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Abstract: We apply amethod developed in our earlier work on a non-local phase kinetics
equation to give a simple proof of the non-linear stability of fronts for the Cahn—Hilliard
equation.

1. Introduction

In this paper we consider the one dimensional Cahn—Hilliard equation, which is a partic-
ularly interesting example of a class of equations for the transport of a conserved order
parameter (x) onRR. Such equations generally have the form

0 0
—m=—1/J, (1.2)
Jt 0x

where the current is given in terms of the variation of a free energy functiofal

through
a (6
J— _(f) (1.2)
dx \ dm

In this particular case, the free energyis
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The variation in (1.2) is to be computed with respect totReorm onR, and hence

8F 92 1
and the equation is

3 32 32 1

Clearly the free energy is a decreasing function under this evolution:

d
—F(m) = —

5 (1.6)

and thus our evolution has a Lyapunov functional. We will denetéF(m)/dr by
Z(m(1)).
Moreover, the evolution has a conservation law: For all O,

/ (m(x,1) —m(x,0))dx = 0. .7
R

Replacing derivatives by gradients and divergences in the obvious places, one obtains
a two or three dimensional version. In such casgg,) represents the order parameter
in the model of a binary alloy with a phase transition. The two global equilibrium states
correspond to the two minima of the potentil(m) = (1 — m?)2/8. Clearly these are
m = 1andmn = —1. Atthe boundary between two regions of different phases, there will
be a transition fromm = 1 tom = —1. Since the evolution decreases the free energy,
we expect that after a short initial time period, these transitions should occur in a way
that minimizes the cost in excess free energy. Therefore, in the one dimension across the
boundary between two regions of different phase, we expect a “transition profile” that
is very close to some translatemp, where

f@@:ﬁ{fw)

sgn(x)m(x) > 0, ﬂ@oo sgn(x)m(x) > 0} . (1.8)

The minimizer is well known, and easily seen, torbg(x) = tanh(x/2). The physical
interest in the one dimensional problem is that stability of these minimal free energy
transition profiles, which we simply call “fronts” in the rest of the paper, is important for
understanding how the boundaries between regions of different phases evolve in higher
dimension. Without further mention of the higher dimensional case, we now turn to this
stability problem.

The subscript 0 on the minimizer in (1.8) is present because the constraint imposed
in (1.8) breaks the translational invariance of the free energy. Fou &amR, define

g (x) = mo(x —a). (1.9)

These functionsn,, are the fronts whose stability is to be investigated here. Clearly
F(m,) = F(mg), so thating belongs to a one parameter family of minimizers of the
free energy. Another family is obtained by reflecting this one because the free energy is
also reflection invariant. However, these two families of minimizers separated in all of
the relevant metrics, and it suffices to consider just one.
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It is easy to guess the result of solving (1.5) for initial datathat is a small pertur-
bation of the froning. The excess free energy should decrease in a way that forces the
solutionm (¢) to tend to the family of fronts, and the conservation law should sglgels
the front it should be converging to, so the result should be that, in any reasonable sense,
liM;— 00 (m(x,t) —my(x)) = 0 with a given in terms of the initial data through
(1.7) in the form

/(m(x, 0) — ﬁza(x))dx =0. (1.10)

Our main resultis a proof that this is the case. The result has recently been obtained in
this case by Bricmont, Kupiainen and Taskinen [2] using renormalization group methods.
Their result gives a tighter estimate on the decay rate, but in a weaker norm that does not
control the excess free energy. We recently proved such a result for a related equation,
the LOP equation, which first appeared in [10] and later rigorously derived from an
underlying microscopic model in [7]. The method that we used was developed to deal
with the non-local nature of the LOP equation, and the fact that one has no explicit
formula form in that case, which precluded the explicit spectral analysis required in
the renormalized group method. However, as we show here, the method developed for
the LOP equation also applies to the local Cahn-Hilliard equation, and yields a fairly
simple proof of the non-local stability. Moreover, this method works directly in physical
norms, and it provides an estimate on the rate of decrease of the excess free energy. The
result is:

Theorem 1.1. Consider initial datang(x) for the one dimensional Cahn—Hilliard equa-
tion (1.5) such that

/xz(mo(x) — mo(x))%dx < co,

wherecg is any positive constant. Then for any- O there is a strictly positive constant
8 = d(e, cg) depending only om andcg such that for all inital data with

/ (mo(x) — rig(x))2dx < 5,

the excess free enerdy(m(t)) — F(mo) of the corresponding solutiom () of (1.5)
satisfies

F(m(0)) — F(in) < ca(L+ cqr)~ @137
and
Im(t) — gl < c2(14 c1r)~®/5279),
wherec; andc; are finite constants depending only©andcg anda is given by(1.10)

Since the problem has both a Lyapunov functional and a conservation law, it may
appear that it should be a simple matter to prove this result. One reason that it is not
so simple is that the decrease of the excess free energy providesobntrol, and
by itself, only partial control at that. To use the conservation law, one nekdentrol.

Our equation is not dissipative ih!, a circumstance which is closely related to the
lack of a maximum principle. Decrease of free energy can be used to show that the
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solutionm(x, ) approaches some moving frant, (x) in some norm other thah?.

For example, Asselah did this in [1] for the LOP equation studied in [4] and [5], with the
approach controlled in the* norm. But since the free energy is translation invariant,
it cannot provide any control overz). Moreover, without control on(r) that prevents

it from “running away”, it is not at all clear how one can even gétcontrol on the
difference betweem (x, ) andm,)(x), or get a rate estimate. The difficulties in this
sort of problem are discussed in more detail in [4]. Here we move directly on to the
solution.

Despite what has been said above, understanding the free energy funétisrsaill
central to understanding the stability. To begin, we introduce the opedatissociated
with its second variation at a front. First, throughout this paper, we make the following
convention: whenever some soluti@rx, #) of (1.5) is under discussion, theix, 7) is
defined by

v(x,t) =m(x, t) — mgq)(x), (1.12)
wherea(¢) is defined to be that value ofsuch that

lm () — masll2 =EQ&{IIm(t) —me|l2}. (1.12)

It is shown in [4] thata(¢) is a well-defined function as long d8:(t) — () l|2 stays
sufficiently small since then the minimum is uniquely attained. Finally, it will be con-
venient to have the convention thatx) denotesn,)(x). In the same vein, we shall
generally simply write4 in place of A4, for the second variation of atm,(), and
leave the:(r) implicit. However, in the definition, we shall be explicit:

2

(v, Agv) 2 = d—}'(nﬁa + s5v) . (1.13)
ds? s=0

One easily computes that
Av(x) = =v"(x) + V(x)v(x) + v(x), (1.14)

where

NI w

Vix) = g’ ('2 - 1) - (tanh2 (%) - 1). (1.15)

The operatord has a spectral gap:

Lemma1.2. In the spectrum of4, O is an isolated eigenvalue of multiplicity one. In
fact,

/ () Av(x)dx > Zuvn%

for all v with [ v(x)m’(x)dx = 0.
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Proof. We consider the operatad given by Hv(x) = —v"(x) + V(x)v(x). We
know thatm’ is an eigenvector, and that the corresponding eigenvaluelisLet
—1 = e, e1, €2, ... be the negative eigenvalues #f, repeated according to their
multiplicity. Then by a bound of Lieb and Thirring [9], one has

3
> lej¥? < 1—6[ |V (x)[2dx.
; R

The integral is easily evaluated and equals 6. Keeping only the first two terms in the sum
on the left 1+ |e1|%/? < 18/16 and this implies thae,| < 1/4. Thuse; > —1/4, and
this completes the proof.0

As indicated in Theorem 1.1, we shall start out wjjth|> small, and then, because
of the smoothing properties of the equation [3,5], it will be the case that at least a short
time later,||v||2 is still small, and therjv’||2 is small as well. We shall obtain a number
of a-priori estimates that hold whejw||» and|v’||2 are both small, and shall use them
in the final section of the paper to prove that this condition persists indefinitely. The
first estimate that we obtain under these conditions shows that the excess free energy of
m + v is comparable tdv, Av) .

Lemma 1.3. Forall ¢ > 0, there are’, k > 0sothatwhenevdp|2 < §and|v’|2 < «,
then
1- 1
26<U,Av> < Foi+v) — Fn) < —2<

Proof. One easily computes that

(v, Av).

- - 1 1 -3, 4
F@n +v) — F@n) = E(U,AU) + Z/ (2mv +v )dx.
Using the inequality|v||§o < 2|lvli2llv’|l2, one obtains

4
‘/ (21711)3—}- %) dx

By the previous lemma, farands small enough(Z\/Z/ccS + /«S) ||v||§ < (e/2)(v, Av),
and this completes the proofo

< (2@ + Ka) Iol3.

The first key result is a lower bound on the dissipation in termd:of

Lemma 1.4. For anye > 0O,
d
Z(m(t)) = —E[}"(m(t)) —F(m)] =@ -e) / [(Av)/(x)]z dx (1.16)

whenevel|v'||2 < k1(e) and||v]]2 < 81(¢) for some strictly positive constants(¢)
andd1(e). Moreover, there exists a constgnt> 0 so that

[ T Tar = i3 (117)

whenever[ v(x)m’(x)dx = 0.
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This theorem is proved in Sect. 2. We use (1.16) only when(1)) << [F(m(1)) —
.7-"(17_1)]; i.e., when the dissipation is very small compared to the excess free energy. The
point is that in this case; must be very “smooth and spread out” and so bethv’)
and (v, Vv) are negligible compared t@, v). That is, (v, Av) ~ (v, v), and so the
operatorA differs negligibly from the identityBut if we replaceA by the identity in
the linearized evolution equation, it simply becomes the heat equati@nefore, when
the dissipation is small compared to the excess free energy, we expect heat equation
behavior, which we can calculate, to govern this dissipation process.

On the other hand, when the dissipatiomat small compared to the excess free
energy, we are in a position to benefit from the plentiful dissipativity to compute bounds
on the rate at which it occurs. This is thissipation—dichotomin our argument.

To make precise use of the dichotomy, introduce a small parameterbe fixed
later, and distinguish between the timesr which

Z(m@)) < e1[F(m(t)) — F(m)] (1.18)
or
Tm@) > e[ Fm(@)) — Fon)). (1.19)

When (1.19) is true, there is plenty of dissipation, and the excess free energy is decaying
at an exponential rate, and it will be relatively simple to exploit this.

We have already explained that condition (1.18) will help us because under this
condition, we will be able to show that |1 dissipates awags thought were a solution
of the heat equation wit!ﬁR v(t)dx = 0O for all . We will return to this shortly, but it
depends on the fact that when (1.18) holdss very “smooth and spread out”. This is
used several ways in the proof. Indeed, combining (1.18) with the key bound (1.16),

1(Av) 113 < e[ Fm + v) — Fm)]

under appropriate conditions an Then sincev, Av) is comparable with the excess
free energy ofn + v, when (1.18) holds, one haﬁQAv)/n% << (v, Av). Any function
v such that this is the case is so smooth and spread out that

A5 ~ (v, Av) ~ 2[F(m () — F(i)]. (1.20)

The precise version of this is given in Theorem 2.3, and it is the key inequality behind
the dissipation—dichotomgrgument. It enables us to “drop” extra powers4fvhen
(1.18) holds.

We shall also need certain moment inequalities, which showthatcan't spread
outtoofast.

Theorem 1.5. Letm = m + v be a solution of1.5) and letC be a positive number.
Define¢ (¢) by

o) =1+ / Ix (Av) [°dx + C [F(m + v) — F(mn)]. (1.21)
R
Then for any > 0, there is a choice of < oo and ane; > 0 so that one has

%d)(t) <4+ e)[F(n + v) — F(m)] (1.22)



Simple Proof of Stability of Fronts for Cahn—Hilliard Equation 329

whenever(1.18) holds, and||v||2 < 81(¢), ||V/|l2 < k1(€), and|a(z)| < 1 for some
strictly positive constants;(e) andd1(¢). Regardless of whethéf.18)holds or not,
there is a constank < oo,

d
GO =K [F(m 4+ v) — F(m)] (1.23)

for as long ag|v'||2 < k1(e), llvll2 < d1(e) and|a(?)] < 1.

Theorem 1.5 is proved in Sect. 3. Theorems 1.4 and 1.5 are the main ingredients of
our argument specific to the Cahn—Hilliard equation. The other two ingredients are a
constrained form of the uncertainty principle inequality and decay estimate for a system
of differential inequalities introduced in [5].

We will now explain what these are, and how they work together to provide the proof
of Theorem 1.1.

The constrained form of the uncertainty principle inequality [5] is the following:
Under either of the constraint§ y (x)dx = 0 or y/(0) = 0, one has

2
( / x2|w(x>|2dx> ( / |w/(x)|2dx) > %( / |w(x>|2dx) : (1.24)

The difference between (1.24) and the usual uncertainty principle is a factor of 9 in
the constant, and, as we showed in [5], this is crucialfbcontrol. We wish to apply
this toy = Av. Itis clear thatdv will have a zero somewhere, a technical argument
is needed to control the location. To explain how all of the pieces of the argument fit
together, assume for the moment that the initial data is antisymmetric. Then the solution
will be antisymmetric for all time and so

Av(0,1) =0 (1.25)

for all . The technical argument needed to remove the antisymmetry assumption will
be given in Sect. 2. However, assuming (1.25) , we have from (1.16) and (1.24) that

) ] 9 ||l Av|4
g\ FlmO) = F(m)] = —A =z o

(1.26)

The problem with this inequality is that the right hand side does not directly involve
the excess free energii(m(t)) — ]—‘(nﬁ) If it did, we could hope to get a Gronwall
inequality for the decay of the excess free energy. The problem is thus one of closure:
we have to relate the quantity on the right-hand side to the excess free energy.

Now we are ready to put the pieces together. When (1.20) is valid, interpreting the
approximation sign appropriately in termseyfwe can rewrite (1.26) as

LF(n() — FOm)P?
IlxAviI3

d
Z[F(m@) = F(m)] < -91—e)

- (1.27)

Now define

f@)=Fm+v()) — F@m) (1.28)
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and definep (r) as in Theorem 1.5. Then (1.27) becomes

2

[F(m@) - F(m)]

E[f(m(z)) —F(m)] =-91-e) 50

dr

and from Theorem 1.5 we have that
d
PO =a+ OA[F(m +v) — F(m)].

Notice the condition that(z)| < 1 in Theorem 1.5, to which we shall return. Thus,
when (1.18) holds, we have

d - ()2
af(l) <-A 50)

and %q&(r) <Bf(r) (1.29)

with the difference betweea/ (A + B) and 913 arbitrarily small foe small enough for
all timest such that (1.18) holdgp(2) |2, ||V (¢) |2 are sufficiently small anf (¢)| < 1.

On the other hand, when (1.19) holds, there is plenty of dissipation, and using (1.19)
and the second half of Theorem 1.5, we get (1.29) with sdifferentconstantst andB
(in fact, A will be the constank from Theorem 1.5), but such that the raig(A + B)
is the same. The upshot is that we always have (1.29), but at two different time scales
according to whether (1.19) or (1.18) holds. The heuristic idea that we will make precise
in Sect. 4 is that by taking the slower of these two time scales, we bound the decay of
our system.

Therefore we consider the system of differential inequalities

f(0?
o (1)

with A = 9 andB = 4. Theorem 5.1 of [4] says that for any solution of (1.30),

_ #(0) 1
0)1-¢ oq(— A+ B ) ,
f@®) < f(O) 7140 f(0)+( + B)t

. 0) t
014 0(1(& A+ B ) ,
o) < fF(O79(0) f(0)+( + B)t

whereq = A/(A + B). In the case at hand, thisgs= 9/13. Since this value exceeds
1/2, we getL! decay in the following way: By the elementary Lemma 5.2 of [5], for
any functionw and any O< § < 1,

d d
Ef (1) <—A and aab(t) < Bf() (1.30)

1 2 1-68)/2
lwllz < CENA+ x2)Y 2w | S22 |72, (1.31)

whereC(8) is a finite constant. (This same method may be applied to soluiiarfs
the heat equatiofu/dt = u” with [ u(t)dx = O to estimate the rate df! decay, as
shown in [5].)

Here, we apply (1.31) witlvy = Av(¢), so that we obtain

IAv(D)I2 < CB)pO [ Av@)[157°.
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Since 913 > 1/2 for § sufficiently small, we have that(r)1*? increases more slowly
than|| Av(z) ||§*5 decreases, and §olv(z) |1 decreases to zero. In fact, the rate one gets

is arbitrarily close ta—5/26, for § sufficiently small, as in Theorem 1.1.
This leads to

lim / Av(x, )dx = lim / (Vx)+ Do, )dx =0.
—0o0 R —o0 R

But | [ V(x)v(x, dx| < [|VIl2]lv(2)ll2, and this tends to zero agends to infinity by
the above, so that finally, lim, o fR v(x, 1)dx = 0. But (1.7) is equivalent to

/ (Ma@)(x) — m(x, 0)) dx—i—/ v(x, t)dx =0,
R R

and hence lim. o [ (240 (x) — m(x, 0)) dx = 0 so that lim_, o a(t) = a, wherea
is determined through (1.10) . Indeed, the map- fR (mq(x) — m(x,0)) dx is linear,
and the slope is- fR m, (x)dx = —2, as one sees simply by differentiating. Thus,

‘/]R (nﬁa(,)(x) —m(x, O)) dx| = 2|a(t) — al.

2. Free Energy Estimates

It follows from (1.6) and the definition ofi, one has

Ef()——/ d A—}(3-2+ 3) 2d (2.1)
dt m) = 2 dx v 2 nmuv v X . .
For convenience of notation, define
_ 1d - 2 3\ _ 3 -7 2 - 2.7
U—Ea(i?»mv +v)——§<mv + 2mvv —i—vv). (2.2)

Now for any f andg in L2 and for any O< € < 1,

1
I/ +8l5= a-olr1- Il (2.3)
Combining (2.1), (2.2) and (2.3), we have
d 1
——F(m) = / |(Av) + U|2dx > (1— e)/ |(Av)’|2dx - -/ |U)%dx. (2.4)
dr R R € Jr
The following lemma is closely based on lemmas and arguments in Sect. 3 of [4]. We

have stated it so that it applied to a general class of potentials because the proof, although
somewhat involved, depends only on fairly general properties afd.A.

Theorem 2.1. Letv € L?(R), v/ € L2(R) and [ v(x)m’(x)dx = O then there exists a
positive constant, such that

[ T ar = i (2.5)

whereA is the linear operator defined ifi.14).
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Proof. First observe thatAv) = Av + V'v, whereV is given in (1.15). Next,

v(x) = v(y) + ff v’'(z)dz. Multiply both sides bym/(y), and integrate iny. Since
S v(y)ym’(y)dy = 0, and since i’ (y)dy = 2,

v(x) = %f m' () </ v’(z)dz) dy. (2.6)
oo y

(Av) = A" + KV, (2.7

Hence

where
l 1 [ =/ g
Kp(x)=V (X)E/ m(y) </ ¢(Z)d1> dy.
oo y

The operatoK is compact orl.2. A detailed proof in a closely related case is given
in [4]. Now consider the quadratic for@(¢) given by

Q) = | (A+K) $|3

for ¢ in the domain ofA.
We next show thaB(¢) > 0 for all ¢ in its domain. Suppose on the contrary that
Q(¢) = 0 for somep in the domain of@, which is the operator domain of. Define

10 = [ 909y = Go.. 9.
It follows by the Schwarz inequality that

()| < llgllay/Ix|  forall x. (2.8)

It then follows thatk¢ = V' — %V’(ﬁz/, n), where the inner product on the right is
well defined because of the exponential decayioéind (2.8). Hence

1 1
A+K)p=An +V'n— EV’W, n) = (An)' — EV’W, n).

Since the right side is a total derivative, we have

An — %V(H_’l/, n) =C, (2.9)
whereC is a constant. To determin@, multiply both sides byn’, and integrate. Note
that [ m’ (An) dx = 0, because (2.8) permits the integration by parts. The computation
then yieldsC = (1/2)(m’, n). Putting this in (2.9) yieldsA (n — (1/2)(m’, n)) = 0.

Now any solution) of Ay» = 0 either decays exponentially or diverges exponentially
at infinity, since, due to the rapid decaysmf, and hencéd/, ¢’ ~ ¢. The only option
consistent with (2.8) is exponential decay. Hence we must have thatl/2) (m’', )
is in the L? kernel of A. However, we know from Lemma 1.2 that this is spanned by
m'. So we must have — (1/2)(m’, n) = am’. Integrating both sides againat yields
a = 0. Hencey is constant, and s¢ = 0, as was to be shown.



Simple Proof of Stability of Fronts for Cahn—Hilliard Equation 333

We will now show that there isa > 0 so that

Q) = vl (2.10)

for all ¢. The proof is similar to the proof of Weyl's lemma, though note that K is
not self adjoint.

If (2.10) were false, there would exist an infinite orthonormal sequépgein L?
such that lim_, - Q(¢,) = 0. Since the sequende,} is orthonormal, it converges
weakly to zero. Next, let, = (¢,, m') and note that lif, o ¢, = 0. If the ¢, are not
all zero, letng be such thajc,,| > |c,| for all n, and definep, = ¢, — (cn/cng)Png- It
is clear that thep, are all orthogonal ten’, and moreover the modified sequence still
converges weakly to zero, and still satisfies/ime Q(¢,) = 0andlim, .« [ 13 = 1.

(If all of the ¢, vanish, we simply take, = ¢, for all n.) Moreover, by Lemma 1.2,

- 9 .
I A, 113 > 1—6||¢n||§. (2.11)

Since the sequende, } converges weakly to zero,

lim K¢, =0 (2.12)

n— oo

strongly inL2. Also, it is clear that the operator domain.dfis the form domain o
and that| A¢13 < 2(Q(¢) + [ K¢l|3) on this domain. Thus,

1AGul13 = 2( Q@) + IK 1218 13) (213)

where|| K || denote the operator norm &fon L2. In particular, thej A, || 2 are uniformly
bounded by a finite constant. Now,

Q(hn) < IAGu I3 + 1K Gnll5 + 21 AGu l1211 K b 1 2- (2.14)

By (2.12) and (2.13), the last two terms on the right in (2.14) tend to zero avith
Hence for anye > 0, we obtain thaf|.A¢, |2 < €ll¢, I3 for all sufficiently largen,
which would contradict (2.11). This proves (2.10). Now by (2.7), wik&h v) = O,

I (Av) |15 = Q(v"), and hence we have the result

Combining this result with (2.4) , we have
d 1
——F@m)>1- 2e)f |(Au)’\2dx +eyl|V|15 - —/ |U|? dx. (2.15)
dr R € Jr

We next show that the quantity on the last line is positive wheng&eerd« are small
enough. To accomplish this, we use the following lemma:

Lemma2.2. Letv € L%(R), v' € L%(R). For anyx > O andeg > 0 small enough,
there exists$ («, €g) > 0 such that the following estimate holds:

/R[U(v)]zdx < eo/ lv|%dx, (2.16)

provided|jv|l2 < &, [[v/]|2 < k.
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Proof. This follows directly from (2.2) and the bour1|ab||§O <2|vll2llv'|l2. O

Proof of Theorem 1.4ow choosec ands so thatep < €2y, and then from (2.15), we
have the inequality of Theorem 2.10

We now prove a bound that will enable us to apply the dissipation—dichotomy argu-
ment described in the introduction.

Theorem 2.3. For all € > 0, there is aneg > 0 such that for or allv orthogonal tom’
with

I+ v) = [[(Av)' |13 < (v, Av) (2.17)
one has
(1—ollAv|3 < (v, Av) < (14 o)|lAv]3. (2.18)

Proof. First, by Lemma 1.2, inserting/2v in place ofv,
4 2
(v, Av) < éllAvllg (2.19)

so we have thaf(Av)'||3 < (4e3/3)v]13. Then, using the notation of Lemma 1.2,

A2 — (v, Av)‘ = |(v", Av) + (Vv, Av)| < [(v/, (AV))| + [(Vv, Av)].

Now [(Vv, Av)| < [vll2]l V|2l Avlle and by (2.17) and (2.19),

8¢
1AvIIZ, < 2l Av]l2]l(Av) [l2 < ?OuAvn%.

Then, by Lemma 1.2 and Schwarz’s inequality|> < (4/3)|.Av||2, so that, recalling
from the proof of Lemma 1.2 thaitV ||3 = 6,

€
[(Vv, Av)| < 8\/2 1 Av3. (2.20)

Next we bounq(v’, (Av)’>|. First, an easy application of (2.17) and (2.19) yields

|(v/, (Av))| < [V ]12ll(Av)[l2 < €0 il||v’||z||Av||z. (2.21)
3

By Theorem 2.1||v'[l2 < (1//P) Il (Av) ||§; hence aplying (2.17) and (2.19) again,

4
[, (Av))] < €5 ﬁnAvn%. (2.22)

Combining (2.20) and (2.22), we have the result
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3. Moment Estimates

In this section we prove Theorem 1.5 which bounds the growth of
o) =1+ / Ix (Av) |2dx + C[F(n + v) — F(m)], (3.1)
R

whereC is a positive constant to be specified. Actually,
1+ C[F(mn+v) — F(@m)] (3.2)

is non-negative and monotone decreasing, so as far as growth is concerned, the quantity
of real interest is

Y(t) = / lx (Av) |*dx. (3.3)
R

However, (3.2) contributes negative terms to the time derivative(of that serve to
absorb certain terms that cannot be controlled in terms of the excess free energy, due to
the unboundedness of the operatbr

Recall that4 meansA,), where the solutiom(x, t) has the formm(x,t) =
v(x, 1) + gy (x), anda(t) minimizes||m(t) — mq ||§. Therefore, it follows from (1.14)
that

d 0
E (.Aa(,)v(t)) = Aa(t) <EU([)> — 31’71;0)&(1), (3.4)

wherea(t) denotes the derivative ef(r). We can also rewrite the evolution equation
(1.5) interms of(r) = m(r) — rm,(), and doing so we obtain

0 1 /"
Aa) (av(f)) = Au) |:(-Aa(z)v(f)) + > (3"_1a(t)U2(f) + Us(t)) :| . (3.5)

(This time there is no contribution involving(z) sinceni’a(t) is annihilated by4,).)
Note that the first term on the right is linearinand the second term is higher order.
The main contribution will come from the linear term, and it is this that we must work
hardest to control.

To control the term involving(¢), first note that

f (m(t) = a0y, dx = 0

which holds for allz. Differentiating this equation in, one obtainsi () (||, ||§ —
(v,m})) = — [(dm/dr)m],. Thus, we have

SFY
/(—) m,dx
ém
as long ag||v||2 is sufficiently small that(||n‘1;||§ - (v,n‘ag)) > 1/2. Sincem’ has
exponential decay, this gives us the bounds we will need to control the effects of the

terms involvinga(t), as we will see below. The non-linear terms are easily handled
without any preparatory analysis.

< 2JZ(m@)|m"l2, (3.6)

la(n] =2
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We now turn to the linear part, which will provide all of the most important terms.
Consider the growth of (t) whenv evolves according to the linearized equation

%v = (Av)". (3.7)

The computations that follow can be more clearly and compactly represented if we
introduce the notation

£ =x(Av) and n=Av. (3.8)
Lemma 3.1. Letwv(x, t) solve(3.7), and lety (¢) be defined in terms afthrough(3.3).
Then for anyx > 0,

d
GV0= (12+ o

o
+ (24 S162VHIE + 22 VI .,

1+40viey, ,
—— | ()
(3.9)

wheren = Av.

Proof. Let V be the potential defined in (1.15). Then one easily computes the commu-
tators

[iA} =V and [x,A4] = Zi. (3.10)
0x 0x

Clearly,

ElP(t) = 2/ x2 (Av) A (Av)” dx.
dr R

Now one commutes derivatives and multiplesxopast.A and integrates by parts to
obtain a dissipative term of the form [ x (Av)’ A (x (Av)’) dx into which positive
terms can be absorbed.

The result, in the notation (3.8) , is that

d
3 VO = =206, A8) — 4E ") — A, An') — 200, 22V "),

The last three terms require further manipulation. First:
1

Eny=—EnY=—n" 0"y = (', n) = —§<n’, n').

This termis controlled by the derivative of the excess free energy. Second, one has, using
(3.10)

(xn, Any = (n, Ag) + 2(n, ") = (n, A§) — 2(n’, n).

Finally, for anya > 0,

1 o
', x®V'n) < (', Y22V, 2V 2 < o5 1+ Ell(sz/)llio(n, n).
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Putting everything together, one obtains:

d 1
d—W(t) < —2(8, A&) — A&, An) + (10+ —) ')+ gll(sz/)Hgo(U, n.
t 20 2

Now one uses that
—2(8, A&) — A&, An) = =2(¢€ +n), A& + ) + 2(n, An). (3.11)

But (n, An) = (n',n') + (n, V) + (. n) < (', ') + IVIlalnll + (n, m), and

1
I3 < 20" I2lnll2 < &W, n') + a(n, ).

Altogether

(n. An) < <1+ v ”1) W) + A+ all VI 0. ). (3.12)

Putting (3.12) into (3.11) gives the resulto
Lemma 3.2.
(m,n) < (', n) + (v, Av).

Proof. By Schwarz, for any > 0,

o 1
(n, ) = (AY?n, AY20) < (n, Ap)Y2 (v, Av)Y2 < o (1 An) + (v, Av),

and(n, An) < @, 7Y + IV + Llloo{n, n). Since||V + 1| = 1, we can choose = 1
and combine the above to obtain the resuth

Proof of Theorem 1.5zirst, we deal with the inhomogenous terms involvir{g) on the
rightin (3.4) , as they contribute to

‘/ a(,)v (Aa(,)v) dx .

By symmetry and the Schwarz inequality, we have that

’3 f (Aawyv) 2t dx
R

Now applying (3.6) , the contribution of the term involviag) is bounded above by

()] < Bl a2 2010l 20a (0)].

6ll Ay 2ria(o |20V l1217. ) 23/ Z(m (1)).

It is here that we begin using the hypothesis thdt)| < 1. The exponential decay of
n_z;(t) would not give a bound omAa(,)xznﬁ’a(I) |2 that is uniformire if |a(z)| gets large.
Since this is precluded by the hypotheses, forany 0, there is a universal constant
K, so that

‘ / Aa(ryv) ity X |a<z)|<—z<m<r>)+a||v||2 (3.13)
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Note that the firstterm on the rightin (3.13) can be absorbed into the negative contribution
from the inclusion of the multipl€ of the excess free energydn at least ifC is chosen
appropriately large. Therefore, since we can talabitrarily small, and can bound of
||v||% in terms of the excess free energy by Lemma 1.3, this term is under control.

One even more easily handles the contributions of the nonlinear terms in (3.5) using
the bound| v||§o < 2||v|l2]|v’||2. We do not give the details here, but turnto the application
of the lemmas from this section to control the contribution from the linear terms.

To apply Lemma 3.1, chooseso that

Q202 €
(2+ 162V +2alVin) =2(1+ 7).
Then, for this choice o&, and using the notation from (3.8) ,

1+4|Via

d
Gv0= <12+ o

/ / €
Joroe2(1e ) mn. @)
Next, by Theorem 1.4,

d
g CF @ +v) = Fem] = -C(1- e)(n',n').

Therefore, if we choos€ so thatC(1 —¢€) > (12+ (1 + 4| V|1)/(2x)), we get
d €
200 =2(1+ ) (n.n).

It remains to bounq|n||§. There are two cases. First suppose that the dissipation is
small compared to the excess free energy so that (1.18) holds. Then by Theorem 2.3,
113 < (1+€)(v, Av), and then by Lemma 1.37|3 < (1 + €)3[F(m(1)) — F(m)],
for § andx sufficiently small. Redefining, we have proved (1.22) under the hypothesis
(1.18).

If we don’t assume (1.18), we use

I3 = @', 0") + ((V + D, n) < [V l|l2yZm () + I[vli2lin]l2

sincelv+1]lo = 1. Thisleadstdnl|3 < (2/y)Z(m(r))+4]v|13, wherey is the constant

in Theorem 1.4. Again, the term involviri(m (¢)) can be absorbed by an appropriate
choice ofC. The remaining term is easily handled by Lemma 1.2 and Lemma 1.3, and
so (1.23) is established.o

4. Proof of the Main Theorem

We will be brief in the presentation of this proof since from this point on, it is very close
to the one we have given for the LOP equation in Sect. 4 of [5].

Let m(¢) be a solution of (1.5) with initial data as specified in Theorem 1.1, where
the size ofs is to be specified in the course of the proof. The first step is to wait a bit
to acquire some smoothness. For any fixed 0, if initially |v|2 < §/4, wheres is
sufficiently small, we will have thatv(1)|]2 < §/2 and|v'(1)|2 < «/2, and moreover
la(1)| will be small. Regularity theory fan () can be found in [3]. Also, the production
of smoothness estimates in Sect. 2 of [5] are easily adapted to this case to see the validity
of the above assertion.
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We now begin the analysis from this starting point. All of the lemmas and theorems
that requiredjv(D)|2 < &, |[V/(D)]2 < «, and|a(1)| < 1 can be used until tim&,
which is the first time that any of them is violated. Of course, we have to show that such
atimeT never occurs.

Let f(¢r) and¢ (¢) be given in terms ofz(¢) as in the introduction.

We begin by assuming that at timg(1.18) holds. Then by Theorem 1.4,

%fa)s—u—emuuﬂ@

By convexity [ (Av)' |3 > [[(Ap * v)'||3, wherep = (1/2)m’, which is a probability
density. Because is orthogonal ton’, p x v(a(t)) = 0. Therefore, by the constrained
uncertainty principle (1.24) ,

9 I1Ap * v][3
ICAWIE > 1(Ap *v)I5 > 5 G —a() (A,oz* v 5
2

Now under the condition (1.18) is so smooth and spread out that ~= v, and we do
not lose much in passing fromto p * v. The estimates are straightforward, making use
of (3.10) , and are exactly like those applied on pp. 868—869 of [5]. Without repeating the
details, the result is thdtAv)'[|3 > (9/4 (1 — €)? (A x vl|3) / (II(x — a(@®)) (Av) [I3)
and hence that, with redefined, and making use of Lemma 1.3,

d 0!

— 1) < ,

al = o
where we have used the fact thatr)| < 1 to absorb the effects af) into the constant
term.

By Theorem 1.5, we have that

d
3?0 = AL+ f@).

Hence for such, we have (1.30) satisfied with/(A + B) arbitrarily close to 913.
Now suppose that (1.19) holds. Then we have

d -
2O =Bf®

from the second half of Theorem 1.5, whéés the constank given there. From (1.19)

R0
—f(t) < —e1f(t) < AL—2 4.1
f (1) = —e1f (1) < 50 (4.1)

whereA can be chosen as large as we like proviged is sufficiently small. Thus with
8 chosen sufficiently small, as long dsr) <9 holds, we haveq?) and can arrange
for it to hold with a value ofA so thatA/(A + B) = A/(A + B). Thus, by rescaling
the time in those time intervals in which (1.19) holds; i.e., possibly using a slower clock
there, we have a system holding for allThe details of this argument are exactly as in
Sect. 5 of [5].

One now concludes that as longla$)| < 1, [v(®)]l2 < § and|[v'()]2 < &, f(?)
decays at a rate close t06%13 (using the slower of the two time scales). Therefore, as
in [5], la(®)] < 1, lv@®)]l2 < § and]||v/(t)]|2 < « hold for all ¢, and sof (r) decays all
the way to zero at a rate closet0”13, as in Theorem 1.1. As explained at the end of
Sect. 1 of this paper, this means thjatv(¢)||1 decays to zero at an algebraic rate, and
that this forces lim., » a(t) = a, wherea is given by the conservation law.
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