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Abstract: We apply a method developed in our earlier work on a non-local phase kinetics
equation to give a simple proof of the non-linear stability of fronts for the Cahn–Hilliard
equation.

1. Introduction

In this paper we consider the one dimensional Cahn–Hilliard equation, which is a partic-
ularly interesting example of a class of equations for the transport of a conserved order
parameterm(x) onR. Such equations generally have the form

∂

∂t
m = ∂

∂x
J, (1.1)

where the currentJ is given in terms of the variation of a free energy functionalF
through

J = ∂

∂x

(
δF
δm

)
. (1.2)

In this particular case, the free energyF is

F(m) =
∫

R

[
1

2

∣∣∣∣ ∂∂xm
∣∣∣∣
2

+ 1

8
(1 −m2)2

]
dx. (1.3)
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The variation in (1.2) is to be computed with respect to theL2 norm onR, and hence

δF
δm

= − ∂2

∂x2m− 1

2
m(1 −m2) (1.4)

and the equation is

∂

∂t
m = ∂2

∂x2

(
− ∂2

∂x2m− 1

2
m(1 −m2)

)
. (1.5)

Clearly the free energy is a decreasing function under this evolution:

d

dt
F(m) = −

∫
R

∣∣∣∣ ∂∂x δFδm(m)
∣∣∣∣
2

dx, (1.6)

and thus our evolution has a Lyapunov functional. We will denote−dF(m)/dt by
I(m(t)).

Moreover, the evolution has a conservation law: For allt > 0,∫
R

(m(x, t)−m(x,0))dx = 0. (1.7)

Replacing derivatives by gradients and divergences in the obvious places, one obtains
a two or three dimensional version. In such cases,m(x) represents the order parameter
in the model of a binary alloy with a phase transition. The two global equilibrium states
correspond to the two minima of the potentialW(m) = (1 −m2)2/8. Clearly these are
m = 1 andm = −1. At the boundary between two regions of different phases, there will
be a transition fromm = 1 tom = −1. Since the evolution decreases the free energy,
we expect that after a short initial time period, these transitions should occur in a way
that minimizes the cost in excess free energy. Therefore, in the one dimension across the
boundary between two regions of different phase, we expect a “transition profile” that
is very close to some translate ofm̄0, where

F(m̄0) = inf

{
F(m)

∣∣∣∣ sgn(x)m(x) ≥ 0, lim
x→±∞ sgn(x)m(x) > 0

}
. (1.8)

The minimizer is well known, and easily seen, to bem̄0(x) = tanh(x/2). The physical
interest in the one dimensional problem is that stability of these minimal free energy
transition profiles, which we simply call “fronts” in the rest of the paper, is important for
understanding how the boundaries between regions of different phases evolve in higher
dimension. Without further mention of the higher dimensional case, we now turn to this
stability problem.

The subscript 0 on the minimizer in (1.8) is present because the constraint imposed
in (1.8) breaks the translational invariance of the free energy. For anya in R, define

m̄a(x) = m̄0(x − a). (1.9)

These functionsm̄a are the fronts whose stability is to be investigated here. Clearly
F(m̄a) = F(m̄0), so thatm̄0 belongs to a one parameter family of minimizers of the
free energy. Another family is obtained by reflecting this one because the free energy is
also reflection invariant. However, these two families of minimizers separated in all of
the relevant metrics, and it suffices to consider just one.



Simple Proof of Stability of Fronts for Cahn–Hilliard Equation 325

It is easy to guess the result of solving (1.5) for initial datam0 that is a small pertur-
bation of the frontm̄0. The excess free energy should decrease in a way that forces the
solutionm(t) to tend to the family of fronts, and the conservation law should selectm̄a as
the front it should be converging to, so the result should be that, in any reasonable sense,
lim t→∞ (m(x, t)− m̄a(x)) = 0 with a given in terms of the initial datam0 through
(1.7) in the form ∫ (

m(x,0)− m̄a(x)
)
dx = 0. (1.10)

Our main result is a proof that this is the case. The result has recently been obtained in
this case by Bricmont, Kupiainen andTaskinen [2] using renormalization group methods.
Their result gives a tighter estimate on the decay rate, but in a weaker norm that does not
control the excess free energy. We recently proved such a result for a related equation,
the LOP equation, which first appeared in [10] and later rigorously derived from an
underlying microscopic model in [7]. The method that we used was developed to deal
with the non-local nature of the LOP equation, and the fact that one has no explicit
formula for m̄ in that case, which precluded the explicit spectral analysis required in
the renormalized group method. However, as we show here, the method developed for
the LOP equation also applies to the local Cahn–Hilliard equation, and yields a fairly
simple proof of the non-local stability. Moreover, this method works directly in physical
norms, and it provides an estimate on the rate of decrease of the excess free energy. The
result is:

Theorem 1.1. Consider initial datam0(x) for the one dimensional Cahn–Hilliard equa-
tion (1.5)such that ∫

x2(m0(x)− m̄0(x))
2dx ≤ c0,

wherec0 is any positive constant. Then for anyε > 0 there is a strictly positive constant
δ = δ(ε, c0) depending only onε andc0 such that for all inital data with∫

(m0(x)− m̄0(x))
2dx ≤ δ,

the excess free energyF(m(t)) − F(m0) of the corresponding solutionm(t) of (1.5)
satisfies

F(m(t))− F(m̄) ≤ c2(1 + c1t)
−(9/13−ε)

and

‖m(t)− m̄a‖1 ≤ c2(1 + c1t)
−(5/52−ε),

wherec1 andc2 are finite constants depending only onε andc0 anda is given by(1.10).

Since the problem has both a Lyapunov functional and a conservation law, it may
appear that it should be a simple matter to prove this result. One reason that it is not
so simple is that the decrease of the excess free energy provides onlyL2 control, and
by itself, only partial control at that. To use the conservation law, one needsL1 control.
Our equation is not dissipative inL1, a circumstance which is closely related to the
lack of a maximum principle. Decrease of free energy can be used to show that the



326 E. A. Carlen, M. C. Carvalho, E. Orlandi

solutionm(x, t) approaches some moving frontma(t)(x) in some norm other thanL2.
For example, Asselah did this in [1] for the LOP equation studied in [4] and [5], with the
approach controlled in theL∞ norm. But since the free energy is translation invariant,
it cannot provide any control overa(t). Moreover, without control ona(t) that prevents
it from “running away”, it is not at all clear how one can even getL2 control on the
difference betweenm(x, t) andma(t)(x), or get a rate estimate. The difficulties in this
sort of problem are discussed in more detail in [4]. Here we move directly on to the
solution.

Despite what has been said above, understanding the free energy functionalF is still
central to understanding the stability. To begin, we introduce the operatorA associated
with its second variation at a front̄m. First, throughout this paper, we make the following
convention: whenever some solutionm(x, t) of (1.5) is under discussion, thenv(x, t) is
defined by

v(x, t) = m(x, t)− m̄a(t)(x), (1.11)

wherea(t) is defined to be that value ofc such that

‖m(t)− m̄a(t)‖2 = inf
c∈R

{‖m(t)− m̄c‖2}. (1.12)

It is shown in [4] thata(t) is a well–defined function as long as‖m(t) − m̄a(t)‖2 stays
sufficiently small since then the minimum is uniquely attained. Finally, it will be con-
venient to have the convention thatm̄(x) denotesm̄a(t)(x). In the same vein, we shall
generally simply writeA in place ofAa(t) for the second variation ofF at m̄a(t), and
leave thea(t) implicit. However, in the definition, we shall be explicit:

〈v,Aav〉L2 = d2

ds2F(m̄a + sv)

∣∣∣∣
s=0
. (1.13)

One easily computes that

Av(x) = −v′′(x)+ V (x)v(x)+ v(x), (1.14)

where

V (x) = 3

2

(
m̄2 − 1

)
= 3

2

(
tanh2

(x
2

)
− 1

)
. (1.15)

The operatorA has a spectral gap:

Lemma 1.2. In the spectrum ofA, 0 is an isolated eigenvalue of multiplicity one. In
fact,

∫
v(x)Av(x)dx ≥ 3

4
‖v‖2

2

for all v with
∫
v(x)m̄′(x)dx = 0.
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Proof. We consider the operatorH given byHv(x) = −v′′(x) + V (x)v(x). We
know that m̄′ is an eigenvector, and that the corresponding eigenvalue is−1. Let
−1 = e0, e1, e2, . . . be the negative eigenvalues ofH , repeated according to their
multiplicity. Then by a bound of Lieb and Thirring [9], one has

∑
j

|ej |3/2 ≤ 3

16

∫
R

|V (x)|2dx.

The integral is easily evaluated and equals 6. Keeping only the first two terms in the sum
on the left 1+ |e1|3/2 ≤ 18/16 and this implies that|e1| ≤ 1/4. Thuse1 ≥ −1/4, and
this completes the proof.��

As indicated in Theorem 1.1, we shall start out with‖v‖2 small, and then, because
of the smoothing properties of the equation [3,5], it will be the case that at least a short
time later,‖v‖2 is still small, and then‖v′‖2 is small as well. We shall obtain a number
of a-priori estimates that hold when‖v‖2 and‖v′‖2 are both small, and shall use them
in the final section of the paper to prove that this condition persists indefinitely. The
first estimate that we obtain under these conditions shows that the excess free energy of
m̄+ v is comparable to〈v,Av〉 .

Lemma 1.3. For all ε > 0, there areδ, κ > 0so that whenever‖v‖2 ≤ δ and‖v′‖2 ≤ κ,
then

1 − ε

2
〈v,Av〉 ≤ F(m̄+ v)− F(m̄) ≤ 1 + ε

2
〈v,Av〉.

Proof. One easily computes that

F(m̄+ v)− F(m̄) = 1

2
〈v,Av〉 + 1

4

∫ (
2m̄v3 + v4

)
dx.

Using the inequality‖v‖2∞ ≤ 2‖v‖2‖v′‖2, one obtains∣∣∣∣
∫ (

2m̄v3 + v4

2

)
dx

∣∣∣∣ ≤
(
2
√

2κδ + κδ
)

‖v‖2
2.

By the previous lemma, forκ andδ small enough,
(
2
√

2κδ + κδ
)

‖v‖2
2 ≤ (ε/2)〈v,Av〉,

and this completes the proof.��
The first key result is a lower bound on the dissipation in terms ofA:

Lemma 1.4. For anyε > 0,

I(m(t)) = − d

dt

[F(
m(t))− F(

m̄
)] ≥ (1 − ε)

∫ [
(Av)′(x)]2 dx (1.16)

whenever||v′||2 ≤ κ1(ε) and ||v||2 ≤ δ1(ε) for some strictly positive constantsκ1(ε)

andδ1(ε). Moreover, there exists a constantγ > 0 so that∫ [
(Av)′]2 dx ≥ γ ||v′||22 (1.17)

whenever
∫
v(x)m̄′(x)dx = 0.
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This theorem is proved in Sect. 2. We use (1.16) only whenI(m(t)) << [F(
m(t))−

F(
m̄

)]
; i.e., when the dissipation is very small compared to the excess free energy. The

point is that in this case,v must be very “smooth and spread out” and so both〈v′, v′〉
and 〈v, V v〉 are negligible compared to〈v, v〉. That is,〈v,Av〉 ≈ 〈v, v〉, and so the
operatorA differs negligibly from the identity.But if we replaceA by the identity in
the linearized evolution equation, it simply becomes the heat equation.Therefore, when
the dissipation is small compared to the excess free energy, we expect heat equation
behavior, which we can calculate, to govern this dissipation process.

On the other hand, when the dissipation isnot small compared to the excess free
energy, we are in a position to benefit from the plentiful dissipativity to compute bounds
on the rate at which it occurs. This is thedissipation–dichotomyin our argument.

To make precise use of the dichotomy, introduce a small parameterε1 to be fixed
later, and distinguish between the timest for which

I(m(t)) ≤ ε1
[F(m(t))− F(m̄)] (1.18)

or

I(m(t)) ≥ ε1
[F(m(t))− F(m̄)]. (1.19)

When (1.19) is true, there is plenty of dissipation, and the excess free energy is decaying
at an exponential rate, and it will be relatively simple to exploit this.

We have already explained that condition (1.18) will help us because under this
condition, we will be able to show that‖v‖1 dissipates awayas thoughit were a solution
of the heat equation with

∫
R
v(t)dx = 0 for all t . We will return to this shortly, but it

depends on the fact that when (1.18) holds,v is very “smooth and spread out”. This is
used several ways in the proof. Indeed, combining (1.18) with the key bound (1.16),

‖(Av)′‖2
2 ≤ ε1

[F(m̄+ v)− F(m̄)]
under appropriate conditions onv. Then since〈v,Av〉 is comparable with the excess
free energy ofm̄+ v, when (1.18) holds, one has‖(Av)′‖2

2 << 〈v,Av〉. Any function
v such that this is the case is so smooth and spread out that

‖Av∥∥2
2 ≈ 〈v,Av〉 ≈ 2[F(m(t))− F(m̄)]. (1.20)

The precise version of this is given in Theorem 2.3, and it is the key inequality behind
the dissipation–dichotomyargument. It enables us to “drop” extra powers ofA when
(1.18) holds.

We shall also need certain moment inequalities, which show thatv(t) can’t spread
out too fast.

Theorem 1.5. Letm = m̄ + v be a solution of(1.5) and letC be a positive number.
Defineφ(t) by

φ(t) = 1 +
∫

R

|x (Av) |2dx + C [F(m̄+ v)− F(m̄)] . (1.21)

Then for anyε > 0, there is a choice ofC < ∞ and anε1 > 0 so that one has

d

dt
φ(t) ≤ 4(1 + ε) [F(m̄+ v)− F(m̄)] (1.22)
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whenever(1.18) holds, and||v||2 ≤ δ1(ε), ||v′||2 ≤ κ1(ε), and |a(t)| ≤ 1 for some
strictly positive constantsκ1(ε) and δ1(ε). Regardless of whether(1.18)holds or not,
there is a constantK < ∞,

d

dt
φ(t) ≤ K [F(m̄+ v)− F(m̄)] (1.23)

for as long as||v′||2 ≤ κ1(ε), ||v||2 ≤ δ1(ε) and|a(t)| ≤ 1.

Theorem 1.5 is proved in Sect. 3. Theorems 1.4 and 1.5 are the main ingredients of
our argument specific to the Cahn–Hilliard equation. The other two ingredients are a
constrained form of the uncertainty principle inequality and decay estimate for a system
of differential inequalities introduced in [5].

We will now explain what these are, and how they work together to provide the proof
of Theorem 1.1.

The constrained form of the uncertainty principle inequality [5] is the following:
Under either of the constraints

∫
ψ(x)dx = 0 or ψ(0) = 0, one has

(∫
x2|ψ(x)|2dx

)(∫
|ψ ′(x)|2dx

)
≥ 9

4

(∫
|ψ(x)|2dx

)2

. (1.24)

The difference between (1.24) and the usual uncertainty principle is a factor of 9 in
the constant, and, as we showed in [5], this is crucial forL1 control. We wish to apply
this toψ = Av. It is clear thatAv will have a zero somewhere, a technical argument
is needed to control the location. To explain how all of the pieces of the argument fit
together, assume for the moment that the initial data is antisymmetric. Then the solution
will be antisymmetric for all time and so

Av(0, t) = 0 (1.25)

for all t . The technical argument needed to remove the antisymmetry assumption will
be given in Sect. 2. However, assuming (1.25) , we have from (1.16) and (1.24) that

d

dt

[F(
m(t))− F(

m̄
)] ≤ −(1 − ε)

9

4

‖Av‖4
2

‖xAv‖2
2

. (1.26)

The problem with this inequality is that the right hand side does not directly involve
the excess free energyF(

m(t)) − F(
m̄

)
. If it did, we could hope to get a Gronwall

inequality for the decay of the excess free energy. The problem is thus one of closure:
we have to relate the quantity on the right-hand side to the excess free energy.

Now we are ready to put the pieces together. When (1.20) is valid, interpreting the
approximation sign appropriately in terms ofε, we can rewrite (1.26) as

d

dt

[F(
m(t))− F(

m̄
)] ≤ −9(1 − ε)

[F(m(t))− F(m̄)]2
‖xAv‖2

2

. (1.27)

Now define

f (t) = F(m̄+ v(t))− F(m̄) (1.28)
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and defineφ(t) as in Theorem 1.5. Then (1.27) becomes

d

dt

[F(
m(t))− F(

m̄
)] ≤ −9(1 − ε)

[F(
m(t))− F(

m̄
)]2

φ(t)
,

and from Theorem 1.5 we have that

d

dt
φ(t) ≤ (1 + ε)4

[F(m̄+ v)− F(m̄)].
Notice the condition that|a(t)| ≤ 1 in Theorem 1.5, to which we shall return. Thus,

when (1.18) holds, we have

d

dt
f (t) ≤ −Ãf (t)

2

φ(t)
and

d

dt
φ(t) ≤ B̃f (t) (1.29)

with the difference betweeñA/(Ã+B̃) and 9/13 arbitrarily small forε small enough for
all timest such that (1.18) holds,‖v(t)‖2, ‖v′(t)‖2 are sufficiently small and|a(t)| ≤ 1.

On the other hand, when (1.19) holds, there is plenty of dissipation, and using (1.19)
and the second half of Theorem 1.5, we get (1.29) with somedifferentconstantsÃ andB̃
(in fact,Ã will be the constantK from Theorem 1.5), but such that the ratioÃ/(Ã+ B̃)
is the same. The upshot is that we always have (1.29), but at two different time scales
according to whether (1.19) or (1.18) holds. The heuristic idea that we will make precise
in Sect. 4 is that by taking the slower of these two time scales, we bound the decay of
our system.

Therefore we consider the system of differential inequalities

d

dt
f (t) ≤ −Af (t)

2

φ(t)
and

d

dt
φ(t) ≤ Bf (t) (1.30)

with A = 9 andB = 4. Theorem 5.1 of [4] says that for any solution of (1.30),

f (t) ≤ f (0)1−qφ(0)q
(
φ(0)

f (0)
+ (A+ B)t

)−q
,

φ(t) ≤ f (0)1−qφ(0)q
(
φ(0)

f (0)
+ (A+ B)t

)1−q
,

whereq = A/(A+ B). In the case at hand, this isq = 9/13. Since this value exceeds
1/2, we getL1 decay in the following way: By the elementary Lemma 5.2 of [5], for
any functionw and any 0< δ < 1,

‖w‖1 ≤ C(δ)‖(1 + x2)1/2w‖(1+δ)/2
2 ‖w‖(1−δ)/2

2 , (1.31)

whereC(δ) is a finite constant. (This same method may be applied to solutionsu of
the heat equation∂u/∂t = u′′ with

∫
R
u(t)dx = 0 to estimate the rate ofL1 decay, as

shown in [5].)
Here, we apply (1.31) withw = Av(t), so that we obtain

‖Av(t)‖2
1 ≤ C(δ)φ(t)1+δ‖Av(t)‖1−δ

2 .
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Since 9/13> 1/2 for δ sufficiently small, we have thatφ(t)1+δ increases more slowly
than‖Av(t)‖1−δ

2 decreases, and so‖Av(t)‖1 decreases to zero. In fact, the rate one gets
is arbitrarily close tot−5/26, for δ sufficiently small, as in Theorem 1.1.

This leads to

lim
t→∞

∫
R

Av(x, t)dx = lim
t→∞

∫
R

(V (x)+ 1) v(x, t)dx = 0.

But
∣∣∫

R
V (x)v(x, t)dx

∣∣ ≤ ‖V ‖2‖v(t)‖2, and this tends to zero ast tends to infinity by
the above, so that finally, limt→∞

∫
R
v(x, t)dx = 0. But (1.7) is equivalent to∫

R

(
m̄a(t)(x)−m(x,0)

)
dx +

∫
R

v(x, t)dx = 0,

and hence limt→∞
∫

R

(
m̄a(t)(x)−m(x,0)

)
dx = 0 so that limt→∞ a(t) = a, wherea

is determined through (1.10) . Indeed, the mapa �→ ∫
R
(m̄a(x)−m(x,0))dx is linear,

and the slope is− ∫
R
m̄′
a(x)dx = −2, as one sees simply by differentiating. Thus,∣∣∣∣

∫
R

(
m̄a(t)(x)−m(x,0)

)
dx

∣∣∣∣ = 2|a(t)− a|.

2. Free Energy Estimates

It follows from (1.6) and the definition ofA, one has

d

dt
F(m) = −

∫
R

[
d

dx

(
Av − 1

2

(
3m̄v2 + v3

))]2

dx. (2.1)

For convenience of notation, define

U = 1

2

d

dx

(
3m̄v2 + v3

)
= −3

2

(
m̄′v2 + 2m̄vv′ + v2v′) . (2.2)

Now for anyf andg in L2 and for any 0< ε < 1,

‖f + g‖2
2 ≥ (1 − ε)‖f ‖2

2 − 1

ε
‖g‖2

2. (2.3)

Combining (2.1), (2.2) and (2.3), we have

− d

dt
F(m) =

∫
R

∣∣(Av)′ + U
∣∣2 dx ≥ (1 − ε)

∫
R

∣∣(Av)′∣∣2 dx − 1

ε

∫
R

|U |2 dx. (2.4)

The following lemma is closely based on lemmas and arguments in Sect. 3 of [4]. We
have stated it so that it applied to a general class of potentials because the proof, although
somewhat involved, depends only on fairly general properties ofm̄ andA.

Theorem 2.1. Let v ∈ L2(R), v′ ∈ L2(R) and
∫
v(x)m̄′(x)dx = 0 then there exists a

positive constantγ , such that∫ [
(Av)′]2 dx ≥ γ ||v′||22, (2.5)

whereA is the linear operator defined in(1.14).
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Proof. First observe that(Av)′ = Av′ + V ′v, whereV is given in (1.15). Next,
v(x) = v(y) + ∫ x

y
v′(z)dz. Multiply both sides bym̄′(y), and integrate iny. Since∫

v(y)m̄′(y)dy = 0, and since
∫
m̄′(y)dy = 2,

v(x) = 1

2

∫ ∞

−∞
m̄′(y)

(∫ x

y

v′(z)dz
)

dy. (2.6)

Hence

(Av)′ = Av′ +Kv′, (2.7)

where

Kφ(x) = V ′(x)1
2

∫ ∞

−∞
m̄′(y)

(∫ x

y

φ(z)dz

)
dy.

The operatorK is compact onL2. A detailed proof in a closely related case is given
in [4]. Now consider the quadratic formQ(φ) given by

Q(φ) = ‖ (A +K)φ‖2
2

for φ in the domain ofA.
We next show thatQ(φ) > 0 for all φ in its domain. Suppose on the contrary that

Q(φ) = 0 for someφ in the domain ofQ, which is the operator domain ofA. Define

η(x) =
∫ x

0
φ(y)dy = 〈1[0,x], φ〉.

It follows by the Schwarz inequality that

|η(x)| ≤ ‖φ‖2
√|x| for all x. (2.8)

It then follows thatKφ = V ′η − 1
2V

′〈m̄′, η〉, where the inner product on the right is
well defined because of the exponential decay ofm̄′ and (2.8). Hence

(A +K)φ = Aη′ + V ′η − 1

2
V ′〈m̄′, η〉 = (Aη)′ − 1

2
V ′〈m̄′, η〉.

Since the right side is a total derivative, we have

Aη − 1

2
V 〈m̄′, η〉 = C, (2.9)

whereC is a constant. To determineC, multiply both sides bym̄′, and integrate. Note
that

∫
m̄′ (Aη)dx = 0, because (2.8) permits the integration by parts. The computation

then yieldsC = (1/2)〈m̄′, η〉. Putting this in (2.9) yieldsA (
η − (1/2)〈m̄′, η〉) = 0.

Now any solutionψ of Aψ = 0 either decays exponentially or diverges exponentially
at infinity, since, due to the rapid decay ofm̄′, and henceV , φ′′ ≈ φ. The only option
consistent with (2.8) is exponential decay. Hence we must have thatη − (1/2)〈m̄′, η〉
is in theL2 kernel ofA. However, we know from Lemma 1.2 that this is spanned by
m̄′. So we must haveη − (1/2)〈m̄′, η〉 = αm̄′. Integrating both sides againstm̄′ yields
α = 0. Henceη is constant, and soφ = 0, as was to be shown.
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We will now show that there is aγ > 0 so that

Q(φ) ≥ γ ‖φ‖2
2 (2.10)

for all φ. The proof is similar to the proof of Weyl’s lemma, though note thatA +K is
not self adjoint.

If (2.10) were false, there would exist an infinite orthonormal sequence{φn} in L2

such that limn→∞ Q(φn) = 0. Since the sequence{φn} is orthonormal, it converges
weakly to zero. Next, letcn = 〈φn, m̄′〉 and note that limn→∞ cn = 0. If thecn are not
all zero, letn0 be such that|cn0| ≥ |cn| for all n, and defineφ̃n = φn − (cn/cn0)φn0. It
is clear that thẽφn are all orthogonal tōm′, and moreover the modified sequence still
converges weakly to zero, and still satisfies limn→∞ Q(φ̃n) = 0 and limn→∞ ‖φ̃n‖2

2 = 1.
(If all of the cn vanish, we simply takẽφn = φn for all n.) Moreover, by Lemma 1.2,

‖Aφ̃n‖2
2 ≥ 9

16
‖φ̃n‖2

2. (2.11)

Since the sequence{φ̃n} converges weakly to zero,

lim
n→∞Kφ̃n = 0 (2.12)

strongly inL2. Also, it is clear that the operator domain ofA is the form domain ofQ
and that‖Aφ‖2

2 ≤ 2
(Q(φ)+ ‖Kφ‖2

2

)
on this domain. Thus,

‖Aφ̃n‖2
2 ≤ 2

(
Q(φ̃n)+ ‖K‖2‖φ̃n‖2

2

)
, (2.13)

where‖K‖ denote the operator norm ofK onL2. In particular, the‖Aφ̃n‖2 are uniformly
bounded by a finite constant. Now,

Q(φ̃n) ≤ ‖Aφ̃n‖2
2 + ‖Kφ̃n‖2

2 + 2‖Aφ̃n‖2‖Kφ̃n‖2. (2.14)

By (2.12) and (2.13), the last two terms on the right in (2.14) tend to zero withn.
Hence for anyε > 0, we obtain that‖Aφ̃n‖2

2 ≤ ε‖φ̃n‖2
2 for all sufficiently largen,

which would contradict (2.11). This proves (2.10). Now by (2.7), when〈m̄′, v〉 = 0,
‖ (Av)′ ‖2

2 = Q(v′), and hence we have the result.��
Combining this result with (2.4) , we have

− d

dt
F(m) ≥ (1 − 2ε)

∫
R

∣∣(Av)′∣∣2 dx + εγ ||v′||22 − 1

ε

∫
R

|U |2 dx. (2.15)

We next show that the quantity on the last line is positive wheneverδ andκ are small
enough. To accomplish this, we use the following lemma:

Lemma 2.2. Let v ∈ L2(R), v′ ∈ L2(R). For anyκ > 0 and ε0 > 0 small enough,
there existsδ(κ, ε0) > 0 such that the following estimate holds:∫

R

[
U(v)

]2dx ≤ ε0

∫
|v′|2dx, (2.16)

provided‖v‖2 ≤ δ, ‖v′‖2 ≤ κ.
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Proof. This follows directly from (2.2) and the bound‖v‖2∞ ≤ 2‖v‖2‖v′‖2. ��
Proof of Theorem 1.4.Now chooseκ andδ so thatε0 ≤ ε2γ , and then from (2.15), we
have the inequality of Theorem 2.1.��

We now prove a bound that will enable us to apply the dissipation–dichotomy argu-
ment described in the introduction.

Theorem 2.3. For all ε > 0, there is anε0 > 0 such that for or allv orthogonal tom̄′
with

I(m̄+ v) = ‖(Av)′‖2
2 ≤ ε2

0〈v,Av〉 (2.17)

one has

(1 − ε)‖Av‖2
2 ≤ 〈v,Av〉 ≤ (1 + ε)‖Av‖2

2. (2.18)

Proof. First, by Lemma 1.2, insertingA1/2v in place ofv,

〈v,Av〉 ≤ 4

3
‖Av‖2

2 (2.19)

so we have that‖(Av)′‖2
2 ≤ (4ε2

0/3)‖v‖2
2. Then, using the notation of Lemma 1.2,

∣∣∣‖Av‖2
2 − 〈v,Av〉

∣∣∣ = ∣∣〈v′′,Av〉 + 〈V v,Av〉∣∣ ≤ ∣∣〈v′, (Av)′〉∣∣ + |〈V v,Av〉| .

Now |〈V v,Av〉| ≤ ‖v‖2‖V ‖2‖Av‖∞ and by (2.17) and (2.19),

‖Av‖2∞ ≤ 2‖Av‖2‖(Av)′‖2 ≤ 8ε0
3

‖Av‖2
2.

Then, by Lemma 1.2 and Schwarz’s inequality,‖v‖2 ≤ (4/3)‖Av‖2, so that, recalling
from the proof of Lemma 1.2 that‖V ‖2

2 = 6,

|〈V v,Av〉| ≤ 8

√
ε0

3
‖Av‖2

2. (2.20)

Next we bound
∣∣〈v′, (Av)′〉∣∣. First, an easy application of (2.17) and (2.19) yields

∣∣〈v′, (Av)′〉∣∣ ≤ ‖v′‖2‖(Av)′‖2 ≤ ε0

√
4

3
‖v′‖2‖Av‖2. (2.21)

By Theorem 2.1,‖v′‖2 ≤ (1/
√
γ )‖ (Av)′ ‖2

2; hence aplying (2.17) and (2.19) again,

∣∣〈v′, (Av)′〉∣∣ ≤ ε2
0

4

3
√
γ

‖Av‖2
2. (2.22)

Combining (2.20) and (2.22), we have the result.��
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3. Moment Estimates

In this section we prove Theorem 1.5 which bounds the growth of

φ(t) = 1 +
∫

R

|x (Av) |2dx + C [F(m̄+ v)− F(m̄)] , (3.1)

whereC is a positive constant to be specified. Actually,

1 + C [F(m̄+ v)− F(m̄)] (3.2)

is non-negative and monotone decreasing, so as far as growth is concerned, the quantity
of real interest is

ψ(t) =
∫

R

|x (Av) |2dx. (3.3)

However, (3.2) contributes negative terms to the time derivative ofφ(t) that serve to
absorb certain terms that cannot be controlled in terms of the excess free energy, due to
the unboundedness of the operatorA.

Recall thatA meansAa(t), where the solutionm(x, t) has the formm(x, t) =
v(x, t)+ m̄a(t)(x), anda(t)minimizes‖m(t)− m̄a‖2

2. Therefore, it follows from (1.14)
that

∂

∂t

(Aa(t)v(t)
) = Aa(t)

(
∂

∂t
v(t)

)
− 3m̄′

a(t)ȧ(t), (3.4)

whereȧ(t) denotes the derivative ofa(t). We can also rewrite the evolution equation
(1.5) in terms ofv(t) = m(t)− m̄a(t), and doing so we obtain

Aa(t)

(
∂

∂t
v(t)

)
= Aa(t)

[(Aa(t)v(t)
) + 1

2

(
3m̄a(t)v

2(t)+ v3(t)
)′′]

. (3.5)

(This time there is no contribution involvinġa(t) sincem̄′
a(t) is annihilated byAa(t).)

Note that the first term on the right is linear inv, and the second term is higher order.
The main contribution will come from the linear term, and it is this that we must work
hardest to control.

To control the term involvinġa(t), first note that∫
(m(t)− m̄a(t))m̄

′
a(t)dx = 0

which holds for allt . Differentiating this equation int , one obtainsȧ(t)
(‖m̄′

a‖2
2 −

〈v, m̄′′
a〉

) = − ∫
(∂m/∂t)m̄′

a . Thus, we have

|ȧ(t)| ≤ 2

∣∣∣∣
∫ (

δF
δm

)′
m̄′′
adx

∣∣∣∣ ≤ 2
√

I(m(t))‖m̄′′‖2, (3.6)

as long as‖v‖2 is sufficiently small that
(‖m̄′

a‖2
2 − 〈v, m̄′′

a〉
)
> 1/2. Sincem̄′ has

exponential decay, this gives us the bounds we will need to control the effects of the
terms involvingȧ(t), as we will see below. The non-linear terms are easily handled
without any preparatory analysis.
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We now turn to the linear part, which will provide all of the most important terms.
Consider the growth ofψ(t) whenv evolves according to the linearized equation

∂

∂t
v = (Av)′′ . (3.7)

The computations that follow can be more clearly and compactly represented if we
introduce the notation

ξ = x (Av)′ and η = Av. (3.8)

Lemma 3.1. Letv(x, t) solve(3.7), and letψ(t) be defined in terms ofv through(3.3).
Then for anyα > 0,

d

dt
ψ(t) =

(
12+ 1 + 4‖V ‖1

2α

)
〈η′, η′〉

+
(
2 + α

2
‖(x2V ′)‖2∞ + 2α‖V ‖1

)
〈η, η〉,

(3.9)

whereη = Av.

Proof. Let V be the potential defined in (1.15). Then one easily computes the commu-
tators [

∂

∂x
,A

]
= V ′ and [x,A] = 2

∂

∂x
. (3.10)

Clearly,

d

dt
ψ(t) = 2

∫
R

x2 (Av)A (Av)′′ dx.

Now one commutes derivatives and multiples ofx pastA and integrates by parts to
obtain a dissipative term of the form− ∫

R
x (Av)′ A (

x (Av)′) dx into which positive
terms can be absorbed.

The result, in the notation (3.8) , is that

d

dt
ψ(t) = −2〈ξ,Aξ〉 − 4〈ξ, η′′〉 − 4〈xη,Aη′〉 − 2〈η′, x2V ′η〉.

The last three terms require further manipulation. First:

〈ξ, η′′〉 = −〈ξ ′, η′〉 = −〈xη′′, η′〉 − 〈η′, η′〉 = −1

2
〈η′, η′〉.

This term is controlled by the derivative of the excess free energy. Second, one has, using
(3.10)

〈xη,Aη′〉 = 〈η,Aξ〉 + 2〈η, η′′〉 = 〈η,Aξ〉 − 2〈η′, η′〉.
Finally, for anyα > 0,

〈η′, x2V ′η〉 ≤ 〈η′, η′〉1/2〈(x2V ′)η, (x2V ′)η〉1/2 ≤ 1

2α
〈η′, η′〉 + α

2
‖(x2V ′)‖2∞〈η, η〉.
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Putting everything together, one obtains:

d

dt
ψ(t) ≤ −2〈ξ,Aξ〉 − 4〈ξ,Aη〉 +

(
10+ 1

2α

)
〈η′, η′〉 + α

2
‖(x2V ′)‖2∞〈η, η〉.

Now one uses that

−2〈ξ,Aξ〉 − 4〈ξ,Aη〉 = −2〈(ξ + η),A(ξ + η)〉 + 2〈η,Aη〉. (3.11)

But 〈η,Aη〉 = 〈η′, η′〉 + 〈η, V η〉 + 〈η, η〉 ≤ 〈η′, η′〉 + ‖V ‖1‖η‖2∞ + 〈η, η〉, and

‖η‖2∞ ≤ 2‖η′‖2‖η‖2 ≤ 1

α
〈η′, η′〉 + α〈η, η〉.

Altogether

〈η,Aη〉 ≤
(

1 + ‖V ‖1

α

)
〈η′, η′〉 + (1 + α‖V ‖1) 〈η, η〉. (3.12)

Putting (3.12) into (3.11) gives the result.��
Lemma 3.2.

〈η, η〉 ≤ 〈η′, η′〉 + 〈v,Av〉.
Proof. By Schwarz, for anyα > 0,

〈η, η〉 = 〈A1/2η,A1/2v〉 ≤ 〈η,Aη〉1/2〈v,Av〉1/2 ≤ α

2
〈η,Aη〉 + 1

2α
〈v,Av〉,

and〈η,Aη〉 ≤ 〈η′, η′〉 + ‖V + 1‖∞〈η, η〉. Since‖V + 1‖∞ = 1, we can chooseα = 1
and combine the above to obtain the result.��
Proof of Theorem 1.5.First, we deal with the inhomogenous terms involvingȧ(t) on the
right in (3.4) , as they contribute to∣∣∣∣

∫
R

x2 (Aa(t)v
) ∂
∂t

(Aa(t)v
)

dx

∣∣∣∣ .
By symmetry and the Schwarz inequality, we have that∣∣∣∣3

∫
R

(Aa(t)v
)
x2m̄′

a(t)dx

∣∣∣∣ |ȧ(t)| ≤ 3‖Aa(t)x
2m̄′

a(t)‖2‖v‖2|ȧ(t)|.

Now applying (3.6) , the contribution of the term involvingȧ(t) is bounded above by

6‖Aa(t)x
2m̄a(t)‖2‖v‖2‖m̄′′

a(t)‖2

√
I(m(t)).

It is here that we begin using the hypothesis that|a(t)| ≤ 1. The exponential decay of
m̄′
a(t) would not give a bound on‖Aa(t)x

2m̄′
a(t)‖2 that is uniform int if |a(t)| gets large.

Since this is precluded by the hypotheses, for anyα > 0, there is a universal constant
Kα so that ∣∣∣∣3

∫
R

x2 (Aa(t)v
)
m̄′
a(t)dx

∣∣∣∣ |ȧ(t)| ≤ Kα

α
I(m(t))+ α‖v‖2

2. (3.13)
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Note that the first term on the right in (3.13) can be absorbed into the negative contribution
from the inclusion of the multipleC of the excess free energy inφ, at least ifC is chosen
appropriately large. Therefore, since we can takeα arbitrarily small, and can bound of
‖v‖2

2 in terms of the excess free energy by Lemma 1.3, this term is under control.
One even more easily handles the contributions of the nonlinear terms in (3.5) using

the bound‖v‖2∞ ≤ 2‖v‖2‖v′‖2.We do not give the details here, but turn to the application
of the lemmas from this section to control the contribution from the linear terms.

To apply Lemma 3.1, chooseα so that(
2 + α

2
‖(x2V ′)‖2∞ + 2α‖V ‖1

)
≤ 2

(
1 + ε

4

)
.

Then, for this choice ofα, and using the notation from (3.8) ,

d

dt
ψ(t) =

(
12+ 1 + 4‖V ‖1

2α

)
〈η′, η′〉 + 2

(
1 + ε

4

)
〈η, η〉. (3.14)

Next, by Theorem 1.4,

d

dt
C [F(m̄+ v)− F(m̄)] ≤ −C(1 − ε)〈η′, η′〉.

Therefore, if we chooseC so thatC(1 − ε) ≥ (12+ (1 + 4‖V ‖1)/(2α)), we get

d

dt
φ(t) ≤ 2

(
1 + ε

4

)
〈η, η〉.

It remains to bound‖η‖2
2. There are two cases. First suppose that the dissipation is

small compared to the excess free energy so that (1.18) holds. Then by Theorem 2.3,
‖η‖2

2 ≤ (1 + ε)〈v,Av〉, and then by Lemma 1.3,‖η‖2
2 ≤ (1 + ε)3[F(m(t))− F(m̄)],

for δ andκ sufficiently small. Redefiningε, we have proved (1.22) under the hypothesis
(1.18).

If we don’t assume (1.18), we use

‖η‖2
2 = 〈v′, η′〉 + 〈(V + 1)v, η〉 ≤ ‖v′‖2

√
I(m(t))+ ‖v‖2‖η‖2

since‖v+1‖∞ = 1.This leads to‖η‖2
2 ≤ (2/γ )I(m(t))+4‖v‖2

2, whereγ is the constant
in Theorem 1.4. Again, the term involvingI(m(t)) can be absorbed by an appropriate
choice ofC. The remaining term is easily handled by Lemma 1.2 and Lemma 1.3, and
so (1.23) is established.��

4. Proof of the Main Theorem

We will be brief in the presentation of this proof since from this point on, it is very close
to the one we have given for the LOP equation in Sect. 4 of [5].

Letm(t) be a solution of (1.5) with initial data as specified in Theorem 1.1, where
the size ofδ is to be specified in the course of the proof. The first step is to wait a bit
to acquire some smoothness. For any fixedκ > 0, if initially ‖v‖2 ≤ δ/4, whereδ is
sufficiently small, we will have that‖v(1)‖2 ≤ δ/2 and‖v′(1)‖2 ≤ κ/2, and moreover
|a(1)| will be small. Regularity theory form(t) can be found in [3]. Also, the production
of smoothness estimates in Sect. 2 of [5] are easily adapted to this case to see the validity
of the above assertion.
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We now begin the analysis from this starting point. All of the lemmas and theorems
that required‖v(1)‖2 ≤ δ, ‖v′(1)‖2 ≤ κ, and |a(1)| < 1 can be used until timeT ,
which is the first time that any of them is violated. Of course, we have to show that such
a timeT never occurs.

Let f (t) andφ(t) be given in terms ofm(t) as in the introduction.
We begin by assuming that at timet , (1.18) holds. Then by Theorem 1.4,

d

dt
f (t) ≤ −(1 − ε)‖(Av)′‖2

2.

By convexity‖(Av)′‖2
2 ≥ ‖(Aρ ∗ v)′‖2

2, whereρ = (1/2)m̄′, which is a probability
density. Becausev is orthogonal tom̄′, ρ ∗ v(a(t)) = 0. Therefore, by the constrained
uncertainty principle (1.24) ,

‖(Av)′‖2
2 ≥ ‖(Aρ ∗ v)′‖2

2 ≥ 9

4

‖Aρ ∗ v‖4
2

‖(x − a(t)) (Aρ ∗ v) ‖2
2

.

Now under the condition (1.18) ,v is so smooth and spread out thatρ∗v ≈= v, and we do
not lose much in passing fromv to ρ ∗ v. The estimates are straightforward, making use
of (3.10) , and are exactly like those applied on pp. 868–869 of [5]. Without repeating the
details, the result is that‖(Av)′‖2

2 ≥ (9/4)(1 − ε)2
(‖A ∗ v‖4

2

)
/
(‖(x − a(t)) (Av) ‖2

2

)
and hence that, withε redefined, and making use of Lemma 1.3,

d

dt
f (t) ≤ −9(1 − ε)

f 2(t)

φ(t)
,

where we have used the fact that|a(t)| < 1 to absorb the effects ofa(t) into the constant
term.

By Theorem 1.5, we have that

d

dt
φ(t) ≤ 4(1 + ε)f (t).

Hence for sucht , we have (1.30) satisfied withA/(A+ B) arbitrarily close to 9/13.
Now suppose that (1.19) holds. Then we have

d

dt
φ(t) ≤ B̃f (t)

from the second half of Theorem 1.5, whereB̃ is the constantK given there. From (1.19)

d

dt
f (t) ≤ −ε1f (t) ≤ Ã

f 2(t)

φ(t)
, (4.1)

whereÃ can be chosen as large as we like providedf (t) is sufficiently small. Thus with
δ chosen sufficiently small, as long asf (t) < δ holds, we have (??) and can arrange
for it to hold with a value ofÃ so thatÃ/(Ã + B̃) = A/(A + B). Thus, by rescaling
the time in those time intervals in which (1.19) holds; i.e., possibly using a slower clock
there, we have a system holding for allt . The details of this argument are exactly as in
Sect. 5 of [5].

One now concludes that as long as|a(t)| < 1, ‖v(t)‖2 ≤ δ and‖v′(t)‖2 ≤ κ, f (t)
decays at a rate close tot−9/13 (using the slower of the two time scales). Therefore, as
in [5], |a(t)| < 1, ‖v(t)‖2 ≤ δ and‖v′(t)‖2 ≤ κ hold for all t , and sof (t) decays all
the way to zero at a rate close tot−9/13, as in Theorem 1.1. As explained at the end of
Sect. 1 of this paper, this means that‖Av(t)‖1 decays to zero at an algebraic rate, and
that this forces limt→∞ a(t) = a, wherea is given by the conservation law.
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