , . . . , X̃

L
n ).

Now using either the empirical probability measures p̂n(x(F ))[X̃] or p̂n(x(F ))[X̃L] we

define the neighborhood estimators V̂ L
n (i)[X̃] and V̂ L

n (i)[X̃L].

Now we are ready to conclude the proof. An upperbound for the probability of misiden-

tification for the sample X̃1, . . . , X̃n is given by

P
(
V̂ L

n (i)[X̃] 6= V L(i)
)

≤ P

{V̂ L
n (i)[X̃] 6= V L(i)

}⋂ ⋂
k∈{1,...,n}

⋂
j∈BL(i)

{
X̃L

k (BL(j)) = X̃k(BL(j))
}

+ P

 ⋃
k∈{1,...,n}

⋃
j∈BL(i)

{
XL

k (j) 6= Xk(j)
} .

By Theorem 4

P

 ⋃
k∈{1,...,n}

⋃
j∈BL(i)

{
XL

k (j) 6= Xk(j)
} ≤ n(2L)d sup

 ∑
j∈Zd,|j−t|>L

|J(i, j)| : t ∈ Zd

 .

Now, we observe that in the set⋂
k∈{1,...,n}

⋂
j∈BL(i)

{
X̃L

k (BL(j)) = X̃k(BL(j))
}

15



the following holds

V̂ L
n (i)[X̃] = V̂ L

n (i)[X̃L].

Hence

P

{V̂ L
n (i)[X̃] 6= V L(i)

}⋂ ⋂
k∈{1,...,n}

{
X̃L

k (BL(i)) = X̃k(BL(i))
}

= P

{V̂ L
n (i)[X̃L] 6= V L(i)

}⋂ ⋂
k∈{1,...,n}

{
X̃L

k (BL(i)) = X̃k(BL(i))
}

≤ P
(
V̂ L

n (i)[X̃L] 6= V L(i)
)
. (23)

Since Theorem 3 provides an upperbound for the last term in (23), we have

P

{V̂ L
n (i)[X̃] 6= V L(i)

}⋂ ⋂
k∈{1,...,n}

{
X̃L

k (BL(i)) = X̃k(BL(i))
}

≤ 4 exp

(
− nε(L, n)2

8v + 4
3ε(L, n)

+ 2(2L)d

)
.

This concludes the proof of Theorem 2.

To prove Corollary 1 we observe that the finite volume case is equivalent to consider

the pairwise potential satisfying

J(i, j) = 0 for j ∈ Zd \ V (24)

in the Zd case.

Proof of Theorem 3

For convenience of the reader, before the proof let us recall the classical inequality of

Bernstein which will be used in the sequence.

Bernstein inequality Let ξ1, . . . , ξn be i.i.d. random variables with |ξ1| ≤ b a.s. and

E[ξ2
1 ] ≤ v <∞. Then the following inequality holds

P

(∣∣∣∣∣ 1n
n∑

k=1

ξk − E[ξ1]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− nε2

2(v + 1
3bε)

)
.

For a proof of this inequality, we refer the reader to Massart (2003).
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To begin the proof of Theorem 3, let us denote

OL
n (i) =

{
j ∈ V̂ L

n (i) : j ∈ BL(i) \ V L(i)
}

(25)

the event of false positive identification.

The event of false negative identification is defined as

UL
n (i) =

{
j ∈ BL(i) \ V̂ L

n (i) : j ∈ V L(i)
}
. (26)

We observe that

{V̂ L
n (i) 6= V L(i)} = OL

n (i) ∪ UL
n (i).

We will first obtain an upperbound for the probability of event false positive identifi-

cation. Observe that

P
(
OL

n (i)
)
≤

∑
x(BL(i))

∑
j∈BL(i)\V L(i)

P
(
D̂n(x(BL(i)), j) > ε(L, n)

)
. (27)

Let us fix j ∈ BL(i) \ V L(i) and x(BL(i)) ∈ {−1,+1}BL(i). To obtain an upperbound

for the right hand side of (27) we first observe that

D̂n(x(BL(i)), j)

≤
∣∣p̂n(x(BL(i)))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

∣∣
+
∣∣∣∣ p̂n(x(BL(i) \ {j}))
p̂n(x(BL(i) \ {i, j}))

− p
(
x(i)|x(BL(i) \ {i, j})

)∣∣∣∣ p̂n(x(BL(i) \ {i})). (28)

This inequality was obtained by adding and subtracting

p
(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

in expression (2).

Since

0 ≤ p̂n(x(BL(i) \ {i}))
p̂n(x(BL(i) \ {i, j}))

≤ 1,

we finally obtain the upperbound

D̂n(x(BL(i)), j)

≤
∣∣p̂n(x(BL(i)))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

∣∣
+
∣∣p̂n(x(BL(i) \ {j}))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i, j}))

∣∣ . (29)

17



Therefore,

P
(
D̂n(x(BL(i)), j) > ε(L, n)

)
≤ P

(∣∣p̂n(x(BL(i)))− p
(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

∣∣ > 1
2
ε(L, n)

)
+ P

(∣∣p̂n(x(BL(i) \ {j}))− p
(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i, j}))

∣∣ > 1
2
ε(L, n)

)
.

The classical Bernstein inequality provides the following upperbounds for the terms in

the right hand side of the above equation

P
(∣∣p̂n(x(BL(i)))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

∣∣ > 1
2
ε(L, n)

)
≤ 2 exp

(
− nε(L, n)2

8v1 + 4
3ε(L, n))

)
, (30)

where

v1 = sup
x(BL(i))

sup
j∈BL(i)

(1− p
(
x(i)|x(BL(i) \ {i, j})

)
p(x(BL(i)))). (31)

Also

P
(∣∣p̂n(x(BL(i) \ {j}))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i, j}))

∣∣ > 1
2
ε(L, n)

)
≤ 2 exp

(
− nε(L, n)2

8v + 4
3ε(L, n))

)
, (32)

where

v = sup
x(BL(i))

sup
i,j∈BL(i)

(1− p
(
x(i)|x(BL(i) \ {i, j})

)
p(x(BL(i) \ {j}))). (33)

Summing up inequalities (30) and (32) for all configurations x(BL(i)) and all sites

j ∈ BL(i) \ V L(i) we obtain the following upperbound for the probability of false positive

identification

P
(
OL

n (i)
)

≤ 4(|BL(i)| − |V L(i)|) exp

(
− nε(L, n)2

8v + 4
3ε(L, n))

)

≤ 4(|BL(i)| − |V L(i)|) exp

(
− nε(L, n)2

8v + 4
3ε(L, n))

)
. (34)

We will now obtain an upperbound for the probability of false negative identification.

For any j ∈ V L(i) we have

P
(
j /∈ V̂ L

n (i)
)

= P

 ⋂
x(BL(i))

{
D̂n(x(BL(i), j)) ≤ ε(L, n)

} . (35)
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To obtain an upperbound for (35), it is enough to obtain an upperbound for

P
(
D̂n(x(BL(i), j)) ≤ ε(L, n)

)
(36)

where x(BL(i)) is any fixed configuration. In particular, we can take a configuration which

maximizes

∣∣p(x(i)|x(BL(i) \ {i}))− p
(
x(i)|x(BL(i) \ {i, j})

)∣∣ p(x(BL(i) \ {i}). (37)

To do this, we first obtain a lower bound for D̂n(x(BL(i)), j) in the same way we

obtained the upperbound in (29).

D̂n(x(BL(i)), j)

≥
∣∣p̂n(x(BL(i)))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

∣∣
−
∣∣p̂n(x(BL(i) \ {j}))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i, j}))

∣∣ p̂n(x(BL(i) \ {i}))
p̂n(x(BL(i) \ {i, j}))

.

Observing again that

0 ≤ p̂n(x(BL(i) \ {i}))
p̂n(x(BL(i) \ {i, j}))

≤ 1

we finally obtain the lower bound

D̂n(x(BL(i)), j)

≥
∣∣p̂n(x(BL(i)))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

∣∣
−
∣∣p̂n(x(BL(i) \ {j}))− p

(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i, j}))

∣∣ . (38)

To make formulas shorter let us call for the moment

W = p̂n(x(BL(i)))− p
(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i}))

and

R = p̂n(x(BL(i) \ {j}))− p
(
x(i)|x(BL(i) \ {i, j})

)
p̂n(x(BL(i) \ {i, j})).

With this new notation, using inequalities (29) and (38) we obtain∣∣∣D̂n(x(BL(i)))− |W |
∣∣∣ ≤ |R|. (39)

A straightforward computation shows that

E[W ] = p(x(BL(i)))− p
(
x(i)|x(BL(i) \ {i, j})

)
p(x(BL(i) \ {i})).
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Assuming that j ∈ V L(i) and that configuration x(BL(i)) maximizes (37), we have that

|E[W ]| ≥ 2ε(L, n).

Therefore to bound (36) for j ∈ ΓL
n(i), it is enough to have an upperbound for

P
(∣∣∣D̂n(x(BL(i)), j)− |E[W ]|

∣∣∣ ≥ ε(L, n)
)
.

To do this, we observe that∣∣∣D̂n(x(BL(i)), j)− |E[W ]|
∣∣∣ ≤ ∣∣∣D̂n(x(BL(i)), j)− |W |

∣∣∣+ ||W | − |E[W ]|| .

Then, using inequality (39) we have∣∣∣D̂n(x(BL(i)), j)− |E[W ]|
∣∣∣ ≤ |R|+ |W − E[W ]| . (40)

Now, by (40)

P
(∣∣∣D̂n(x(BL(i)), j)− |E[W ]|

∣∣∣ ≥ ε(L, n)
)

(41)

≤ P
(
|R| ≥ 1

2
ε(L, n)

)
+ P

(
|W − E[W ]| ≥ 1

2
ε(L, n)

)
. (42)

Note that E[R] = 0, thus by Bernstein inequality

P
(
|R| ≥ 1

2
ε(L, n)

)
≤ 2 exp

(
− 3nε(L, n)2

4(6v + ε(L, n))

)
, (43)

where v is the same in (33). By Bernstein inequality also we have

P
(
|W − E[W ]| ≥ 1

2
ε(L, n)

)
≤ 2 exp

(
− 3nε(L, n)2

4(6v1 + ε(L, n))

)
, (44)

where v1 is the same in (31).

Combining (43) and (44) we have for j ∈ V L(i)

P
(
j /∈ V̂ L

n (i)
)
≤ 4 exp

(
− nε(L, n)2

8v + 4
3ε(L, n))

)
.

From this, it follows that

P
(
UL

n (i)
)
≤ 4|V L(i)| exp

(
− nε(L, n)2

8v + 4
3ε(L, n))

)
. (45)

Adding (35) and (45) we conclude the proof of Theorem (3).
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Proof of Theorem 4

Let z, z′ ∈ {−1,+1}Zd
be two fixed configurations. For a fixed i ∈ Zd and an integer

L ≥ 1, let (Y z
t , Y

z′,L
t ) be a discrete time Markov chain taking values on {−1,+1}2BL(i)

with the following features.

1. The Ising model on {−1,+1}BL(i) with pairwise potential J and boundary condition

z(BL(i)c) is reversible with respect to the first marginal Y z
t .

2. The Ising model on {−1,+1}BL(i) with pairwise potential JL and boundary condition

z′(BL(i)c) is reversible with respect to the first marginal Y z′,L
t .

3. The coupling chain (Y z
t , Y

z′,L
t ) is irreducible and aperiodic, and has an unique invari-

ant probability measure. Taking into the account items (1) and (2), this unique in-

variant probability measure is a coupling between the Ising models on {−1,+1}BL(i)

with interaction potentials J and JL and boundary conditions z(BL(i)c) and z′(BL(i)c)

respectively.

We now construct (Y z
t , Y

z′,L
t ) with t ∈ N. This can be done as follows. Let (It)t≥1

be an independent sequence of random variables uniformly distributed on BL(i). For any

j ∈ BL(i) and y ∈ {−1,+1}BL(i), let also the probabilities pj(· | y) and pL
j (· | y) on

{−1,+1} be defined as follows.

pj(+1 | y) =
{

1 + e
−2

P
k∈BL(i)

J(j,k)y(k)−2
P

k/∈BL(i)
J(j,k)z(k)

}−1
,

pL
j (+1 | y) =

{
1 + e

−2
P

k∈BL(i)
JL(j,k)y(k)−2

P
k/∈BL(i)

JL(j,k)z′(k)
}−1

.

For any pair (y, y′) ∈ {−1,+1}2BL(i), let (ξj,y,y′

t )t≥1, be an i.i.d. sequence of random

variables taking values on {−1,+1}2 with distribution

P
(
ξj,y,y′

t = (s, s)
)

= min
{
pj(s|y), pL

j (s|y′)
}
,

P
(
ξj,y,y′

t = (s,−s)
)

= max
{
pj(s|y)− pL

j (s|y′), 0
}
, (46)

for any s ∈ {−1,+1}.

Finally, let us assume that the sequences (It)t≥1 and (ξj,y,y′

t )t≥1, with (y, y′) ∈ {−1,+1}2BL(i)

and j ∈ BL(i) are all independent. The Markov chain (Y z
t , Y

z′,L
t ) is constructed as follows.

For any t ≥ 1 and any j ∈ BL(i)

(Y z
t (j), Y z′,L

t (j)) = (Y z
t−1(j), Y z′,L

t−1 (j)) , if j 6= It
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and

(Y z
t (j), Y z′,L

t (j)) = ξ
j,Y z

t−1,Y z′,L
t−1

t−1 , if j = It . (47)

We stress the fact that the probabilities pj(·|y) and pL
j (·|y) depend on the fixed con-

figurations z(BL(i)c) ∈ {−1,+1}BL(i)c
and z′ ∈ {−1,+1}BL(i)c

respectively. As a conse-

quence the law of the Markov chain (Y z
t , Y

z′,L
t ) depends on the pair of fixed configura-

tions (z(BL(i)c), z′(BL(i)c)). Moreover these probabilities do not depend on the value of

y(j); they depend only on the values of y(k), k ∈ BL(i) \ j and z(BL(i)c) and z(BL(i)c).

Therefore, a more explicit notation should mention all these details. This would produce

cumbersome things like pj(s|y(BL(i)\ j), z(BL(i)c)), pL
j (s|y(BL(i)\ j), z′(BL(i)c)). Hence

we decided to use a simplified notation.

Let us assume that the initial value (Y z
0 , Y

z′,L
0 ) of the chain is chosen according to its

unique invariant probability measure. For every integer t ≥ 1 we have

P
(
Y z

t (i) 6= Y z′,L
t (i)

)
= P

(
Y z

t (i) 6= Y z′,L
t (i) , It 6= i

)
+ P

(
Y z

t (i) 6= Y z′,L
t (i) , It = i

)
. (48)

For the first term in the left hand side of the above equation we have

P
(
Y z

t (i) 6= Y z′,L
t (i) , It 6= i

)
=
|BL(i)| − 1
|BL(i)|

P
(
Y z

t−1(i) 6= Y z′,L
t−1 (i)

)
. (49)

Substituting (49) in (48), we obtain

1
|BL(i)|

P
(
Y z

t (i) 6= Y z′,L
t (i)

)
= P

(
Y z

t (i) 6= Y z′,L
t (i) , It = i

)
. (50)

Now, we have

P
(
Y z

t (i) 6= Y z′,L
t (i) , It = i

)
= P

(
Y z

t (i) 6= Y z′,L
t (i) , It = i , Y z

t−1(j) = Y z′,L
t−1 (j) for all j ∈ BL(i)

)
+ P

(
Y z

t (i) 6= Y z′,L
t (i) , It = i , Y z

t−1(j) 6= Y z′,L
t−1 (j) for some j ∈ BL(i)

)
. (51)

Using (46) and (47 ), the first term in the right hand side of (51) is bounded above by

2 sup
y∈{−1,1}BL(i)

(
pj(s|y)− pL

j (s|y)
)

P
(
It = i , Y z

t−1(j) = Y z′,L
t−1 (j) for all j ∈ BL(i)

)
. (52)

Using the Mean Value Theorem, we have

sup
y∈{−1,1}BL(i)

(
pj(s|y)− pL

j (s|y)
)
≤ 1

2

∑
l /∈BL(i)

|J(i, l)|. (53)
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Therefore an upperbound for expression (52) is given by

1
|BL(i)|

∑
l /∈BL(i)

|J(i, l)|P
(
Y z

t−1(j) = Y z′,L
t−1 (j) for all j ∈ BL(i)

)
=

1
|BL(i)|

∑
l /∈BL(i)

|J(i, l)|
[
1− P

(
Y z

t−1(j) 6= Y z′,L
t−1 (j) for some j ∈ BL(i)

)]
(54)

Let now study the second term of the right hand side of (51). We first rewrite it as

∑
U⊂BL(i)

U 6=∅

P

Y z
t (i) 6= Y z′,L

t (i) , It = i ,
⋂
j∈U

{Y z
t−1(j) 6= Y z′,L

t−1 (j)} ,
⋂

j∈BL(i)\U

{Y z
t−1(j) = Y z′,L

t−1 (j)}

 .

Therefore, proceeding as in (52) and (53), we obtain the following upperbound for the

second term in the right hand side of (51)

1
|BL(i)|

∑
U⊂BL(i)

U 6=∅

∑
l /∈BL(i)

|J(i, l)|P

⋂
j∈U

{Y z
t−1(j) 6= Y z′,L

t−1 (j)} ,
⋂

k∈BL(i)\U

{Y z
t−1(k) = Y z′,L

t−1 (k)}



+
1

|BL(i)|
∑

U⊂BL(i)
U 6=∅

∑
l∈U

|J(i, l)|P

⋂
j∈U

{Y z
t−1(j) 6= Y z′,L

t−1 (j)} ,
⋂

k∈BL(i)\U

{Y z
t−1(k) = Y z′,L

t−1 (k)}

 .

(55)

The first part of the right hand side of (55) can be rewritten as

1
|BL(i)|

∑
l /∈BL(i)

|J(i, l)|P
(
Y z

t−1(j) 6= Y z′,L
t−1 (j) for some j ∈ BL(i)

)
. (56)

The second part of (55) can be rewritten as

1
|BL(i)|

∑
l∈BL(i)

∑
U⊂BL(i):l∈U

|J(i, l)|P

⋂
j∈U

{Y z
t−1(j) 6= Y z′,L

t−1 (j)}
⋂

k∈BL(i)\U

{Y z
t−1(k) = Y z′,L

t−1 (k)}


and this is equal to

1
|BL(i)|

∑
l∈BL(i)

|J(i, l)|P
(
Y z

t−1(l) 6= Y z′,L
t−1 (l)

)
. (57)

Collecting together (51), (54), (56), (57), we finally get the upperbound

P
(
Y z

t (i) 6= Y z′,L
t (i)

)
≤

∑
l /∈BL(i)

|J(i, l)|+
∑

l∈BL(i)

|J(i, l)|P
(
Y z

t−1(l) 6= Y z′,L
t−1 (l)

)
. (58)

To conclude the proof of the theorem, let Z and Z ′ be two independent copies of the

Ising models on {−1,+1}Zd
with potentials J and JL, respectively. For a fixed realization
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of the pair Z and Z ′, construct as before the coupled chains (Y Z
t , Y

Z′,L
t ) taking values on

{−1,+1}2BL(i), and having Z(BL(i)c) and Z ′(BL(i)c) as boundary conditions.

Using inequality (58) and taking the expectation with respect to (Z,Z ′), we have

E
[
P
(
Y Z

t (i) 6= Y L,Z′

t (i)
)]
≤

∑
l /∈BL(i)

|J(i, l)|+
∑

l∈BL(i)

|J(i, l)|E
[
P
(
Y Z

t−1(l) 6= Y L,Z′

t−1 (l)
)]
.

(59)

Now observe that

E
[
P
(
Y Z

t (j) 6= Y L,Z′

t (j)
)]

= P
(
Y (j) 6= Y L(j)

)
,

for any j ∈ BL(i), where Y (j) and Y L(j) are the projections on site j of realizations of

the Ising model with pairwise potential J and JL, respectively. From this identity and

inequality (59), it follows that

P
(
Y (i) 6= Y L(i)

)
≤

∑
l /∈BL(i)

|J(i, l)|+
∑

l∈BL(i)

|J(i, l)|P
(
Y (l) 6= Y L(l)

)
.

Finally, taking the supremum for all i ∈ Zd we have

sup
i∈Zd

P
(
Y (i) 6= Y L(i)

)
≤ sup

i∈Zd

∑
l /∈BL(i)

|J(i, l)|+ r sup
i∈Zd

P
(
Y (i) 6= Y L(i)

)
,

which concludes the proof.

24



Appendix 2

Pseudocode of the algorithm Sample Generator

Algorithm Sample generator

1: for k : 1→ n do

2: t = 0 and Yt(i) = +1 and Y ′t (i) = −1 for all i ∈ BL(0).

3: while Yt 6= Y ′t do

4: t← t+ 1

5: Generate a random variable It uniformly distributed on BL(0).

6: for j ∈ BL(0) do

7: if j = It then

8: Choose (s, s′) ∈ {−1, 1}2 with probability

Pj

(
s, s′|y, y′

)
= min

{
pj(s|y), pj(s|y′)

}
, if s = s′

Pj

(
s, s′|y, y′

)
= max

{
pj(s|y)− pj(s|y′), 0

}
, if s 6= s′

where for any y ∈ {−1,+1}BL(0) is given by

pj(s | y) =
{

1 + e
−2s

P
k∈BL(0)

J(j,k)y(k)
}−1

.

9: Yt(j)← s and Y ′t (j)← s′,

10: else

11: Yt(j)← Yt−1(j) and Y ′t (j)← Y ′t−1(j)

12: end if

13: end for

14: end while

15: Xk = Yt

16: end for

17: return Sample X1, . . . , Xn.
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