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Abstract

We consider, in a D−dimensional cylinder, a non–local evolution equation that describes

the evolution of the local magnetization in a continuum limit of an Ising spin system with

Kawasaki dynamics and Kac potentials. We consider sub–critical temperatures, for which there

are two local spatially homogeneous equilibria, and show a local nonlinear stability result for

the minimum free energy profiles for the magnetization at the interface between regions of these

two different local equilibrium; i.e., the planar fronts: We show that an initial perturbation of

a front that is sufficiently small in L2 norm, and sufficiently localized yields a solution that

relaxes to another front, selected by a conservation law, in the L1 norm at an algebraic rate

that we explicitly estimate. We also obtain rates for the relaxation in the L2 norm and the rate

of decrease of the excess free energy.
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1 Introduction and main results

We consider the nonlocal and nonlinear evolution equation

∂

∂t
m(x, t) = ∇ ·

(
∇m(x, t)− β(1−m(x, t)2)(J ?∇m)(x, t)

)
x ∈ R× Λ,

m(0, x) = m0(x), m0(x) ∈ [−1, 1] (1.1)

in the D−dimensional cylinder R×Λ where Λ is a (D− 1)-dimensional torus of side-length L > 1,

(equipped with the periodic Euclidean metric), β > 1, ? denotes convolution, and J is smooth,

spherically symmetric probability density on RD with compact support. We assume, without loss

of generality, that the support of J is contained in a ball of radius 1. In the following we set

d = D − 1.

This equation first appeared in the literature in a study [12] of the dynamics of Ising systems

with a long–range interaction and so–called “Kawasaki” or “exchange” dynamics. In this physical

context, m(x, t) is the magnetization density at x at time t, viewed on the length scale of the inter-

action J, and β is the inverse temperature. The derivation of (1.1) from the underlying stochastic

dynamics with x taking values in a torus T d is done in [9]. Equation (1.1) has been object of several

studies that shall be quoted later.

Our investigation in this paper turns on the fact that the equation (1.1) can be written in a

gradient flow form: Introduce the Gates-Penrose-Lebowitz free energy functional F defined

on all measurable functions from R× Λ by

F(m) =

∫
R×Λ

[f(m(x))− f(mβ)]dx+
1

4

∫
R×Λ

∫
R×Λ

J(x− y)[m(x)−m(y)]2dxdy (1.2)
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where f(m) is

f(m) = −1

2
m2 +

1

β

[(
1 +m

2

)
ln

(
1 +m

2

)
+

(
1−m

2

)
ln

(
1−m

2

)]
. (1.3)

For β > 1, this potential function f is a symmetric double well potential on [−1, 1]. We denote the

positive minimizer of f on [−1, 1] by mβ. It is easy to see that mβ is the positive solution of the

equation

mβ = tanh(βmβ).

The functional (1.2) is well defined on the set of measurable functions from R×Λ to [−1, 1], although

it might be infinity. The equation (1.1) can be written in the gradient flow form

∂

∂t
m = ∇ ·

[
σ(m)∇

(
δF
δm

)]
(1.4)

where the mobility σ(m) is given by

σ(m) = β(1−m2). (1.5)

From this it follows, at least on a formal level, that F is decreasing along the flow described by

(1.1): The formal Frechet derivative of the free energy
δF
δm

is

δF
δm

=
1

β
arctanh(m)− J ? m, (1.6)

and thus, one formally derives

d

dt
F(m(t)) = −

∫
R×Λ

∣∣∣∣∇( δFδm
)∣∣∣∣2σ(m(t))dx =: −I(m(t)) . (1.7)

Based on this calculation, one might hope that F would be a Lyapunov function governing the

approach of solutions of (1.1) to a minimizer of F .

The global minimizers of F are of course the two constant profiles m(x) = mβ and m(x) = −mβ

for all x in the cylinder R × Λ. Here we study a more interesting class of profiles m under the

constraint that m(x) is very close to −mβ far to the left in the cylinder, and is very close to mβ

far to the right in the cylinder.

More precisely, let us write x = (x1, x
⊥
1 ) where the first coordinate x1 runs along the length of

the cylinder, and x⊥ along the cross section Λ. Consider the class C of measurable functions m

from R× Λ to [−1, 1] such that for almost every x⊥1 ∈ Λ,

lim
x1→−∞

m(x1, x
⊥
1 ) = −mβ and lim

x1→∞
m(x1, x

⊥
1 ) = mβ .

The minimizers of F over C can be expressed in terms of the minimizers of a simpler functional

of one dimensional profiles. More specifically, in [8] is was shown that there exists a unique function

m0(·), such that

F1(m0) = inf

{
F1(m)

∣∣∣∣ sgn(x1)m(x1) ≥ 0, lim
x1→±∞

sgn(x1)m(x1) > 0

}
, (1.8)



CO 3-4-2012 4

where F1 is is the functional

F1(m) =

∫
R

[f(m(x1))− f(mβ)]dx1 +
1

4

∫
R

∫
R
J(x1 − y1)[m(x1)−m(y1)]2dx1dy1,

and

J(x1) =

∫
Λ
J(x1, x

⊥)dx⊥. (1.9)

Furthermore it is shown that m0 is an odd, C∞(R), increasing function, and

0 < m2
β −m2

0(x1) ≤ Ce−α|x1| ,
0 < m′0(x1) ≤ Ce−α|x1| ,
0 < |m′′0(x1)| ≤ Ce−α|x1| ,

for positive constants C and α depending on J and β. The first two of these estimates are proved

in [8] and the third one in [6]. A review of these and related results can be found in Chapter 8 of

the book [13]. The subscript 0 on the minimizer refers to the fact that the constraint imposed in

(1.8) breaks the translational invariance of the free energy. For any a in R, define

ma(x) = ma(x1, x
⊥
1 ) = ma(x1) = m0(x1 − a), x ∈ R× Λ. (1.10)

Clearly

F(ma) = F(m0),
δF
δm

(ma) =
1

β
arctanh(ma)− J ? ma = 0. (1.11)

Thus the profiles ma are at least critical points of the free energy F in the class C. Since they

are built out of minimizing one dimensional profiles, it is natural to guess that they are in fact

minimizers in C. This has been proved by Alberti and Bellettini [1], who showed moreover that

every minimizer of F in C is of this form. The functions in this one parameter family of minimizers

of the free energy ma, a ∈ R, are the stationary solutions of (1.1) whose stability is to be investigated

here.

Because the free energy is reflection invariant, there is also another family, obtained by reflecting

the previous one. However, these two families of minimizers are well separated in all of the metrics

in which we shall work, and it suffices to consider only one of them.

We shall be concerned here with the evolution of small perturbations of m from m0, and their

relaxation to ma for some a under the dynamics introduced above. We shall show that if the

perturbation is suitably small, then this happens, and moreover, we shall find the value of a, and

estimate the rate of convergence.

The equation (1.1) not only has a Lyapunov function; it has a conservation law as well: For

times t in any interval on which m(x, t)− sgn(x1)mβ is integrable,

d

dt

∫
R×Λ

(
m(x, t)−mb(x)

)
dx = 0

for any b. Therefore, if one defines a in terms of the initial data m0 for (1.1) by∫
R×Λ

(
m(x, 0)−ma(x)

)
dx = 0 , (1.12)
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one has for the solution ∫
R×Λ

(
m(x, t)−ma(x)

)
dx = 0

for all t or at least all t such that m(s, x)− sgn(x1)mβ is integrable for all s ≤ t.
Now, formally invoking the Lyapunov function and the conservation law, it is easy to guess the

result of solving (1.1) for initial data m0 that is a small perturbation of the front m0: The decrease

of the excess free energy “should” force the solution m(t) to tend to the family of fronts, and the

conservation law “should” select ma as the front it should be converging to, so the result “should”

be that

lim
t→∞

∫
R×Λ
|m(x, t)−ma(x)|dx = 0

with a given in terms of the initial data m0 through (1.12).

There is a fundamental obstacle in the way of this optimistic line of reasoning: Consider a very

small ε > 0 and consider

m(x) := m0(x) + ε1[ε−3/2,2ε−3/2](x1) .

Then it is very easy to see that

F(m)−F(m0) = O(ε1/2) while inf
a∈R
‖m−ma‖1 = O(ε−1/2) .

That is, perturbations of a minimizer with extremely small excess free energy can be very far from

any minimizer in the L1 norm: If the only information on the evolution that one had was that

the excess free energy was decreasing to zero, one could not rule out the possibility that the L1

distance to the nearest minimizer might be increasing to infinity. As we shall see, all profiles m

with small excess free energy and a large L1 distance to the nearest minimizer are very delocalized

perturbations of minimizers, spread out on a very large scale, as in the example we have given.

To rule this out, we have to assume moment conditions that prevent our perturbations from being

too delocalized at the beginning, and then we must work to show that this localization does not

deteriorate too rapidly. This accounts for the moment conditions in the theorem stated below.

These moment conditions are essential for bounding the rate of convergence; a small initial excess

free energy is not enough.

In the following, whenever there is no ambiguity, we denote by ‖u‖p the Lp(R×Λ) of a function

u. If u ∈W s,2(R×Λ), s ∈ N, the space of functions u ∈ L2(R×Λ) whose distributional derivatives

of order ≤ s are in L2(R× Λ), we denote by ‖u‖W s,2 =
∑
|α|≤s ‖Dαu‖2 its norm.

We have the following main result.

1.1 THEOREM. Let m(t) be the solution of equation (1.1) in the D-dimensional cylinder R×Λ,

D ≤ 3, and with initial data m0 such that∫
R×Λ

x2
1(m0(x)−m0(x))2dx ≤ c0 ,

where c0 is any positive constant. Then for any δ > 0 there is a strictly positive constant ε =

ε(δ, c0, β, J, L) depending only on δ, c0, β, J and L such that for all initial data m0 with −1 ≤
m0 ≤ 1, and with ∫

R×Λ
(m0(x)−m0(x))2dx ≤ ε ,
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the excess free energy F(m(t))−F(m0) of the corresponding solution m(t) of (1.1) satisfies

F(m(t))−F(m) ≤ c2(1 + c1t)
−(9/13−δ) (1.13)

and

‖m(t)−ma‖1 ≤ c2(1 + c1t)
−(5/52−δ) (1.14)

where c1 and c2 are finite constants depending only on δ, c0, J , β and L and a is given by (1.12).

In D = 1 the same stability problem for the equation (1.1) was addressed in the papers [3] and

[4]. The strategy used in these papers was applied in [5] to show the local non-linear stability of

the interface solution for the Cahn-Hilliard equation, always in D = 1.

The method applied in D = 1 has been adapted in this paper to show local non-linear stability

of the interface solution of (1.1) when dimension D ≥ 2. To apply the previous strategy in D ≥ 2

one needs to control the transverse contribution of the perturbation to the planar fronts.

This is done by a suitable splitting of a function in R × Λ as the sum of two functions, one

depending only on x1 ∈ R and the other with mean zero in the direction orthogonal to x1. This

allows us to effectively decouple the problem into transverse and longitudinal parts, and to control

the gradient of the function in the transverse direction applying the Poincaré inequality.

The method is robust enough and it should allow to deal with nonlinear local stability problems

for other equations of Cahn-Hilliard type.

There are very few results in the literature regarding stability of the planar fronts in infinite

domain for equations of Cahn-Hilliard type. The only paper to our knowledge dealing with the

stability of the planar front for Cahn-Hilliard equation in RD, for D ≥ 3 is the paper by Korvola,

Kupianen and Taskinen [11]. They proved that the leading asymptotic of the solution is character-

ized by a length scale proportional to t
D−1
3 instead of the usual t

D
2 typical to parabolic problems.

In contrast to the one dimensional and to D− dimensional cylinder setting, considered in this

paper, they show that the translation of the front tends to zero as time tends to infinity. This is

because a localized perturbation is not able to produce a constant shift in the whole transverse

space RD−1. In our case, a perturbation of an equilibrium front need not return asymptotically to

the initial front. Indeed, there is no easy argument using only decrease of free energy to show that

the perturbation does not cause the front to “run away to infinity”. Our method provides a proof,

with quantitate estimates, on the size of the shift that can result as the perturbation is dissipated

way.

The restriction to D ≤ 3 is for reasons that are surely technical; the condition D ≤ 3 is used

only in proving certain regularity estimates that are required in our central arguments. Very likely

with more labor (and more pages), these could be proved in higher dimension as well.

To implement the heuristics discussed before the theorem is not so simple as one might hope.

There are several reasons for this. The first has to do with the relevant norms.

To explain the physical relevance of the L2 norm, we note that a 7→ ‖m−ma‖22 is strictly convex

whenever for some a ∈ R,

‖(m−ma)
′‖2 < ‖m′0‖2 .

Using this we show in Theorem 2.3 that under suitable smallness assumptions on m−ma for some
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a, there exists a unique b ∈ R so that

‖m−mb‖2 = inf
a∈R
{‖m−ma‖2} .

Further we show, see Lemma 8.1, that the excess free energy measures the distance to this closest

front in the L2 metric in the sense that

F(m)−F(mb) ' C‖m−mb‖22 (1.15)

under suitable smallness assumptions on m−mb.

We use the smoothing properties of (1.1) to obtain the condition on the derivative of m for all

t ≥ t0, for some finite t0 so that we can apply Lemma 8.1.

On account of (1.15), for any solution m(t) of (1.1), define a(t) to be that value of a such that

‖m(t)−ma(t)‖2 = inf
a∈R
{‖m(t)−ma‖2} (1.16)

and note that a(t) is a well–defined function as long as ‖m(t)−ma(t)‖2 stays sufficiently small since

then the minimum is uniquely attained. (We shall do all of our analysis in this paper for times t

in an interval (t0, T0) on which ‖m(t)−ma(t)‖2 does stay small, and then at the end we shall show

that T0 =∞.) Hence, if one proves that the excess free energy decreases to zero, the best one can

obtain from this is that

lim
t→∞
‖m(t)−ma(t)‖2 = 0.

However, this does not yield any information on a(t) – and it cannot by the translation invariance

of the free energy. The conservation law would give us information on a(t), but to use it we require

L1 control on m(·, t)−ma(t)(·). Since

‖m(·, t)−ma(t)(·)‖∞ ≤ 2

a–priori, L1 control would give us L2 control through

‖m(·, t)−ma(t)(·)‖22 ≤ 2‖m(·, t)−ma(t)(·)‖1

but not vice–versa. In order to use the conservation law to show that limt→∞ a(t) = a where a is

given by (1.12), we must, and shall, show that

lim
t→∞
‖m(·, t)−ma(t)‖1 = 0 .

Before discussing the L1 behavior of perturbations of fronts, we make the following convention,

to be used throughout the paper, whenever some solution m(x, t) is under discussion:

v(x, t) = m(x, t)−ma(t)(x) (1.17)

where a(t) is given in (1.16), and moreover

m(x) denotes ma(t)(x). (1.18)
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As explained above, we shall have to look into the details of the free energy dissipation I, see

(1.7), in order to understand whatever stability properties our equation may have. To begin this,

we write

I(m) =

∫
R×Λ

σ(m(x))

[
∂

∂x1

(
1

β
arctanhm(x)− (J ? m)(x)

)]2

dx

+

∫
R×Λ

σ(m(x))

[
∇⊥

(
1

β
arctanhm(x)− (J ? m)(x)

)]2

dx, (1.19)

where ∇⊥ is the gradient in the orthogonal direction of x1.

One result of the paper, Theorem 3.1, gives a lower bound on the rate of dissipation of the

excess free energy, whenever the dimension D ≤ 3. For any ε > 0,

d

dt

[
F
(
m(t))−F

(
m
)]

= −I
(
m(t)

)
≤ −(1− 3ε)

∑
i≥1

∫
R×Λ

σ(m)
[
(Bv(t))xi

]2
dx, (1.20)

where I
(
m(t)

)
is given in (1.19) and, recall (1.18), m̄ := m̄a(t). To get this result we need smooth-

ness estimates to hold for the solution m(t), in order to apply Sobolev inequalities. Namely (1.20)

holds when the ||v||W s,2 ≤ κ1(β, J, L, ε) and ||v||2 ≤ δ1(β, J, L, ε) for some strictly positive constants

κ1(β, J, L, ε) and δ1(β, J, L, ε), where ||v||W s,2 is the Sobolev norm, see in the Appendix, Lemma 8.4

and s > D
2 . We have quantitative estimates, see Theorem 2.2, of the derivative of all order of m(t)

only when D ≤ 3. This is the rather technical reason, noted above, for which we impose the

constraint on the dimension. The B in (1.20) denotes the second variation of the free energy F at

m. By our convention, m denotes ma(t), and while it is occasionally preferable to write Ba(t) to

make this explicit, we shall generally simply write B, and leave the dependence on a(t) implicit.

However, in recalling the definition, we shall be explicit:

〈u,Bau〉L2 =
d2

ds2
F(ma + su)

∣∣∣∣
s=0

. (1.21)

The properties of B that we shall use in our analysis are discussed in Section 3. Because of the

derivatives, the quadratic form on the right in (1.20) has no spectral gap. If it did, this together

with (1.15) would provide an exponential rate of decrease of the excess free energy, and hence of

‖v(t)‖2. Since there is no spectral gap here, one needs additional monotonicity, or at least a–priori

boundedness properties to exploit (1.20), as explained in [3] and [4]. In the study of parabolic

equations
∂u

∂t
= ∇ ·

(
D(u)∇u

)
, (1.22)

where D(·) is the diffusivity matrix for which there is also no spectral gap,

d

dt

∫
|u(x, t)|dx ≤ 0 (1.23)

which trivially provides the additional monotonicity required to show that

sup
t≥0
‖u(t)‖1 ≤ ‖u(0)‖1 .
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Then a standard argument with the Nash inequality allows one to conclude that ‖u(t)‖2 decreases

to zero at an algebraic rate, at least when the diffusivity D(·) in (1.22) is bounded from below.

This route is closed to us since the analog of (1.23) does not hold for v(t) when m(t) is a

solution to (1.1), see [3] and [4] for further details. Moreover, there are other problematic non-

dissipative features, the maximum principle fails to hold for (1.1) and the free energy is not Frechet

differentiable on the natural set of functions that is invariant under the evolution prescribed by

(1.1). Namely, recall (1.6), for any m with −1 ≤ m ≤ 1, J ? m is bounded, but arctanh(m) =

±∞ on {x | m(x) = ±1}. This means that some care must be taken with the use of the key

dissipativity property (1.7) whose formal derivation depends on this Frechet differentiability. Even

worse, however, is that the mobility (1.5) vanishes where m = ±1, and with it the local contribution

to the dissipation in (1.7).

One way to obtain bounds on the decay in the L1 norm is to apply a strong formulation of the

“uncertainty principle”; as done in [4].

We illustrate this in the case of the heat equation in the D− dimensional cylinder R×Λ. Recall

that we denote x = (x1, x
⊥
1 ), x1 ∈ R. Consider a solution u of the heat equation

∂

∂t
u(x, t) = ∆u(x, t), x ∈ R× Λ

with integrable initial data u0, and suppose that∫
R×Λ

u0(x)dx = 0.

We show in Theorem 2.1 of [4] that under the constraint∫
ψ(x1)dx1 = 0

one has (∫
x2

1|ψ(x1)|2dx1

)(∫
|ψ′(x1)|2dx1

)
≥ 9

4

(∫
|ψ(x1)|2dx1

)2

. (1.24)

Define

f(t) =

∫
R×Λ
|u(x, t)|2dx and φ(t) =

∫
R×Λ

x2
1|u(x, t)|2dx+ 1. (1.25)

One then computes that
d

dt
f(t) = −2

∫
|∇u(x, t)|2dx. (1.26)

d

dt
φ(t) = −4

∫
x1e1 · u(x, t)(∇u)(x, t)dx− 2

∫
x2

1|(∇u)(x, t)|2dx

≤ 2f(t). (1.27)

We would like, as it will be clear in the following, to write equations (1.26) and (1.27) in a closed

form, i.e. to write the right hand side of (1.26) in term of f(t) and φ(t). Denote

J(u(t)) =

∫
|∇u(x, t)|2dx.
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Since the dependence on t does not play any role in the following calculations, we do not write it

explicitly. Set

u(x) = v1(x1) + w(x)

where

v1(x1) :=
1

Ld

∫
Λ
u(x1, x

⊥)dx⊥, x1 ∈ R.

By construction ∫
Λ
w(x1, x

⊥)dx⊥ = 0, ∀x1 ∈ R. (1.28)

We have

J(u) =

∫
|∇u(x)|2dx =

∫
|ux1(x)|2dx+

∫
|∇⊥u(x)|2dx

=

∫
|v′1(x1) + wx1(x)|2dx+

∫
|∇⊥w(x)|2dx,

where v′1 is the spatial derivative of v1. Notice that, because of (1.28),∫
R×Λ

v′1(x1)wx1(x)dx = 0.

So we get

J(u) =

∫
R×Λ
|v′1(x1)|2dx+

∫
R×Λ
|wx1(x)|2dx+

∫
|∇⊥w(x)|2dx. (1.29)

Again by (1.28) we can bound from below the last term of (1.29) using the Poincaré inequality in

Λ. It states that for g ∈ L2(Λ) and ∇g ∈ L2(Λ)

c(d)‖g − g‖22 ≤ L2‖∇g‖22

where g = 1
|Λ|
∫

Λ g(x)dx and c(d) depends on dimensions.

Applying this for each x1 in (1.29), and using the fact that because of (1.28), w(x1) = 0, we

obtain

‖∇⊥w‖22 =

∫
R

dx1

∑
i≥2

∫
Λ

dx⊥|(w(x1, x
⊥))xi |2


≥ c(d)

L2

∫
R

∫
Λ
|w(x1, x

⊥)|2dx. (1.30)

To lower bound the first term of (1.29) we apply the uncertainty principle (1.24) as following:∫
R×Λ
|v′1(x1)|2dx ≥ 9

4
Ld

(∫
R |v1(x1)|2dx1

)2(∫
x2

1|v1(x1)|2dx1

)

=
9

4

(∫
R×Λ |v1(x1)|2dx

)2(∫
R×Λ x

2
1|v1(x1)|2dx

) . (1.31)
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Therefore, taking into account (1.30) and (1.31) we lower bound (1.29) as following:

J(u) ≥ 9

4

(∫
R×Λ |v1(x1)|2

)2
dx(∫

R×Λ x
2
1|v1(x1)|2dx

) +
c(d)

L2

∫
R×Λ
|w(x)|2dx

≥ 9

4

1(∫
R×Λ x

2
1|v1(x1)|2dx

)
+ 1

{(∫
R×Λ
|v1(x1)|2dx

)2

+
4

9

c(d)

L2

∫
R×Λ
|w(x)|2dx

}
.(1.32)

Notice that we obtained this estimate by dropping the contribution of the second term in (1.29),

i.e.
∫
R×Λ |wx1(x)|2dx. When dealing with equation (1.1) we shall need to keep this term to control

the non linearity. By orthogonality

‖u‖2L2(R×Λ) = ‖v1‖2L2(R×Λ) + ‖w‖2L2(R×Λ).

Therefore

‖u‖4L2(R×Λ) =
(
‖v1‖2L2(R×Λ) + ‖w‖2L2(R×Λ)

)2

= ‖v1‖4L2(R×Λ) +
(
‖w‖2L2(R×Λ) + 2‖v1‖2L2(R×Λ)

)
‖w‖2L2(R×Λ).

Suppose that (
‖w‖2L2(R×Λ) + 2‖v1‖2L2(R×Λ)

)
≤ 4

9

c(d)

L2
.

Therefore

‖u‖4L2(R×Λ) ≤ ‖v1‖4L2(R×Λ) +
4

9

c(d)

L2
‖w‖2L2(R×Λ). (1.33)

Further ∫
R×Λ

x2
1|v1(x1)|2dx ≤

∫
R×Λ

x2
1

[
|v1(x1)|2 + |w(x)|2

]
dx

=

∫
R×Λ

x2
1

[
|v1(x1) + w(x)|2

]
dx =

∫
R×Λ

x2
1|u(x)|2dx. (1.34)

Taking into account (1.25), (1.32), (1.33), (1.34) we have

J(u(t)) ≥ 9

4

f2(t)

φ(t)
.

Therefore, from (1.26) we get
d

dt
f(t) ≤ −9

2

f2(t)

φ(t)
.

Recalling (1.27) we get the system of differential inequalities,

d

dt
f(t) ≤ −Af(t)2

φ(t)

d

dt
φ(t) ≤ Bf(t) (1.35)
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with A = 9/2 and B = 2. Theorem 5.1 of [3] says that for any non negative solution of (1.35), the

following holds

f(t) ≤ f(0)1−qφ(0)q
(
φ(0)

f(0)
+ (A+B)t

)−q
φ(t) ≤ f(0)1−qφ(0)q

(
φ(0)

f(0)
+ (A+B)t

)1−q
(1.36)

where

q =
A

A+B
.

In the case at hand, this is

q =
9

13
.

Since this value exceeds 1/2, we get L1 decay in the following way: We prove in Section 6, Lemma 6.2

that for any function f , so that ‖(1 + x2
1)1/2f‖L2(R×Λ) is finite and for any 0 < δ < 1 we have

‖f‖1 ≤ C(δ, L)‖(1 + x2
1)1/2f‖(1+δ)/2

2 ‖f‖(1−δ)/22

where C(δ, L) is given explicitly in the lemma. Since 9/13 > 1/2 for δ sufficiently small, we have

that ‖(1 + x2
1)1/2u(t)‖(1+δ)/2

2 , see (1.36), increases more slowly than ‖u(t)‖(1−δ)/22 increases, and so

‖u(t)‖1 decreases to zero. In fact, the rate one gets for ‖u(t)‖1 is arbitrarily close to t−5/13, for

δ sufficiently small. Actually, one can do better for the heat equation. One can obtain, as in [3],
d
dtφ(t) ≤ 3

2f(t) (we have 2 in (1.27)). Then B = 3
2 and the rate one gets for ‖u(t)‖1 is arbitrarily

close to t−
1
4 , for δ sufficiently small.

The previous argument presented for the heat equation can be implemented for equation (1.1).

We define

f(t) = F(m+ v(t))−F(m) and φ(t) = Ld +

∫
σ(m)x2

1|Bv(x, t)|2dx ,

where v as in (1.17) and B as in (1.21). We could estimated the time derivatives of these quantities

obtaining bounds of the form given in (1.35), but with inexplicit constants A and B.

Now, the rate of decay that one gets by this method depends very much on the ratio of the

constants A and B in (1.35). To get L1 decay, we need this ratio to be fairly close to the ratio 9/13

obtained for the heat equation.

We do this by exploiting the following alternatives: for any ε1 > 0, at any time t, one has either

I(m(t)) ≤ ε1
[
F(m(t))−F(m)

]
, (1.37)

or

I(m(t)) ≥ ε1
[
F(m(t))−F(m)

]
, (1.38)

where I is the dissipation functional (1.7).

We prove in Section 4 that for any ε > 0, there are strictly positive constants δ0(β, J, L, ε),

κ0(β, J, L, ε) and ε1(β, J, L, ε) depending only on β, J , L and ε, such that for all t for which (1.37)

is satisfied together with ||v(t)||W s,2 < κ0, s > D
2 , ||v(t)||2 < δ0 and |a(t)| ≤ 1, it is the case that

d

dt

[
F
(
m(t))−F

(
m
)]
≤ −9(1− ε)(1− σ(mβ))2

[
F
(
m(t))−F

(
m
)]2

φ(t)
.
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We then show in Section 5 that under the same assumptions of Section 4, it is the case that

d

dt
φ(t) ≤ (1 + ε)4(1− σ(mβ))2

[
F(m+ v)−F(m)

]
.

Notice the condition that |a(t)| ≤ 1, to which we shall return. Thus, when (1.37) holds, we have

d

dt
f(t) ≤ −Ãf(t)2

φ(t)

d

dt
φ(t) ≤ B̃f(t) (1.39)

with the difference between Ã/B̃ and 9/13 arbitrarily small for ε small enough for all times t such

that ‖v(t)‖2, ||v(t)||W s,2 , s > D
2 , are sufficiently small and |a(t)| ≤ 1.

On the other hand, when (1.37) is violated and (1.38) holds, the dissipation is large, and this

works in our favor. In Section 6, we exploit this alternative to prove Theorem 1.1. The proof is

still somewhat intricate, and it would have been simplified had we been able to show the existence

of a time t? such that (1.37) holds for all t ≥ t?. If this were the case, the constants Ã and B̃ above

would govern the decay, and we would obtain a bound on the excess fee energy of the form[
F(m(t))−F(m)

]
≤ C(1 +A(1− σ(mβ))2t)−q

where A does not depend on β. Since (1 − σ(mβ))2 vanishes as the critical temperature is ap-

proached, this would indicate how the rate of relaxation slows in this limit. In any case, our results

do show that it is possible to estimate the exponent in the rate of relaxation independently of β.

To explain why (1.37) enables us to obtain what are essentially heat equation constant in (1.39),

one has to view it as a smoothness condition. Indeed, it follows from Theorem 3.1 that

(1− ε)σ(mβ)‖|∇(Bv)|‖22 ≤ I(m+ v)

for any ε, under appropriate conditions on v. Hence, by Lemma 8.1 which compares ‖Bv‖22 and the

excess free energy of m+ v, when (1.37) holds,

‖∇ (Bv) ‖22 << ‖Bv‖22 .

Next, the action of B on functions w that satisfy

‖∇w‖2 << ‖w‖2
is particularly simple: As shown in Lemma 8.3 in the appendix,

Bw ≈ α̃w

where α̃ = 1/σ(mβ)− 1. Once one may replace B with multiplication by α, the linearized version

of (1.1) does become essentially the heat equation. This discussion is heuristic, but in no way

misleading, and hopefully motivates the technical preliminaries in Section 2.

Before turning to Section 2 we state the notations which will be used in the following sections.

For a function f(·, t), of one spatial variable and time t, we denote by f ′(·, t) and f ′′(·, t) the first

and the second derivative with respect to the spatial variable. We will denote by ḟ(·, ·) the time

derivative. Further, we will denote by C = C(β, J, d) a positive constant which depends only on

these quantities and which might change from one occurrence to one other.

Acknowledgments. Enza Orlandi acknowledges the hospitality of the Fields -Institute, Toronto

(CA), where this paper has been completed.
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2 Smoothing estimates and differentiability of the free energy

In this section we state some technical results upon which our analysis in the following sections

depends.

It is not hard to show that classical solutions of our equation exist and are unique by adapting

to our non-local equation standard fixed-point arguments for semi-linear equations, and it is easy

to see from a maximum principle argument that these classical solutions satisfy |m(x, t)| ≤ 1 for

all x and t since the non-local drift term vanishes wherever m(x, t) = 1.

The integration by parts leading from (1.4) to (1.7) is problematic if m(x, t) is not bounded

away from ±1. Therefore, fix 0 < λ < 1, which we shall take increasing to 1 shortly, and consider

the function t 7→ Fλ(λm(t)) where m solves our equation, and where Fλ differs from F be having

the term [f(m) − f(mβ)] in the integrand in (1.2) replaced by [f(m) − f(λmβ)], and where f is

given by (1.3). With this definition, Fλ(λm) is finite whenever F(m) is finite.

There is no trouble integrating by parts in
d

dt
Fλ(λm(t)) for any t > 0, as long as ∇m is square

integrable, and hence we find

d

dt
Fλ(λm(t)) = λ

∫
R×Λ

[
1

β
arctanh(λm)− λJ ? m]∇ · [∇m(t)− σ(m)∇J ? m(t)]dx

= −λ
∫
R×Λ

[
λ

β

|∇m(t)|2

1− λ2m2(t)
− λ 1−m2(t)

1− λ2m2(t)
∇m · ∇J ? m(t)− λ∇m · ∇J ? m+ λσ(m)|∇J ? m(t)|2

]
dx

= −λ2

∫
R×Λ

[
1

β

|∇m(t)|2

1− λ2m2(t)
− 1−m2(t)

1− λ2m2(t)
∇m · ∇J ? m(t)−∇m · ∇J ? m+ σ(m)|∇J ? m(t)|2

]
dx.

Therefore,

Fλ(λm(0)) ≥ Fλ(λm(t))+

λ2

∫ t

0

∫
R×Λ

[
1

β

|∇m(t)|2

1− λ2m2(t)
− 1−m2(t)

1− λ2m2(t)
∇m · ∇J ? m(t)−∇m · ∇J ? m+ σ(m)|∇J ? m(t)|2

]
dx .

Now a simple argument with Fatou’s Lemma shows that

I(m(t))

≤ lim inf
λ→1

∫
R×Λ

[
1

β

|∇m(t)|2

1− λ2m2(t)
− 1−m2(t)

1− λ2m2(t)
∇m · ∇J ? m(t)−∇m · ∇J ? m+ σ(m)|∇J ? m(t)|2

]
dx ,

and that

F(m(t)) ≤ lim inf
λ→1

Fλ(λm(t)) .

On the other hand, for m(0) strictly and uniformly bounded away from ±1, it is easy to show that

F(m(0)) = lim inf
λ→1

Fλ(λm(0)) .

Thus, one obtains for every classical solution such that |∇m(x, t)|2 is integrable in x for each t, and

which has initial data strictly and uniformly bounded away from ±1 that

F(m(t)) +

∫ t

0
I(m(s))ds ≤ F(m(0)) . (2.1)
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In Section 7 we shall prove that classical solutions whose initial data is a small L2 perturbation

of an instanton do have square integrable gradients for all positive times. Note that even if the

gradient of m(t) is square integrable for all t, it is still possible for I(m(t)) to be infinite, though

by (2.1), the set of such t must be a null set.

In what follows, we shall need to integrate by parts frequently, and it will be convenient to

use the energy dissipation relation with equality in place of the inequality in (2.1). Our main goal

in this section is to explain results showing that if the initial data is a small perturbation of an

instanton in the L2 norm, then, after waiting a short time t0 later, the solution is regular and

is a small perturbation of the instanton in Sobolev norms that guarantee that it is also a small

perturbation in the L∞ norm. Thus if we wait a short time, starting from initial data that is a

sufficiently small L2 perturbation of an instanton, the solution m(t) will be strictly bounded away

from ±1, at the very least on an open interval to the right if t0, and then we no longer need the

λ-regularization used above: We can simply integrate by parts to rigorously obtain the identity

(1.7). Moreover, we shall know that F(m(t0)) is still bounded by F(m(0)). We shall also show that

the moment bounds on the initial data in our main theorem are effectively propagated forward to

time t0.

Therefore, the results in this section permit us throughout the rest of the paper to restrict our

attention to the behavior of the free energy functional F on the set of profiles

M = {m : | ‖m‖∞ < 1 and ‖m− m̄‖2 <∞}, (2.2)

equipped with the the metric d(m1,m2) = ‖m1 − m2‖∞ + ‖m1 − m2‖2. Note that this is not a

subset of L∞ ∩ L2 since profiles in M are never square integrable. However, M is open in this

metric topology, and F is Frechet differentiable onM, and for any differentiable curve m(t) inM,

one has
d

dt
F(m(t)) =

∫
R

δF
δm

∂

∂t
m(t)dx ,

where
δF
δm

=
1

β
arctanh(m)− J ? (m).

The convolution term satisfies ‖J ? m‖∞ ≤ 1, but on any set where m = ±1 we have

arctanhm = ±∞ .

The following theorem summarizes our discussion so far in this section, except for the fact that

it remains to be proved that, as claimed, the conditions on the initial data do indeed ensure square

integrability of the gradient. This is done in Section 7.

2.1 THEOREM. There is a δ > 0 such that for all initial data m0 in M with F(m0) < ∞ and

‖m0 − m̄a‖2 < δ, some a ∈ R, the corresponding solution m(x, t) of equation (1.1) satisfies

F(m(0)) ≥ F(m(t)) +

∫ t

0
I(m(s))ds for all t > 0

where

I(m) =

∫
R×Λ

σ(m)

(
∇ δF
δm

)2

dx,

is the quantity defined in (1.19). In particular, F(m(t)) is monotonically decreasing.
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The proofs of many the results established in this paper depend on certain smoothing prop-

erties of the evolution (1.1). The required a–priori smoothing estimates are summarized in the

following theorem which holds only when D ≤ 3. The constraint on the dimensions depends on the

application of Sobolev estimates to control the L∞ norm of the gradient of v, see Lemma 7.5.

2.2 THEOREM. Let D ≤ 3 and m(t) be any solution of (1.1). Let ε > 0, t0 > 0 and k ∈ N be

given. Then there is a δ = δ(ε, t0, k) > 0 and T0 such that provided

‖m(t)− m̄a(t)‖22 ≤ δ for all t ≤ T0 ,

then
k∑
j=0

‖(−∆)j/2[m(t)− m̄a(t)]‖22 ≤ ε for all t0 ≤ t ≤ T0

and also such that

‖x1(m(t)− m̄a(0))‖22 ≤ 2‖x1(m(0)− m̄a(0))‖22 .

The proof is based on several intermediate results and it is given in Section 7.

Next we prove that a(·) is differentiable and estimate ȧ(·).

2.3 THEOREM. Let m be a solution of (1.1). Then there is a δ0 > 0 so that whenever

inf
a∈R
{‖m(t)− m̄a‖2} < δ0 (2.3)

there is a unique value a(t) at which the infimum in (2.3) is attained. Moreover, for any κ > 0,

there is a δ1(κ, β, J) such that whenever ‖v(t)‖W s,2 ≤ κ for s > D
2 and ‖v(t)‖2 ≤ δ1, a(t) is

differentiable and

|ȧ(t)| ≤ D(κ, β, J)‖v(t)‖2

where D(κ, β, J) is a constant depending only on κ, β and J .

Proof: Let a(t) be any minimizer in (2.3). Clearly there is at least one and what we must show is

that there is exactly one. Define d(b) = ‖m(t)− m̄b‖2L2(R×Λ). We have

d′(b) = 2

∫
R×Λ

[m(t, x)− m̄b(x1)]m̄′b(x1)dx, (2.4)

and

2

∫
R×Λ

m̄b(x1)m̄′b(x1)dx = 0.

Further deriving (2.4) and recalling that m(t) = m̄a(t) + v(t) we have

d′′(b) = −2

∫
R×Λ

m(x, t)m̄′′b (x1)dx = −2

∫
R×Λ

[m̄a(t)(x1) + v(t, x)]m̄′′b (x1)dx

= 2

∫
R×Λ

m̄′a(t)(x1)m̄′b(x1)dx− 2

∫
R×Λ

v(x, t)m̄′′b (x1)dx.
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Hence,

d′′(b) ≥ 2

∫
R×Λ

m̄′a(t)(x1)m̄′b(x1)dx− 2δ0‖m̄′′b‖L2(R×Λ) .

But by continuity, ∫
R×Λ

m̄′a(t)(x1)m̄′b(x1)dx >
1

2
‖m̄′b‖2L2(R×Λ)

on some interval (a(t)− c, a(t) + c) for some c depending only on β and J . Therefore, choose

δ0 ≤
‖m̄′b‖2L2(R×Λ)

4‖m̄′′b‖L2(R×Λ)

and it follows that d′′(b) > 0 on (a(t)− c, a(t) + c), and hence there is exactly one critical point of

d(b) on (a(t)− c, a(t) + c). However, if b is any value with

‖m(t)− m̄b‖L2(R×Λ) = ‖m(t)− m̄a(t)‖L2(R×Λ)

it follows that

‖m̄b − m̄a(t)‖L2(R×Λ) ≤ 2‖m(t)− m̄a(t)‖L2(R×Λ) ≤ 2δ0 .

But there is a constant C depending only on β and J so that

‖m̄b − m̄a‖L2(R) ≥
(b− a)2

C + (b− a)2

and thus,

Ld
(b− a)2

C + (b− a)2
≤ ‖m̄b − m̄a‖L2(R×Λ) ≤ 2δ0 .

Decreasing δ0 if necessary, one can ensure that |b − a| < c. Hence any putative second minimum

must occur within (a(t)− c, a(t) + c) where there is only the single critical point a(t). Hence there

is no other minimum. This proves that a(t) is a well–defined function under the condition (2.3).

To show that a(t) is continuously differentiable, we use the Implicit Function Theorem. Define

f(a, t) :=

∫
R×Λ

(m(t, x)− m̄a(x1))m̄′a(x1)dx .

This is a C1 function on R2, and in fact even C2. By what we have proved above, for each t, there

is exactly on a(t) so that f(a(t), t) = 0, and at no such point does the gradient of f vanish, since

the a-component of this gradient is non-zero. Hence, by the Implicit Function Theorem, the curve

t 7→ (a(t), t) is continuously differentiable. Moreover, since this curve is the graph of the function

t 7→ a(t), we have that a(t) is continuously differentiable, as claimed.

We now bound |ȧ(t)|. Differentiating f(a(t), t) = 0 in t, one obtains

ȧ(t)
(
‖m̄′a‖2L2(R×Λ) − 〈v, m̄

′′
a〉L2(R×Λ)

)
= −

∫
R×Λ

∂m

∂t
m̄′a(t) .

Taking into account (1.4) and integrating by part we have

−
∫
R×Λ

∂m

∂t
m̄′a(t) =

∫
R×Λ

σ(m)∇(
δF
δm

)e1m̄
′′
a(t)

=

∫
R×Λ

δF
δm
∇ · [σ(m)e1m̄

′′
a(t)]

=

∫
R×Λ

δF
δm

(m̄+ v)[σ(m)m̄′′a(t)]x1 .
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Assume that

‖v‖L2(R×Λ) ≤
1

2

‖m̄′a‖2L2(R×Λ)

‖m̄′′a‖L2(R×Λ)
.

We thus obtain

|ȧ(t)| ≤ 2

‖m̄′a‖2L2(R×Λ)

∣∣∣∣∫
R×Λ

δF
δm

(m̄+ v)[σ(m)m̄′′a(t)]x1

∣∣∣∣
≤ C(β, J)

2

‖m̄′a‖2L2(R×Λ)

‖[σ(m)m̄′′a(t)]x1‖L2(R×Λ)‖v‖L2(R×Λ).

Taking into account (1.11), we bounded the L2 norm of δF/δm(m̄ + v) by a constant times the

L2 norm of v whenever ‖v(t)‖W s,2 ≤ κ with s > D
2 and κ sufficiently small to guarantee that

‖v‖∞ ≤ (1−m2
β)/2.

3 Bound on the dissipation rate of the free energy in terms of the

dissipation rate for the linearized evolution

In this section we establish a bound on the rate I(m(t)) defined in (1.19) at which the excess free

energy F(m(t)) − F(m) is dissipated in terms of the dissipation rate for the linearized evolution,

see Theorem 3.1.

To state the main result of this section we need the following definitions. Denote by Ba, a ∈ R
the family of linear operators in L2(R× Λ),

Bav =

(
v

β(1−m2
a)
− J ? v

)
, (3.1)

where ma, a ∈ R is the planar front defined in (1.10). Denote, by an abuse of notation, m′a(x1) =
∂
∂x1

m̄a(x1, x
⊥
1 ). It is immediate to verify that

(Bam′a)(x) = 0, x ∈ R× Λ, (3.2)

m′a is therefore the eigenfunction corresponding to the zero eigenvalue. Further Ba is a selfadojnt

operator in L2(R × Λ) and Weil’s theorem, by the same argument used in [7] for the d = 1 case,

assures the existence of a gap in the spectrum: For v ∈ L2(R× Λ)∫
R×Λ

v(x)m′a(x1)dx = 0,

〈Bav, v〉L2(R×Λ) ≥ γ(L)‖v‖2L2(R×Λ), (3.3)

where γ(L) > 0. A quantitative argument given in [2] proves that γ(L) = a(β,J)
L2 . To our aims the

merely existence of a gap is enough. Denote by Aa, a ∈ R, the family of linear operator in L2(R)

Aav :=

(
v

β(1−m2
a)
− J ? v

)
, (3.4)
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where J is defined in (1.9). In [7] was shown that Aa has a gap γ0. The eigenfunction corresponding

to the zero eigenvalue is m′a(·). Then for all v ∈ L2(R) so that∫
R
v(x1)m′a(x1)dx1 = 0

〈Aav, v〉L2(R) ≥ γ0‖v‖2L2(R).

The operator Aa is defined in term of J̄ the one dimensional projection of J and the eigenfunction

corresponding to the zero eigenvalue is m̄′a(x1), x1 ∈ R. The operator Ba is the multidimensional

version of the operator Aa. Notice that the eigenfunction corresponding to the zero eigenvalue of

Ba, see (3.2), is the multidimensional version of the one of Aa. In the following we will drop the

subscript a if no confusion arises. We have:

3.1 THEOREM. Let D ≤ 3, m(·, t) be a solution of (1.1) and m(·, t) = ma(t)(·) + v(·, t) where

a(t) is chosen so that minimizes ‖m(t) − ma‖2L2(R×Λ). For any ε > 0 small enough, there is

δ1 = δ1(ε, β, J, L) > 0 so that at all time t for which ‖v(t)‖W s,2 ≤ δ1, where s > D
2 , we have that

d

dt

[
F
(
m(t))−F

(
m
)]

= −I
(
m(t)

)
≤ −(1− 3ε)

∑
i≥1

∫
R×Λ

σ(m)
[
(Bv(t))xi

]2
dx,

where I
(
m(t)

)
is given in (1.19).

The proof of Theorem 3.1 is based on several intermediate results. We start proving the following

estimate for the mobility σ(m) = β(1−m2).

3.2 LEMMA. Set m = ma + v where a is chosen so that it minimizes ‖m−ma‖2L2(R×Λ). For any

ε > 0 there exists δ1(ε) > 0 such that

(1− ε)σ(m) ≤ σ(m) ≤ σ(m)(1 + ε)

when ‖v‖W s,2 ≤ δ1 and s > D
2 .

Proof: Write σ(m) = σ(m)
[
1 + 1

σ(m)β(2m+ v)v
]
. One easily obtains the pointwise bound∣∣∣∣ 1

σ(m)
β(2m+ v)v

∣∣∣∣ ≤ 2|v|+ v2 ≤ 2C(d, s)‖v‖W s,2 ,

where in the last passage we estimated the ‖v‖∞ by Lemma 8.4 for s > D
2 . Take δ1 so that

2C(d, s)δ1 ≤ ε.

3.3 LEMMA. Set m = m + v, v ∈ L2(R × Λ),
∫
m′(x1)v(x)dx = 0. For any ε > 0, for s > D

2

there exists d1 := d1(ε, L, β, d), defined in condition (3.12), so that if ‖v‖W s,2 ≤ d1, we have

I(m) ≥ (1− 2ε)

∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx

+ ε

∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx− 1

ε

∫
R×Λ

σ(m)[U(v)]2dx

+ (1− 2ε)
∑
i≥2

∫
R×Λ

σ(m)
[
(Bv)xi

]2
dx

(3.5)
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where U(v) is defined in (3.8).

Proof: Since m depends only on x1 and by assumption m(x) = m(x1) + v(x) we decompose I(m),

see (1.19), as

I(m+ v) = I1(m+ v) + I2(m+ v)

where

I1(m+ v) =

∫
σ(m)

[(
mx1

β(1−m2)
− J ? mx1

)]2

dx,

and

I2(m+ v) =
∑
i≥2

∫
σ(m)

[(
vxi

β(1−m2)
− J ? vxi

)]2

dx.

We have (
mx1

β(1−m2)
− J ? mx1

)
=

(
mx1

β(1−m2)
− mx1

β(1−m2)

)
+ Bmx1 ,

where B is the linear operator defined in (3.1). Denote

Ũ(v) :=
1

β

(
1

1−m2
− 1

1−m2

)
=

1

β

2m

(1−m2)2
v +

1 + 3m2 + 2mv

(1−m2)2(1−m2)
v2. (3.6)

Since Bmx1 = Bm′ + Bvx1 = Bvx1 , by (3.2), we have

1

β

mx1

1−m2
− J ? mx1 = Bvx1 + Ũ(v)(vx1 +m′)

= Bvx1 +
1

β

2mm′

(1−m2)2
v + U(v)

(3.7)

where

U(v) =
1

β

2m

(1−m2)2
vvx1 +

1

β

1 + 3m2 + 2mv

(1−m2)2(1−m2)
v2(vx1 +m′). (3.8)

But since
2m̄m̄′

(1−m2)2
=

d

dx1

(
1

1−m2

)
(3.7) is the same as

1

β

mx1

1−m2
− J ? mx1 = (Bv)x1 + U(v) .

Applying Lemma 3.2 we have that

I1(m+ v) ≥ (1− ε)
∫
R×Λ

σ(m)
[
(Bv)x1 + U(v)

]2
dx (3.9)

provided d1 is less than the δ1 of Lemma 3.2.

We apply to (3.9), inequality (8.12) stated in the appendix with λ = 1− ε, where ε > 0 is small

and arbitrarily chosen. We obtain∫
R×Λ

σ(m)
[
(Bv)x1 + U(v)

]2
dx

≥ (1− 2ε)

∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx

+ ε

∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx− 1

ε

∫
R×Λ

σ(m)[U(v)]2dx.
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We proceed similarly for I2(m+ v), taking in account that m depends only on x1. We have

1

β

vxi
1−m2

− J ? vxi = Bvxi + Ũ(v)vxi , i ≥ 2

where Ũ(v) is given in (3.6). Then

I2(m+ v) ≥ (1− 2ε)
∑
i≥2

∫
R×Λ

σ(m)
[
Bvxi

]2
dx

+ ε
∑
i≥2

(∫
R×Λ

σ(m)
[
Bvxi

]2
dx− 1

ε

∫
R×Λ

σ(m)[Ũ(v)vxi ]
2dx

)
. (3.10)

Next we show that the last line of (3.10) is positive when ‖v‖2W s,2 is small enough. By periodicity∫
Λ vxj (x)dx⊥ = 0 for all j ≥ 2. This implies that

∫
R×Λ vxj (x)m′(x1)dx = 0 for j ≥ 2, therefore by

(3.3) ∑
i≥2

∫
R×Λ

σ(m)
[
Bvxi

]2
dx ≥ γ(L)2‖∇⊥v‖22. (3.11)

We have∑
i≥2

∫
R×Λ

σ(m)[Ũ(v(x))vxi ]
2dx ≤ c(β) sup

x∈R×Λ
|Ũ(v)|2‖∇⊥v‖22 ≤ C(d, β)‖v‖2W s,2‖∇⊥v‖22,

by Lemma 8.4 and s > D
2 . Then for any given ε > 0 take d1 := d1(L, β, ε) so that for ‖v‖2W s,2 ≤ d1,

see (3.10) and (3.11),

εγ2(L) ≥ 1

ε
C(d, β)d1. (3.12)

We then obtain (3.5)

We would like to show that the quantity on the right hand side of (3.5) is strictly positive. There is

no hope to show that the second line on the right hand side of (3.5) is positive. We cannot expect

to control the nonlinear contribution of the dissipation of the free energy by only the derivative in

the x1 direction. We need to take into account also the gradient in the orthogonal direction of x1.

To this aim we denote, see (3.5),

Gε(v) := ε

∑
i≥1

∫
R×Λ

σ(m)
[
(Bv)xi

]2
dx

− 1

ε

∫
R×Λ

σ(m)[U(v)]2dx. (3.13)

In the next proposition we show that Gε(v) is positive under smoothing assumptions on v.

3.4 PROPOSITION. Let s > D
2 , v ∈W s+1,2(R× Λ),

∫
R×Λ v(x)m′(x1)dx = 0. For any ε > 0

Gε(v) ≥ 0, (3.14)

provided

‖v‖2W s+1,2 ≤ ε0 (3.15)

for ε0 = ε2+r for r = r(L) > 0.
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The proof depends on several intermediate results, and it is given at the end of the section.

In Lemma 3.3 we took advantage by decomposing m = m + v, v ∈ L2(R× Λ). In the following it

is helpful to split v ∈ L2(R× Λ) in the manner:

v(x) := v1(x1) + w(x), (3.16)

where

v1(x1) :=
1

Ld

∫
Λ
v(x1, x

⊥)dx⊥, x1 ∈ R.

By construction, ∫
Λ
w(x1, x

⊥)dx⊥ = 0 ∀x1 ∈ R. (3.17)

Further if
∫
R×Λ v(x)m′(x1)dx = 0 then∫

R×Λ
w(x)m′(x1)dx =

∫
R
dx1m

′(x1)

∫
Λ
w(x)dx⊥1 = 0,∫

R
v1(x1)m′(x1)dx = 0. (3.18)

Using decomposition (3.16) we get the following useful result.

3.5 LEMMA. Let v ∈ L2(R× Λ), vx1 ∈ L2(R× Λ), v = v1 + w as in (3.16). We have∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx =

∫
R×Λ

σ(m)
[
(Av1)x1

]2
dx

+

∫
R×Λ

σ(m)
[
(Bw)x1

]2
dx.

Proof: Take v as in (3.16)∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx

=

∫
σ(m(x1))

[
∂

∂x1

(
v1

β(1−m2)
− J ? v1

)
+

∂

∂x1

(
w

β(1−m2
0)
− J ? w

)]2

dx

=

∫
σ(m(x1))

[
∂

∂x1

(
v1

β(1−m2)
− J ? v1

)]2

dx

+

∫
σ(m(x1))

[
∂

∂x1

(
w

β(1−m2)
− J ? w

)]2

dx

+ 2

∫
σ(m(x1))

[
∂

∂x1

(
v1

β(1−m2)
− J ? v1

)][
∂

∂x1

(
w

β(1−m2)
− J ? w

)]
dx.

(3.19)

Integrating per part with respect to x1 the last term in (3.19) we have

2

∫
σ(m(x1))

[
∂

∂x1

(
v1

β(1−m2)
− J ? v1

)][
∂

∂x1

(
w

β(1−m2)
− J ? w

)]
dx

= −2

∫
∂

∂x1

[
σ(m(x1))

∂

∂x1

(
v1

β(1−m2)
− J ? v1

)][
w

β(1−m2)
− J ? w

]
dx1dx⊥1

= −2

∫
R

∂

∂x1

[
σ(m(x1))

∂

∂x1

(
v1

β(1−m2)
− J ? v1

)](∫
Λ

[
w

β(1−m2)
− J ? w

]
dx⊥1

)
dx1 = 0.
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Namely for each x1 integrating with respect to x⊥1 we have∫
Λ

[
w

β(1−m2)
− J ? w

]
dx⊥1 = 0.

Taking into account Lemma 3.5 we write, see (3.13),

Gε(v) = ε

∫
R×Λ

σ(m)
[
(Av1)x1

]2
dx+

∑
i≥2

∫
R×Λ

σ(m)
[
B(wxi)

]2
dx


+ ε

∫
R×Λ

σ(m)
[
(Bw)x1

]2
dx− 1

ε

∫
R×Λ

σ(m)[U(v)]2dx.

(3.20)

To show Proposition 3.4 we bound from below the first three terms of (3.20) and from above the

last term of (3.20) in term of comparable quantities. We estimate the first and third term of (3.20)

in Lemma 3.6 and Lemma 3.7. The lower bound for the second term in (3.20) is easily obtained

taking into account that
∫

Λ×Rwxim
′(x1)dx = 0 and applying (3.3)∑

i≥2

∫
R×Λ

σ(m)
[
B(wxi)

]2
dx ≥ γ(L)σ(mβ)

∑
i≥2

‖wxi‖22. (3.21)

Then we estimate from above in term of the same quantities the U(v) term, see Lemma 3.8.

3.6 LEMMA. Let v ∈ L2(R× Λ), vx1 ∈ L2(R× Λ),
∫
R×Λ v(x)m′(x1)dx = 0 and v(x) = v1(x1) +

w(x), see decomposition (3.16), then there exists a positive constant γ1 := γ1(β, J), such that∫
R×Λ

σ(m)

[(
∂

∂x1
(Av1)

)]2

dx ≥ σ(mβ)γ1‖Pv′1‖2L2(R×Λ)

where A is the linear operator defined in (3.4), P is the orthogonal projection on the orthogonal

complement of m′′ of L2(R).

Proof: We apply Lemma 3.4 of [3]. The assumption needed is
∫
R v1(x1)m′(x1)dx1 = 0 which is

indeed satisfied; see (3.18).

We then obtain, from Lemma 3.4 of [3], that there exists a positive constant γ1 depending on

β and J so that ∫
R×Λ

σ(m)
[
(Av1)x1

]2
dx ≥ σ(mβ)γ1

∫
Λ

dx⊥1

∫
R

dx1[(Pv′1)(x1)]2

= σ(mβ)γ1‖Pv′1‖2L2(R×Λ),

where P is the orthogonal projection on the orthogonal complement of m′′ in L2(R), i.e.

Pv′1 = v′1 −m′′
∫
R v
′
1(x1)m′′(x1)dx1

‖m′′‖2
L2(R)

.

Next, we estimate from below the term
∫
R×Λ σ(m)

[(
∂
∂x1

(Bw)
)]2

dx. When dealing with the

heat equation in our heuristic discussion, the corresponding term was simply dropped. Now we
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need to bound it from below to get some positive contribution that may be used to cancel negative

contributions coming from the last term of (3.20). The estimate is obtained by introducing a cut-off

function. Without cut-off we could get an estimate of the type:∫
R×Λ

σ(m)

[(
∂

∂x1
(Bw)

)]2

dx ≥ σ(mβ)γ2(L)‖wx1‖22 − C‖w‖22. (3.22)

The main difference between this and (3.25) is that the term ‖w‖22 in (3.22) is a priori not small

and we do not have a way to control it.

Let N ≥ 1 and φ2
N (x1), x1 ∈ R be a smooth cut-off function so that

φ2
N (x1) =

{
0 |x1| ≤ N
1 |x1| ≥ 2N

(3.23)

and

|φN (x1)| ≤ 1, |φ′N (x1)| ≤ 1

N
, |φ′′N (x1)| ≤ 1

N2
. (3.24)

The choice of cut-off N will depend on L, the linear size of the transversal direction to the front,

and it will be chosen as function of ε, see proof of Proposition 3.4. We have the following.

3.7 LEMMA. Take v ∈ L2(R×Λ),
∫
R×Λ v(x)m′(x1)dx = 0, v = v1 +w, see decomposition (3.16),

wx1 ∈ L2(R× Λ) and φ2
N the cut-off function defined in (3.23). Then for any N ≥ 1,∫

R×Λ
σ(m)

[(
∂

∂x1
(Bw)

)]2

dx ≥ 1

4
σ(mβ)γ2(L)‖φN (w)x1‖22 − ‖w‖22

1

N2
D(β, γ(L)) (3.25)

where B is the linear operator defined in (3.1) and D(β, γ(L)) is defined in (3.34).

Proof: We have that∫
R×Λ

σ(m)

[(
∂

∂x1
(Bw)

)]2

dx ≥
∫
R×Λ

σ(m)

[
φN

(
∂

∂x1
(Bw)

)]2

dx. (3.26)

Using that for smooth integrable functions g and h one has∫
R

[(gh)′]2 =

∫
R

[gh′]2 −
∫
R
gg′′h2

we have ∫
R×Λ

σ(m)

[
φN

(
∂

∂x1
(Bw)

)]2

dx

=

∫
R×Λ

σ(m)

[(
∂

∂x1
φN (Bw)

)]2

dx+

∫
R×Λ

σ(m)φNφ
′′
N [Bw]2 dx.

(3.27)

By the property of φN , see (3.24), the last term in (3.27) is estimated as following∣∣∣∣∫
R×Λ

σ(m)φNφ
′′
N [Bw]2 dx

∣∣∣∣ ≤ sup |φ′′N |‖Bw‖22 ≤
1

N2
‖Bw‖22 ≤

1

N2
C(β)‖w‖22,
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where in the last inequality we used the fact that B is a bounded operator in L2. We then obtain

that, see (3.26),∫
R×Λ

σ(m)

[(
∂

∂x1
(Bw)

)]2

dx ≥
∫
R×Λ

σ(m)

[(
∂

∂x1
φN (Bw)

)]2

dx− 1

N2
C(β)‖w‖22. (3.28)

Next we estimate the first term on the right hand side of (3.28). We write

φNBw = B(φNw)− φNJ ? w + J ? (φNw),

and apply the inequality see Lemma 8.5 in the Appendix, writing λ in (8.12) as λ = 1
2 ,

(a+ b)2 ≥ 1

2
a2 − b2.

We have ∫
R×Λ

σ(m)

[
∂

∂x1
(φNBw)

]2

dx

≥ 1

2

∫
R×Λ

σ(m)

[(
∂

∂x1
B(φNw)

)]2

dx

−
∫
R×Λ

σ(m) [J ? (φNw)− φNJ ? w]2 .

(3.29)

Further, we have∫
R×Λ

σ(m)

[(
∂

∂x1
B(φNw)

)]2

dx

=

∫
R×Λ

σ(m)

[
B
(

∂

∂x1
(wφN )

)
+ w(x)φN

∂

∂x1

(
1

β(1−m2)

)]2

dx

≥ 1

2

∫
R×Λ

σ(m)

[
B
(

∂

∂x1
(wφN )

)]2

dx

−
∫
R×Λ

[
φNw(x)

∂

∂x1

(
1

β(1−m2)

)]2

dx.

(3.30)

By (3.17), ∫
Λ×R

(
∂

∂x1
(φN (x1)w(x))

)
m̄′(x1)dx = −

∫
Λ×R

φN (x1)w(x)m̄′′(x1)dx = 0,

and therefore, by (3.3)∫
R×Λ

σ(m)

[
B
(

∂

∂x1
(wφN )

)]2

dx ≥ σ(mβ)γ2(L)‖(φNw)x1‖22.

Taking into account that
∂

∂x1

(
1

β(1−m2)

)
=

2m̄m̄′

β(1−m2)2

and m̄′ is exponential decreasing to zero, see (1.10), we have that∫
R×Λ

[
φNw(x)

∂

∂x1

(
1

β(1−m2)

)]2

dx ≤ ‖w‖22C(β)e−αN .
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Therefore (3.30) can be estimated as follows:∫
R×Λ

σ(m)

[
∂

∂x1
B(φNw)

]2

dx

≥ 1

2
σ(mβ)γ2(L)‖(φNw)x1‖22 − ‖w‖22C(β)e−αN .

(3.31)

We have that

|(J ? (φNw)− φNJ ? w) (x)| ≤
∫
R×Λ

J(x−y) |w(y)[φN (y1)− φN (x1)]| dy ≤ 1

N

∫
R×Λ

J(x−y)|w(y)|dy,

namely by the mean value theorem and (3.24) |φN (y1) − φN (x1)| ≤ 1
N |y1 − x1|. Since J has

compact support contained in a ball of radius 1, we have for y1 and x1 in the support of J ,

|φN (y1)− φN (x1)| ≤ 1
N . The last term of (3.29) is therefore estimated as the following:∫

R×Λ
σ(m) [J ? (φNw)− φNJ ? w]2 ≤ 1

N2

∫
R×Λ

(J ? |w|)2 ≤ 1

N2
‖w‖22. (3.32)

Taking into account (3.31) and (3.32) we estimate (3.29) as follows:∫
R×Λ

σ(m)

[
∂

∂x1
(φNBw)

]2

dx

≥ 1

4
σ(mβ)γ2(L)‖(φNw)x1‖22 − ‖w‖22C(β)e−αN − 1

N2
‖w‖22

≥ 1

4
σ(mβ)γ2(L)‖(φNw)x1‖22 − ‖w‖22

[
C(β)e−αN +

1

N2

]
,

(3.33)

Further

‖(φNw)x1‖22 = ‖φN (w)x1‖2 −
∫
R×Λ

φNφ
′′
Nw

2 ≥ ‖φN (w)x1‖22 −
1

N2
‖w‖22.

Finally, from (3.28) and (3.33) obtain∫
R×Λ

σ(m)

[
φN

(
∂

∂x1
(Bw)

)]2

dx

≥ 1

4
σ(mβ)γ2(L)‖φN (w)x1‖22 − ‖w‖22

[
1

4
σ(mβ)γ2(L)

1

N2
+ C(β)e−αN +

C(β)

N2
+

1

N2

]
≥ 1

4
σ(mβ)γ2(L)‖φN (w)x1‖22 − ‖w‖22

1

N2
D(β, γ(L)),

where

D(β, γ(L)) :=

[
1

4
σ(mβ)γ2(L) + 2C(β)

]
. (3.34)

In the next lemma we estimate
∫
σ(m)

[
U(v)

]2
dx from above in two different ways which will

be used in different regimes.
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3.8 LEMMA. Let v ∈ L2(R×Λ),
∫
R×Λ v(x)m′(x1)dx = 0, v ∈W s+1,2(R×Λ), s > D

2 , v = v1 +w,

as in (3.16), and φN be the cut-off function defined in (3.23). For the non linear operator U(·)
defined in (3.8) the following holds∫

σ(m)
[
U(v)

]2
dx ≤||v′1||2L2(R×Λ)C(β, J)

{
‖v‖2W s,2 + ‖wx1‖22N

}
+ ‖w‖22C(β, J)

{
‖v‖2W s,2 + ‖v‖2W s+1,2

}
+ ‖v‖2W s,2C(β, J)‖φNwx1‖22.

(3.35)

Further, assume that ‖v1‖2L2(R×Λ) ≤ k2 and ‖v′1‖2L2(R×Λ) ≤ k2. Then for any given ε1 > 0 there

exists λ0 = λ0(ε1, k), see (3.57), so that∫
σ(m)

[
U(v)

]2
dx ≤

[
C(β, J) +

2

λ0

]
||v′1||4L2(R×Λ)

+ ‖w‖2L2(R×Λ)C(β, J, d)

[
‖v‖2W s,2 + (

N

Ld
)2‖v‖2W s+1,2

]
+ 8ε1||Pv′1||2L2(R) + 2‖v‖W s,2‖φNwx1‖2,

(3.36)

where P is the orthogonal projection on the orthogonal complement of m′′ in L2(R).

Proof: Observe that for some constant C depending only on β and J

|U(v)|2 ≤ 2

(
1

β

2m

(1−m2)2

)2

v2v2
x1 + 2

(
1

β

1 + 3m2 + 2mv

(1−m2)2(1−m2)

)2

v4v2
x1

+ 2

(
1

β

1 + 3m2 + 2mv

(1−m2)2(1−m2)
m′
)2

v4

≤ C(β, J)
(
R(x1)|v|4 + |v|2|vx1 |2

)
(3.37)

where R(·) is non-negative, exponentially decreasing to zero as |x1| ↑ ∞ and
∫
RR(x1)dx1 = 1. We

start deriving (3.35). Splitting v = v1 + w as in (3.16), we have

v4 = v2[v1 + w]2 ≤ 2v2[v2
1 + w2].

Then since ‖v‖∞ ≤ c(d, s)‖v‖W s,2 , for s > D
2 , see Lemma 8.4,∫

R×Λ
R(x1)|v|4dx ≤ 2c(d, s)‖v‖2W s,2

∫
R×Λ

R(x1)[v2
1(x1) + w2(x)]dx. (3.38)

We may write

v1(x1) = v1(y) +

∫ x1

y
v′(z)dz.

We then multiply both terms by m′(y) and integrate on the real line. Since
∫
v1(y)m′(y)dy = 0 we

have

v1(x1) =
1

2mβ

∫ ∞
−∞

m′(y)

(∫ x1

y
v′1(z)dz

)
dy (3.39)

and therefore

|v1(x1)| ≤ 1

2mβ

(∫
m′(y)|x1 − y|

1
2 dy

)
||v′1||L2(R)

≤
(

1

2mβ

∫
m′(y)|x1 − y|2dy

) 1
4

||v′1||L2(R) ≤ C(β, J)[1 + |x1|2]
1
4 ||v′1||L2(R).

(3.40)
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Therefore from (3.38) and (3.40) we have∫
R×Λ

R(x1)|v|4dx ≤

2c(d, s)‖v‖2W s,2

[
||v′1||2L2(R)C(β, J)

∫
R×Λ

R(x1)((1 + |x1|2)
1
2 dx+

∫
R×Λ

R(x1)w2(x)dx

]
≤

‖v‖2W s,2C(β, J, s, d)
[
||v′1||2L2(R×Λ) + ‖w‖2L2(R×Λ)

]
.

(3.41)

To estimate the contribution from the last term term in (3.37) we split vx1 = v′1 + wx1 where v1

and w as in (3.16), obtaining∫
|v|2|vx1 |2dx ≤ 2

[∫
|v|2|v′1|2dx+

∫
|v|2|wx1 |2dx

]
≤ 2‖v‖2∞‖v′1‖2L2(R×Λ) + 2

∫
|v|2|wx1 |2dx.

(3.42)

Splitting again v = v1 + w as in (3.16) we estimate the last term of (3.42)∫
|v|2|wx1 |2dx ≤ 2

[∫
|v1|2|wx1 |2dx+

∫
|w|2|wx1 |2dx

]
≤ 2

[∫
|v1|2|wx1 |2dx+ ‖w‖22‖wx1‖2∞

] (3.43)

The first term of (3.43) is estimated by adding and subtracting the cut-off function φ2
N . Taking

into account (3.40), we have∫
|v1|2|wx1 |2dx =

∫
|v1|2|φNwx1 |2dx+

∫
|v1|2(1− φ2

N )|wx1 |2dx

≤ ‖v1‖2∞‖φNwx1‖22 + c(β, J)‖v′1‖2L2(R)

∫
(1 + |x1|2)

1
2 (1− φ2

N )|wx1 |2dx

≤ ‖v1‖2∞‖φNwx1‖22 +
c(β, J)

Ld
‖v′1‖2L2(R×Λ)‖wx1‖

2
L2(R×Λ)

√
1 +N2.

(3.44)

Summarizing the previous estimate we have that (3.42) is bounded as following∫
|v|2|vx1 |2dx ≤ 2‖v‖2∞‖v′1‖2L2(R×Λ) + 4‖wx1‖2∞‖w‖22

+ 4‖v‖2∞‖φNwx1‖22 +
C(β, J)

Ld
‖v′1‖2L2(R×Λ)‖|wx1‖

2
L2(R×Λ)

√
1 +N2.

(3.45)

Hence from (3.37), (3.41) and (3.45) we have∫
σ(m)

[
U(v)

]2
dx ≤ ‖v‖2W s,2C(β, J)

[
||v′1||2L2(R×Λ) + ‖w‖2L2(R×Λ)

]
+ ‖v‖2W s,2C(β, J)‖φNwx1‖2L2(R×Λ) + 4‖wx1‖2∞‖w‖2L2(R×Λ)

+
C(β, J)

Ld
‖v′1‖2L2(R×Λ)‖wx1‖

2
L2(R×Λ)

√
1 +N2. (3.46)

We estimate, see Lemma 8.4 in the Appendix,

‖v‖∞ ≤ c(d, s)‖v‖W s,2 , s >
D

2
, and ‖|wx1‖∞ ≤ c(d, s)‖vx1‖W s,2 ≤ c(d, s)‖v‖W s+1,2 .
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Hence (3.46) immediately implies (3.35). We next derive (3.36). For α ∈ R write

v′1 = αm′′ + g′ (3.47)

where
∫
R g
′(x1)m′′(x1)dx1 = 0 so that Pv′1 = g′. Note that, as indicated in our notation, Pv′1 is a

derivative since v′1 and m′′ are derivatives. Hence, upon integration

v1 = αm′ + g. (3.48)

The fact that
∫
R v1(x1)m′(x1)dx1 = 0 means that ‖g‖L2(R) cannot be too small. But what we need

to know is that ‖g‖L2(R) = ‖Pv′1‖L2(R) is not too small. In general, these are simply two different

things. What provides the crucial connection here is that (2mβ)−1m′(x1)dx1 is a probability

measure on R, so that ∫
R
v1(x1)m′(x1)dx1 = 0

implies that

||g||∞ ≥
|α|

2mβ
||m′||L2(R).

Then one may use ‖g‖2∞ ≤ 2‖g′‖L2(R)‖g‖L2(R) to conclude that

|α|2 ≤
8m2

β

‖m′‖2
L2(R)

‖g‖L2(R)‖g′‖L2(R) =
8m2

β

‖m′‖2
L2(R×Λ)

‖g‖L2(R×Λ)‖g′‖L2(R×Λ).

Since

v4 = (v1 + w)4 ≤ 4[v2
1 + w2]2 ≤ 8[v4

1 + w4]

we have that ∫
R×Λ

R(x1)|v|4dx ≤ 8

∫
R×Λ

R(x1)
[
|v1|4 + w4

]
dx. (3.49)

For the first term of (3.49) we insert the pointwise bound for v1, see (3.39), obtaining, since R(x1)

is rapidly decreasing, from properties (1.10),∫
R×Λ

R(x1)v4
1(x1)dx ≤ ||v′1||4L2(R)L

d

∫
R
R(x1)(1 + |x1|2)dx1 =

1

Ld
C(β, J)||v′1||4L2(R×Λ).

Next, ∫
R×Λ

R(x1)w4dx ≤ sup
x1∈R

R(x1)‖w‖2L∞(R×Λ)

∫
R×Λ

w2dx

≤ C(β)c(d, s)‖w‖2W s,2‖w‖2L2 ,

by Lemma 8.4 in the Appendix. For the other term in (3.37) we write∫
R×Λ

v2(vx1)2dx ≤ 2

∫
R×Λ

v2(v′1)2dx+ 2

∫
R×Λ

v2(wx1)2dx. (3.50)

We start estimating the first term of (3.50)∫
R×Λ

v2(v′1)2dx =

∫
R×Λ

[αm′ + g + w]2(v′1)2dx

≤ 2

∫
R×Λ

[
α2(m′)2 + [g + w]2

]
(v′1)2dx.

(3.51)
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Moreover from (3.47) we have ∫
R×Λ

v′1m
′′dx = α‖m′′‖2L2(R×Λ)

and therefore |α| can be estimated as

|α| =

∣∣∣∫R×Λ v
′
1m̄
′′dx

∣∣∣
‖m′′‖2

L2(R×Λ)

≤
‖v′1‖L2(R×Λ)

‖m′′‖L2(R×Λ)
. (3.52)

We obtain from (3.51)∫
R×Λ

v2(v′1)2dx ≤ 2α2

∫
R×Λ

(m′)2(v′1)2dx+ 2

∫
R×Λ

[g + w]2(v′1)2dx

≤ 2
‖v′1‖2L2(R×Λ)

‖m̄′′‖2
L2(R×Λ)

‖v′1‖2L2(R×Λ)‖m
′‖2∞ + 4

∫
R×Λ

g2(v′1)2dx+ 4

∫
R×Λ

w2(v′1)2dx

≤ 2
‖v′1‖4L2(R×Λ)

‖m̄′′‖2
L2(R×Λ)

‖m′‖2∞ + 4

∫
R×Λ

g2(v′1)2dx+ 4‖v′1‖2∞‖w‖2L2 .

(3.53)

Since ‖g‖2∞ ≤ 2‖g‖L2(R)‖g′‖L2(R) we have∫
R×Λ

g2(v′1)2dx ≤ ‖g‖2L∞
∫
R×Λ

(v′1)2dx

≤ 2||g||L2(R)||g′||L2(R)

∫
R×Λ

(v′1)2dx

≤ 2λ
(
||g||2L2(R)||g

′||2L2(R)

)
+

2

λ
‖v′1‖4L2(R×Λ), (3.54)

for any λ > 0. Because of (3.48) we have

||g||2L2(R) = ||v1 − αm′||2L2(R).

Therefore, by (3.52),

||g||2L2(R) = ||v1||2L2(R) + |α|2||m′||2L2(R) ≤ ||v1||2L2(R) +

(
||v′1||L2(R×Λ)

||m′′||L2(R×Λ)
||m′||L2(R)

)2

. (3.55)

Taking in account (3.54), (3.55) from (3.53) one obtains∫
R×Λ

v2(v′1)2dx ≤ 2
1

‖m′′‖2
L2(R×Λ)

sup
x1

(m′)2||v′1||4L2(R×Λ) +
2

λ
||v′1||4L2(R×Λ)

+ 2λ

||v1||2L2(R) +

(
||v′1||L2(R×Λ)

||m′′||L2(R×Λ)
||m′||L2(R)

)2
 ‖g′‖2L2(R)

+ 4‖v′1‖2∞‖w‖2L2(R×Λ). (3.56)

Assume that

‖v1‖2L2(R×Λ) ≤ k
2, ‖v′1‖2L2(R×Λ) ≤ k

2.
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Then ||v1||2L2(R) +

(
||v′1||L2(R×Λ)

||m′′||L2(R×Λ)
||m′||L2(R)

)2
 ||g′||2L2(R)

≤ k2

Ld

[
1 + 1

‖m′‖2L2(R)

‖m′′‖2
L2(R)

]
‖g′‖2L2(R) =

k2

L2d

[
1 + 1

‖m′‖2L2(R)

‖m′′‖2
L2(R)

]
‖g′‖2L2(R×Λ).

Take λ in (3.56) so that

2λ
k2

L2d

{
1 +

1

||m′′||2
L2(R)

||m′||2L2(R)

}
≤ ε1. (3.57)

We denote such λ by λ0 = λ0(ε1, k). Then we have∫
R×Λ

v2(v′1)2dx ≤ 2||v′1||4L2(R×Λ)

[
1

‖m̄′′‖2
L2(R×Λ)

‖m̄′‖2∞ +
1

λ0

]
+ ε1||g′||2L2(R×Λ) + 4‖v′1‖2∞‖w‖2L2(R×Λ).

(3.58)

Next we need to estimate the second term of (3.50),
∫
R×Λ v

2(wx1)2dx. Splitting v = v1 + w as in

(3.16) we get ∫
R×Λ

v2(wx1)2dx ≤ 2

∫
R×Λ

w2(wx1)2dx+

∫
R×Λ

v2
1(wx1)2dx

≤ 2‖wx1‖2∞‖w‖22 +

∫
R×Λ

v2
1(wx1)2dx.

(3.59)

We split the last term of (3.59) applying the cut-off function φ2
N as it was done previously in

(3.44) but we need to end up with an estimate where the ‖v′1‖4L2(R×Λ) appears. Denote hN (x1) =

(1 + |x1|2)
1
2 (1− φ2

N (x1)). We therefore, see (3.44), have∫
|v1|2|wx1 |2dx

≤ ‖v1‖2∞‖φNwx1‖2L2(R×Λ) + C(β, J)‖v′1‖2L2(R)

∫
hN (x1)|wx1 |2dx.

(3.60)

Note that hN (·) is smooth and has support in [−2N, 2N ]. Integrating by part we have∫
hN (x1)|wx1 |2dx = −

∫
w
[
h′N (x1)wx1 + hN (x1)wx1x1

]
dx.

By Schwartz inequality we then get∫
hN (x1)(wx1)2dx ≤ ‖w‖2

{
sup |h′N (x1)|‖wx1‖2 + sup |hN (x1)|‖wx1x1‖2

}
.

We immediately estimate

sup |h′N (x1)| ≤ C,

sup |hN (x1)| ≤
√

1 + 4N2 ≤ 3N.



CO 3-4-2012 32

Summarizing from (3.60) we obtain∫
|v1|2(wx1)2dx

≤ ‖v1‖2∞‖φNwx1‖22 + C(β, J)
N

Ld
‖v′1‖2L2(R×Λ)‖w‖2 {‖wx1‖2 + ‖wx1x1‖2} .

Since ab ≤ 1
2a

2 + 1
2b

2 we have∫
|v1|2|wx1 |2dx

≤ ‖v1‖2∞‖φNwx1‖2L2 + C(β, J)

[
1

2
‖v′1‖4L2(R×Λ) +

1

2
‖w‖22(

N

Ld
)2 [‖wx1‖2 + ‖wx1x1‖2]2

]
.

Summing up all the estimates, (3.44), (3.58) we have∫
σ(m)

[
U(v)

]2
dx ≤ 8

Ld
C(β, J)||v′1||4L2(R×Λ) + 8C(β, J, d)‖w‖2W s,2‖w‖2

+ 2
1

‖m̄′′‖2
L2(R×Λ)

‖m′‖2∞||v′1||4L2(R×Λ) +
2

λ0
||v′1||4L2(R×Λ)

+ 8ε1||g′||2L2(R×Λ) + 4‖v′1‖2∞‖w‖22
+ 2‖wx1‖∞‖w‖22 + 2‖v1‖2∞‖φNwx1‖22

+ C(β, J)

[
‖v′1‖4L2(R×Λ) + ‖w‖22

(
N

Ld

)2 [
‖wx1‖22 + ‖wx1x1‖22

]]
.

Recalling that g′ = Pv′, see after (3.48), and estimating

‖v1‖∞ ≤ ‖v‖∞ ≤ c(d, s)‖v‖W s,2 , ‖v′‖∞ + ‖wx1‖∞ ≤ ‖vx1‖∞ ≤ c(d, s)‖v‖W s+1,2

we get (3.36).

Proof of Proposition 3.4 Writing Gε(v) as in (3.20), applying Lemma 3.6, Lemma 3.7 and

(3.21) we have that

Gε(v) ≥ ε

[
1

4
σ(mβ)γ2(L)‖φN (w)x1‖22 − ‖w‖22

1

N2
D(β, γ(L))

]
+ εσ(mβ)γ1‖Pv′1‖2L2(R×Λ) + εγ(L)σ(mβ)

∑
i≥2

‖wxi‖22

− 1

ε

∫
σ(m)

[
U(v)

]2
dx,

where U(v) is defined in (3.8). Suppose that

||Pv′1||2L2(R×Λ) >
1

2
||v′1||2L2(R×Λ) (3.61)

and

‖v‖2W s+1,2 ≤ ε0, s >
D

2
. (3.62)
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From (3.35) of Lemma 3.8 we obtain

Gε(v) ≥ ε
[

1

4
σ(mβ)γ2(L)‖φN (w)x1‖22 − ‖w‖22

1

N2
D(β, γ(L))

]
+ εσ(mβ)γ1‖Pv′1‖2L2(R×Λ) + εγ(L)σ(mβ)

∑
i≥2

‖wxi‖22

− 1

ε

{
||v′1||2L2(R×Λ)C(β, J)

[
‖v‖2W s,2 + ‖|wx1‖22N

]
+ ‖w‖22C(β, J)

[
‖v‖2W s,2 + ‖v‖2W s+1,2

]
+ ‖v‖2W s,2C(β, J)‖φNwx1‖22

}
.

To show that Gε(v) ≥ 0 under assumption (3.61) it is enough to choose our parameters so that the

following three inequalities are satisfied:[
ε
1

4
σ(mβ)γ2(L)− 1

ε
‖v‖2W s,2C(β, J)

]
‖φN (w)x1‖22 ≥ 0, (3.63)

εγ(L)σ(mβ)
∑
i≥2

‖wxi‖2 − ‖w‖2
{
ε

1

N2
D(β, γ(L)) +

1

ε
C(β, J)

[
‖v‖2W s,2 + ‖v‖2W s+1,2

]}
≥ 0 (3.64)

εσ(mβ)γ1‖Pv′1‖2L2(R×Λ) −
1

ε
‖v′1‖2L2(R×Λ)C(β, J)

{
‖v‖2W s,2 + ‖wx1‖22N

}
≥ 0. (3.65)

To satisfy (3.63), under the assumptions (3.62), we need

γ2(L) ≥ C ε0
ε2

(3.66)

for some positive constant C. By the Poincaré inequality (see the similar estimate in (4.18)), we

have

‖∇⊥w‖2 ≥ c(d)

L2
‖w‖2. (3.67)

We can then satisfy (3.64), if

εγ(L)σ(mβ)
c(d)

L2
−
{
ε

1

N2
D(β, γ(L)) +

1

ε
C(β, J)

[
‖v‖2W s,2 + ‖v‖2W s+1,2

]]
≥ 0.

Under the assumptions (3.61) it is enough to require

γ(L)
1

L2
≥ 1

N2
, γ(L)

1

L2
≥ C ε0

ε2
, (3.68)

for some positive constant C. By (3.61) to fulfill (3.65) we need to require

εσ(mβ)γ1
1

2
− 1

ε
C(β, J)

{
‖v‖2W s,2 + ‖wx1‖2L2(R×Λ)N

}
≥ 0,

which means

γ1 ≥
ε0
ε2
N. (3.69)

Choose the cut-off N = ε−a with a = a(L) > 0 so that the first requirement in (3.68) holds. Choose

then ε0 = ε2+a+b with b = b(L) so that (3.66), the second condition in (3.68) and (3.69) hold. Let

r = r(L) ≥ a+ b and we get (3.14), that is Gε(v) ≥ 0, under condition (3.61).
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Next, suppose (3.61) is false, i.e. :

||Pv′1||2L2(R×Λ) ≤
1

2
||v′1||2L2(R×Λ). (3.70)

Then from (3.47)

‖v′1 − g′‖L2(R) ≤ |α|‖m′′‖L2(R)

and applying (8.12) with λ = 1
3 and (3.70) one obtains

|α|2||m′′||2L2(R) ≥ ||v
′
1 − g′||2L2(R) ≥

1

3
||v′1||2L2(R) −

1

2
||g′||2L2(R) ≥

1

12
||v′1||2L2(R).

Therefore

||v′1||2L2(R) ≤ 12||m′′||2L2(R)|α|
2. (3.71)

Since v orthogonal to m′, implies v1 and w orthogonal to m′ we have, see (3.48),

α

2mβ
=

1

2mβ

∫
R
gm′dx ≤ ||g||∞. (3.72)

Inequality ||g||2∞ ≤ 2||g||2||g′||2, (3.71) and (3.72) imply

||v′1||L2(R) ≤ C(β, J)||g||
1
2

L2(R)
||g′||

1
2

L2(R)
. (3.73)

Recall, see (3.47), that ‖Pv′1‖2 = ‖g′‖2. We apply estimate (3.36) with ‖v1‖2L2(R) ≤ k
2, ‖v′1‖2L2(R) ≤

k2 and for ε1 > 0. The actual values of k and ε1 will be chosen later. Thus it is enough to show

Gε(v) ≥ε
[

1

4
σ(mβ)γ2(L)‖φN (w)x1‖22 − ‖w‖22

1

N2
D(β, γ(L))

]
+εσ(mβ)γ1‖Pv′1‖2L2(R×Λ) + εγ(L)σ(mβ)

∑
i≥2

‖wxi‖22

−b0
ε
||v′1||4L2(R×Λ) −

a0

ε
‖w‖2L2(R×Λ)

−1

ε
8ε1‖Pv′1‖2L2(R×Λ) −

1

ε
2‖v1‖2∞‖φNwx1‖22 ≥ 0,

(3.74)

where we denoted

a0 =

[
C(β, J, d)‖w‖2W s,2 +

[
4‖v′1‖2∞ + 2‖wx1‖∞

]
+

1

2m2
β

(
N

Ld
)2 [‖wx1‖2 + ‖wx1x1‖2]2

]
, (3.75)

and

b0 =

[
1

Ld
C(β, J) + 2

1

‖m′′‖2
L2(R×Λ)

sup
x1

(m′)2 +
2

λ0(ε1, k)
+

1

2m2
β

]
.

We estimate

‖v′1‖∞ ≤ c(d, s)‖v‖W s+1,2 , ‖wx1x1‖2 ≤ ‖v‖W 2,2 ≤ ‖v‖W s+1,2 , ‖wx1‖∞ ≤ c(d, s)‖v‖W s+1,2 .

Therefore, (3.75), by assumptions (3.15), is bounded by

a0 ≤ CN2‖v‖W s+1,2 (3.76)
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We need to require, see (3.74), the following three conditions:[
ε
1

4
σ(mβ)γ2(L)− 1

ε
2‖v1‖2∞

]
≥ 0, (3.77)

εγ(L)σ(mβ)
∑
i≥2

‖wxi‖2

− ‖w‖2L2(R×Λ)

[
ε
1

4

1

N2
D(β, γ(L)) +

1

ε
a0

]
≥ 0,

(3.78)

εσ(mβ)γ1‖Pv′1‖2L2(R×Λ)

− 1

ε
b0||v′1||4L2(R×Λ) −

1

ε
8ε1||g′||2L2(R×Λ) ≥ 0.

(3.79)

To satisfy (3.77) taking into account that

‖v1‖2∞ ≤ c(d, s)‖v‖2W s,2 ≤ ε0

we need to require [
ε
1

4
σ(mβ)γ2(L)− 1

ε
ε0

]
≥ 0.

To fulfill (3.78), taking into account (3.67) and (3.76), we need to require

εγ(L)σ(mβ)
1

L2
c(d)−

[
ε
1

4

1

N2
D(β, γ(L)) +

1

ε
CN2ε0

]
≥ 0,

therefore

γ(L) ≥ C(β, J, d, L)

[
1

N2
+

1

ε2
CN2ε0

]
.

This forces the choice we have made of ε0 as ε0 = ε2+2a+b. To satisfy (3.79), taking into account

(3.73) we require

εσ(mβ)γ1‖Pv′1‖2L2(R×Λ) −
1

ε
||g′||2L2(R×Λ)

{
b0‖g‖2L2(R×Λ) + 8ε1

}
≥ 0.

Note that

‖Pv′1‖2L2(R×Λ) = ‖g′‖2L2(R×Λ) .

We now seek to bound ||g||2L2(R×Λ) as in (3.55). We would then require, in terms of order of

magnitude,

γ1 − b0
1

ε2
ε0 − 8

1

ε2
ε1 ≥ 0.

We then choose ε1 = ε0 and k2 = ε0 when applying (3.37) of Lemma 3.8. Recall that b0 ≤ (C+ 1
λ0

),

and λ0 ' ε1
κ2

= 1, for the choice done. We therefore get

γ1 −
C

ε2
ε0 − 8

1

ε2
ε0 ≥ 0.

Taking ε0 = ε2+r(L) with r(L) = 2a(L) + b(L) we get the thesis.
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Proof of Theorem 3.1: Applying Lemma 3.3, see (3.5), we have

I
(
m(t)

)
≥ (1− 2ε)

∫
R×Λ

σ(m)
[
(Bv)x1

]2
dx

+

ε
∑
i≥1

∫
R×Λ

σ(m)
[
(Bv)xi

]2
dx

− 1

ε

∫
R×Λ

σ(m)[U(v)]2dx


+ (1− 3ε)

∑
i≥2

∫
R×Λ

σ(m)
[
(Bv)xi

]2
dx.

Proposition 3.4 then delivers the thesis.

4 Bound on the dissipation rate of the free energy in terms of the

excess free energy

In this section we establish a bound on the rate I(m(t)) at which the excess free energy F(m(t))−
F(m) is dissipated in term of F(m(t))−F(m) itself, working under the hypothesis that

I(m(t)) <<
[
F(m(t))−F(m)

]
. (4.1)

On the other hand, when (4.1) is not satisfied, there is ample dissipation, as explained in the

introduction. Denote by

φ(v(t)) = Ld +

∫
R×Λ

x2
1(Ba(t)v(t))2dx. (4.2)

The main result of this section is the following.

4.1 THEOREM. Let m(·, t) be a solution of (1.1) and set m(·, t) = ma(t)(·) + v(·, t) where

a(t) is chosen so that minimizes ‖m(t) − ma‖2L2(R×Λ). For any ε > 0 small enough, there is

δ1 = δ1(ε, d, β, J, L) > 0 and ε1 = ε1(ε, β, J) so that at all time t for which ‖v(t)‖W s+1,2 ≤ δ1,

|a(t)| ≤ 1, where s > D
2 ,

C(β)‖v(t)‖2 ≤ 4

9L2
, (4.3)

and

I(m(t)) ≤ ε1
[
F
(
m(t))−F

(
m
)]

(4.4)

we have that

d

dt

[
F
(
m(t))−F

(
m
)]
≤ −9(1− σ(mβ))2(1 + ε)

[
F
(
m(t))−F

(
m
)]2

φ(t)
. (4.5)

The proof of Theorem 4.1, given at the end of this section, is based on Theorem 3.1 and an

application of the following constrained version of Weyl’s uncertainty principle proved in Section 2

of [4].

4.2 THEOREM. Let ψ(x) be a function on the real line such that∫
|ψ′(x)|2dx <∞ and

∫
|xψ(x)|2dx <∞ (4.6)
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and such that either

ψ(0) = 0 (4.7)

or ∫
ψ(x)dx = 0 . (4.8)

Then (∫
|ψ′(x)|2dx

)(∫
|xψ(x)|2dx

)
≥ 9

4

(∫
|ψ(x)|2dx

)2

. (4.9)

Notice that under (4.6), ψ is integrable and well–defined at 0, so (4.7) and (4.8) make sense.

Recall that m(t) = m̄a(t) + v(t) and v = v1 + w as in (3.16). We will apply Theorem 4.2 to v1,

but the argument used in the one dimensional setting, see [4], does not suffice. Namely we get an

extra term, see the last term of (4.11), due to the multidimensionality of the problem.

4.3 LEMMA. Let m(t) = m̄a(t) + v(t), v = v1 + w as in (3.16) and |a(t)| ≤ 1,∫
R

(x1v1(x1))2 dx1 <∞,∫
R
v1(x1)(m)′a(t)(x1)dx1 = 0. (4.10)

For any ε > 0, there exists δ1 = δ1(ε) and ε1 = ε1(ε, δ1) so that when ‖v‖W s,2 ≤ δ1 and

I(m) ≤ ε1
[
F
(
m)−F

(
m
)]
,

we have ∫
R

[
(Av1)x1

]2
dx1 ≥ (1− ε)3

(1 + ε)2

9

4

(∫
R(Av1)2dx1

)2∫
R x

2
1(Av1)2dx1 + 1

− ε21
9

4

1

ε3L2d

(
C(β, J)

[
F
(
m(t))−F(m)

])2∫
R x

2
1(Av1)2dx1 + 1

. (4.11)

Proof: The proof of the lemma when m is antisymmetric in the x1 variable is a straightforward

application of (4.9). In such a case, a(t) = 0 for all t ≥ 0 and (Av1)(0) = 0. By Theorem 4.2 one

gets ∫
R

[
(Av1)x1

]2
dx1 ≥

9

4

(∫
R(Av1)2dx1

)2∫
R x

2
1(Av1)2dx1

and (4.11) holds for ε1 = 0 and ε = 0. Without this symmetry condition, the proof is more involved.

The argument used in this case in the one dimensional setting, see [4], requires further elaboration:

We get an extra term, see the last term of (4.11), due to the multidimensionality of the problem.

We introduce the smearing operator

Sv1(x1) =
1

2mβ
m′ ? v1(x1) .

Notice that S is a contraction on L2(R), and it commutes with differentiation. Hence,

‖(Av1)x1‖L2(R) ≥ ‖S
(
Av1

)
x1
‖L2(R) = ‖

(
SAv1

)
x1
‖L2(R) . (4.12)
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Further, note that

S(Av1)(a(t)) =
1

2mβ
(m′ ?Av1)(a(t)) =

1

2mβ

∫
R

(m)′a(t)(x1)(Av1)(x1)dx1 = 0

by (4.10). Hence the constrained uncertainty principle applies with the result that, see (4.12),

‖ (Av1)x1‖2L2(R) ≥ ‖
(
SAv1

)
x1
‖2L2(R) ≥

9

4

‖SAv1‖4L2(R)

‖(x1 − a(t))SAv1‖2L2(R)

. (4.13)

We now need to remove S. In the numerator we have for all ε > 0,

‖SAv1‖2L2(R) = ‖Av1 + (SAv1 −Av1)‖2L2(R) ≥ (1− ε)‖Av1‖2L2(R) −
1

ε
‖(SAv1 −Av1)‖2L2(R).

Applying Lemma 8.2 one can show that

‖(SAv1 −Av1)‖2L2(R) ≤ C(β, J)‖(Av1)x1‖2L2(R).

Applying Theorem 3.1, we have in particular that

‖(Av1)x1‖2L2(R) ≤
1

Ld
C(β, J)I(m(t)

and by (4.4) we have

‖(Av1)x1‖2L2(R) ≤ ε1
1

Ld
C(β, J)

[
F
(
m(t))−F

(
m
)]
.

Therefore

‖SAv1‖2L2(R) ≥ (1− ε)‖Av1‖22 −
1

ε
ε1

1

Ld
C(β, J)

[
F
(
m(t))−F

(
m
)]
.

Applying inequality (8.12) with λ = 1− ε we have

‖SAv1‖4L2(R) ≥ (1− ε)3‖Av1‖42 −
1

ε3

(
ε1

1

Ld
C(β, J)

[
F
(
m(t))−F

(
m
)])2

. (4.14)

To remove S from the denominator, write∫
(x1 − a(t))2

(
SAv1

)2
dx1 ≤ (1 + ε)

∫
x2

1

(
SAv1

)2
dx1 +

(
1 + ε

ε

)
a(t)2‖SAv1‖2L2(R). (4.15)

By Minkowski’s inequality and commuting convolution with multiplication by x1, one has

‖x1SAv1‖L2(R) ≤ ‖Sx1Av‖L2(R) + ‖S̃Av1‖L2(R)

where S̃ denotes convolution by (2mβ)−1x1m
′(x1). Clearly S̃ is bounded on L2 with norm no

greater than (2mβ)−1‖x1m
′‖1. And since S is a contraction on L2, one has

‖x1SAv1‖2 ≤ ‖x1Av‖2 + (2mβ)−1‖x1m
′‖1‖Av1‖2 .

Thus, for all ε > 0,

‖x1SAv1‖2L2(R) ≤ (1 + ε)‖x1Av1‖2L2(R) +

(
1 + ε

ε

)
(2mβ)−2‖x1m

′‖21‖Av1‖2L2(R) . (4.16)
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Combining (4.16) and (4.15), recalling the hypothesis that |a(t)| ≤ 1, and A is a bounded operator

one has ∫
R

(x1 − a(t))2
(
SAv1

)2
dx1 ≤ (1 + ε)2‖x1Av1‖2L2(R) +

1

2
(4.17)

when ||v1||L2(R) is sufficiently small. Combining (4.13), (4.14) and (4.17), we obtain the final

result.

Proof of Theorem 4.1: Since F is decreasing along the solution of (1.1), see Theorem 2.1, we

have
dF
dt

(
m(t)

)
= −I

(
m(t)

)
,

where I
(
m
)

is defined in (1.19). Applying Theorem 3.1, denoting m = m + v, splitting v as in

(3.16) we have

I
(
m+ v

)
≥ (1− 3ε)

[∫
R×Λ

σ(m)
[
(Av1)x1

]2
dx+

∫
R×Λ

σ(m)
[
(Bw)x1

]2
dx

]
+ (1− 3ε)

∑
i≥2

∫
R×Λ

σ(m)
[
(Bw)xi

]2
dx.

In particular, since σ(m) ≥ σ(mβ)

I
(
m+ v

)
≥ (1− 3ε)σ(mβ)

[∫
R×Λ

[
(Av1)x1

]2
dx

]
+ (1− 3ε)σ(mβ)

∑
i≥2

∫
R×Λ

[
(Bw)xi

]2
dx.

Taking into account that for each fixed x1 ∈ R,
∫

Λ(Bw)(x1, x
⊥)dx⊥ = 0 we apply to the last term

the Poincaré inequality, see (1.30), obtaining

‖∇⊥Bw‖2 =

∫
R

dx1

∑
i≥2

∫
Λ

dx⊥|(Bw(x1, x
⊥))xi |2


≥ c(d)

L2

∫
R

∫
Λ
|Bw(x1, x

⊥)|2dx =
c(d)

L2
‖Bw‖2.

(4.18)

Then

I
(
m+ v

)
≥ (1− 3ε)σ(mβ)

[∫
R×Λ

[
(Av1)x1

]2
dx+

c(d)

L2
‖Bw‖22

]
.

Applying Lemma 4.3, we get

I
(
m+ v

)
≥ (1− 3ε)σ(mβ)

9

4

(1− ε)3

(1 + ε)2

(∫
R×Λ(Av1)2

)2∫
R×Λ x

2
1(Av1)2dx+ Ld

+
c(d)

L2
‖Bw‖22

− ε21R
≥ (1− 3ε)σ(mβ)

9

4

(1− ε)3

(1 + ε)2

1∫
R×Λ x

2
1(Av1)2dx+ Ld

[(∫
R×Λ

(Av1)2

)2

+
4

9L2
‖Bw‖22

]
− ε21R

where

R =
9

4

C(β, J)

ε3

([
F
(
m(t))−F

(
m
)])2∫

R×Λ x
2
1(Av1)2dx+ Ld

. (4.19)
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Our aim is to prove that[(∫
R×Λ

(Av1)2

)2

+
4

9L2
‖Bw‖22

]
≥
[ [
F
(
m(t))−F

(
m
)]2]

.

By orthogonality

‖Av1‖22 + ‖Bw‖22 = ‖Bv‖22.

Then

‖Bv‖42 =
(
‖Av1‖22 + ‖Bw‖22

)2
= ‖Av1‖42 + (‖Bw‖22 + 2‖Av1‖22)‖Bw‖22.

Suppose that

‖Bw‖22 + 2‖Av1‖22 ≤
4

9L2
(4.20)

then

‖Av1‖42 +
4

9L2
‖Bw‖22 ≥ ‖Bv‖42.

This implies that

I
(
m+ v

)
≥ (1− 3ε)σ(mβ)

9

4

(1− ε)3

(1 + ε)2

‖Bv‖42∫
R×Λ x

2
1(Av1)2dx+ Ld

− ε21R.

To compare ‖Bv‖22 with [F
(
m(t)) − F

(
m
)]

under assumption (4.4) we apply Lemma 4.4 stated

and proven below and we obtain

‖Bv‖22 ≥ 2α̃(1− 2ε)[F
(
m(t))−F

(
m
)]
, (4.21)

where

α̃ =
1

β(1−m2
β)
− 1 =

1− σ(mβ)

σ(mβ)
. (4.22)

Taking into account (4.21) we have

I
(
m(t)

)
≥ (1− σ(mβ))29

1

σ(mβ)

(1− ε)3

(1 + ε)2

[
F
(
m(t))−F

(
m
)]2∫

R×Λ x
2
1(Av1)2dx+ Ld

− ε21R.

Recalling the definition of R, see (4.19), choosing ε1 small enough so that

9

4

ε1
Ldε3

C(β, J) ≤ ε

we get

I
(
m(t)

)
≥ (1− σ(mβ))29

1

σ(mβ)

(1− 2ε)3

(1 + ε)2

[[
F
(
m(t))−F

(
m
)]2]∫

R×Λ x
2
1(Av1)2dx+ Ld

. (4.23)

By Lemma 3.5 we have that ∫
R×Λ

x2
1(Av1)2dx ≤

∫
R×Λ

x2
1(Bv)2dx,
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from (4.23), taking into account (4.2) we get (4.5). Next we verify that requirement (4.20) is indeed

satisfied under assumptions (4.3). Namely ‖Bw‖22 + 2‖Av1‖22 = ‖Bv‖22 + ‖Av1‖22 and

‖Av1‖22 = ‖Bv1‖22 =

∫
R

dx1

(
1

Ld

∫
Λ
Bv(x1, x

⊥
1 )dx⊥1

)2

≤

(
1

Ld

)2 ∫
R

dx1

((∫
Λ

(Bv)2(x1, x
⊥
1 )dx⊥1

) 1
2

L
d
2

)2

=
1

Ld

∫
Λ×R

(Bv)2(x)dx.

Then

‖Bw‖22 + 2‖Av1‖22 ≤ ‖Bv‖22[1 +
1

Ld
] ≤ C(β)[1 +

1

Ld
]‖v‖22,

since ‖Bv‖22 ≤ C(β)‖v‖22. We get (4.20).

Next we compare ‖Bv‖22 with [F
(
m(t))−F

(
m
)]

.

4.4 LEMMA. Take v ∈ W 1,2(R× Λ),
∫
R×Λ vm

′ = 0 and m = m̄+ v. For any ε > 0 there exists

ε1 = ε1(ε, L, β, J) so that for

I(m(t)) ≤ ε1
[
F
(
m(t))−F

(
m
)]
, (4.24)

‖Bv‖2L2(R×Λ) ≥ 2α̃(1− 2ε)[F(m̄+ v)−F(m)
]

(4.25)

and

‖Bv‖2L2(R×Λ) ≤ 2α̃(1 + 2ε)[F(m̄+ v)−F(m)
]
, (4.26)

where α̃ is defined in (4.22).

Proof: We have that

‖Bv‖22 = 〈Bv,Bv〉 = α̃〈v,Bv〉+ 〈(B − α̃)v,Bv >= α̃〈v,Bv〉+ 〈v, (B − α̃)(Bv)〉.

Therefore

‖Bv‖2 ≥ α̃〈v,Bv〉 − |〈v, (B − α̃)(Bv)〉|.

By Lemma 8.3 we have

|〈v, (B − α̃)(Bv)〉| ≤ ‖v‖L2(R×Λ)‖(B − α̃)(Bv)‖L2(R×Λ) ≤ ‖v‖L2(R×Λ)‖‖∇(Bv)‖L2(R×Λ).

By Theorem 3.1 and assumption (4.24) we have

C(β)‖∇(Bv)‖2L2(R×Λ) ≤ I(v) ≤ ε1[F
(
m(t))−F

(
m
)]
.

Under this condition

|〈v, (B − α̃)(Bv)〉| ≤ ‖v‖L2(R×Λ)[ε1K(βJ)F
(
m(t))−F

(
m
)] 1

2 .

Further, by Lemma 8.1

‖v‖2L2(R×Λ) ≤
4

γ(L)
[F
(
m(t))−F

(
m
)
].
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Therefore

|〈v, (B − α̃)(Bv)〉| ≤ [ε1K(βJ)
4

γ(L)
]
1
2 [F

(
m(t))−F

(
m
)
].

Take ε1 small enough so that

[ε1K(βJ)
4

γ(L)
]
1
2 ≤ ε

Then we get (4.25). Arguing in a similar way we get (4.26).

5 Moment estimates

In this section we control the evolution of

φ(t) = Ld +

∫
R×Λ

σ(ma(t))|x1

(
Ba(t)v(t)

)
|2dx (5.1)

in term of the free energy functional F . As we discussed in the introduction it is important to

have the right constant multiplying the free energy. In the next theorem we show two estimates.

The first estimate (5.2) does not quantify the constant multiplying the free energy and holds under

less restrictive assumptions. To show the second estimate, see (5.3), we need that the dissipation

I(m(t)) is small compared to the excess free energy, see (5.3). For proving the main result we need

both of them.

5.1 THEOREM. Let m(·, t) be a solution of (1.1). For any ε > 0, L > 0 there are con-

stants κ0(β, J, ε, L), δ0(β, J, ε, L) and ε1(β, J, ε, L) such that for all t with ‖v(t)‖W s,2 ≤ κ0, s > D
2 ,

||v(t)||2 < δ0 and |a(t)| ≤ 1 there exists a positive constant B = B(κ0, L, d, β, J)

d

dt
φ(t) ≤ B

[
F(m(t))−F(m)

]
. (5.2)

Further if

I(m(t)) ≤ ε1
[
F(m(t))−F(m)

]
(5.3)

then
d

dt
φ(t) ≤ (1 + ε)4(1− σ(mβ))2

[
F(m(t))−F(m)

]
. (5.4)

The proof of Theorem 5.1 is based on several intermediate results. We start deriving the full

non–linear evolution for v inserting m(t) = ma(t) + v(t) into (1.1). Taking into account that m is

a stationary solution of (1.1), i.e

∇m− β(1−m2)(J ?∇m) = 0,

we obtain:

∂v

∂t
= ∇ ·

(
∇v − β(1−m2)J ?∇v

)
+ β∇ · (v(v + 2m)J ? (∇v +∇m)) + ȧ(t)m′

= ∇ · (σ(m)∇(Bv))

+ β∇ ·
(
v2J ?∇m

)
+ β∇ · ((v(v + 2m)J ?∇v)

+ ȧ(t)m′. (5.5)

Differentiating (5.1) produces terms involving ȧ(t). We estimate these by applying Theorem 2.3.
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5.2 LEMMA. Let v be a solution of (5.5). Then for any ε > 0 there are constant δ = δ(ε, β, J) > 0

and κ = κ(δ, ε, β, J) > 0, such that for all t with ‖v(t)‖2 ≤ δ and ‖v(t)‖W s+1,2 ≤ κ for s > D
2

d

dt
φ(t) ≤ 2

∫
B
(
σ(m)x2

1Bv
) ∂v
∂t

dx+ ε
[
F(m+ v)−F(m)

]
. (5.6)

Proof: Since B is self adjoint,

d

dt

∫
σ(m)|x1Bv|2dx = 2

∫
B
(
σ(m)x2

1Bv
)∂v
∂t

dx

+ ȧ(t)2

(
β

∫
mm′x2

1|Bv|2dx+

∫
σ(m)x2

1(Bv)
2mm′

β(1−m2)2
vdx

)
. (5.7)

By the exponential decays properties of m, see (1.10), the boundedness of B on L2(R × Λ) and

Theorem 2.3, which says that |ȧ(t)| ≤ D(κ, β, J)‖v(t)‖2, one clearly has

ȧ(t)2

(
β

∫
mm′x2

1|Bv|2dx +

∫
σ(m)x2

1(Bv)
2mm′

β(1−m2)2
vdx

)
≤ |ȧ(t)|C

[
‖mm′x2

1‖∞
∫
|Bv|2dx+ ‖σ(m)x2

1

mm′

β(1−m2)2
‖∞
∫

(Bv)vdx

]
≤ C(κ, β, J)‖v(t)‖2

[
F(m+ v)−F(m)

]
where C is a constant depending only on β, J and κ that changes from line to line. In the last

inequality we applied Lemma 4.4 and Lemma 8.1given the Appendix.

We will separately estimate the linear and nonlinear contributions from (5.5) to (5.6). Since Bm′ =
0, the term containing ȧ in (5.5) makes no contribution to (5.7).

The basic manipulation, to be done repeatedly in the rest of the proof, is to commute differen-

tiation and multiplication by x1 with B. Therefore we define

g(x1) = (
1

σ(m(x1))
)′ =

2m̄(x1)m̄′(x1)

β(1−m2(x1))2
, x1 ∈ R

and observe that

∇ (Bw) = e1gw + B(∇w), (5.8)

where e1 is the D unit vector in the x1− direction, e1 = (1, 0, . . . 0). In (5.8) and in the following

we denote by B(∇w) the D vector with components B(wxj ), j = 1, . . . , D and by ‖∇w‖22 =∑D
i=1 ‖

∂w
∂xi
‖22. Furthermore, define the convolution operator C by

Cw(x) =

∫
R×Λ

J(y)y1w(x− y)dy.

Observe that for any function w,

x1

(
Bw
)

= B(x1w) + Cw (5.9)

where x1w denotes the function with values x1w(x1, x
⊥
1 ). By Young’s inequality C is bounded on

all Lp with operator norm

‖C‖ ≤
∫
R×Λ
|x1J(x)|dx . (5.10)

We need the following technical lemma.
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5.3 LEMMA. For w ∈ L2(R× Λ), wxi ∈ L2(R× Λ), i = 1, . . . , D we have

‖σ(m)x1∇
(
Bw
)
‖2 ≤

‖
(
σ(m)x1m

′)′‖L2(R×Λ)

‖m′‖L2(R×Λ)
‖w‖2 + γ(L)−1/2‖B1/2

(
σ(m)x1∇

(
Bw
))
‖2 (5.11)

where γ(L) is the spectral gap (3.3) of B. Further there is a finite constant C > 0 depending only

on β and J such that whenever |a(t)| ≤ 1,

‖J ? (x1∇w)‖2 ≤ C
(
‖w‖2 + ‖B1/2(σ(m)x1∇

(
Bw
)
‖2
)
. (5.12)

Proof: Let P denote the orthogonal projection onto the span of m′; i.e., the null space of B. Then

P
(
σ(m)x1

(
Bw
)
x1

)
=

1

‖m′‖22
〈m′, σ(m)x1

(
Bw
)
x1
〉L2m′

= − 1

‖m′‖22
〈
(
σ(m)x1m

′)′, (Bw)〉L2m′,

and

P
(
σ(m)x1

(
Bw
)
xj

)
=

1

‖m′‖22
〈m′, σ(m)x1

(
Bw
)
xj
〉L2m′ = 0, j 6= 1.

Hence, by the Schwarz inequality and the fact that B is bounded, we get

‖P
(
σ(m)x1

(
Bw
)
x1

)
‖2 ≤

‖
(
σ(m)x1m

′)′‖2
‖m′‖2

‖w‖2 . (5.13)

Next,

‖P⊥
(
σ(m)x1∇

(
Bw
))
‖2 = ‖B−1/2B1/2P⊥

(
σ(m)x1∇

(
Bw
))
‖2

≤ γ(L)−1/2‖B1/2P⊥
(
σ(m)x1∇

(
Bw
))
‖2

= γ(L)−1/2‖P⊥B1/2
(
σ(m)x1∇

(
Bw
))
‖2

≤ γ(L)−1/2‖B1/2
(
σ(m)x1∇

(
Bw
))
‖2 .

Hence, the Minkowski inequality and (5.13) yield (5.11). To prove (5.12) we define the operator D
by

Dw =
1

β(1−m2
β)
w − J ? w . (5.14)

Fourier transforming, one sees that D is bounded with a bounded inverse since β(1 − m2
β) < 1.

Note that

Dw = Bw − g̃w, (5.15)

where

g̃(x1) =
1

β(1−m2(x1))
− 1

β(1−m2
β)
, x1 ∈ R. (5.16)

Also, D commutes with convolution by J , and

x1Dw = D(x1w) + Cw, (5.17)
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as with B in (5.9). Hence,

J ? x1∇w = D−1J ?
(
D(x1∇w)

)
= D−1J ?

(
x1D(∇w)− C(∇w)

)
=

−D−1C
(
∇J ? w

)
+D−1J ?

(
x1B∇w − x1g̃∇w

)
,

where we have used that convolution with J commutes with C and that J ?∇w = ∇J ? w. Next,

applying (5.8),

D−1J ?
(
x1B(∇w)− x1g̃∇w

)
= D−1J ?

(
x1∇

(
Bw
))
−D−1J ? (x1gwe1 + x1g̃∇w

)
.

We have that

‖D−1J ? (x1gwe1 + x1g̃∇w
)
‖2 ≤ C(β, J)‖w‖2,

where we used the rapidly decay of g and g̃ and that J ? (x1g̃∇w) = ∇J ? (x1g̃w) + J ?∇(x1g̃)w.

Thus,

‖J ? (x1∇w)‖2 ≤ ‖D−1C (∇J ? w) ‖2
+ ‖D−1J ?

(
x1∇

(
Bw
))
‖2

+ ‖D−1J ? (x1gwe1 + x1g̃∇w
)
‖2

≤ C(β, J)
(
‖w‖2e1 + ‖σ(m)x1∇

(
Bw
)
‖2 .

Now application of (5.11) yields (5.12).

Next we estimate the nonlinear contribution from (5.5) to (5.6).

5.4 LEMMA. Let v be a solution of (5.5). Then for any ε > 0 there are constants δ =

δ(β, J, ε, L) > 0 and κ = κ(β, J, ε, L) > 0 such that for all t with ‖v(t)‖2 ≤ δ, ‖v(t)‖W s,2 ≤ κ,

and |a(t)| ≤ 1,

d

dt
φ(t) ≤ 2

∫
B
(
σ(m)x2

1Bv
)
∇ · (σ(m)∇(Bv)) dx

+ ε
[
F(m+ v)−F(m)

]
+ ε‖B1/2

(
σ(m)x1∇

(
Bv
)
‖22.

Proof: We separately estimate the contribution of the two nonlinear terms in (7.1) to (5.6),

beginning with the more difficult of the two:

2

∫
B
(
σ(m)x2

1Bv
)
β∇ ·

(
v(v + 2m)J ?∇v

)
dx. (5.18)

Now integrating by parts and applying (5.8) to (5.18) yields∫
B
(
σ(m)x2

1Bv
)
β∇ ·

(
v(v + 2m)J ?∇v

)
dx = A1 +A2

with

A1 = −2

∫
g
(
σ(m)x2

1Bv
)
e1β
(
v(v + 2m)∇J ? v

)
dx

− 2

∫
B
(
σ(m)′x2

1Bv
)
β
(
v(v + 2m)e1∇J ∗ v

)
dx,
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A2 = −4

∫
B
(
σ(m)x1e1Bv

)
β
(
v(v + 2m)J ∗ ∇v

)
dx

− 2

∫
B
(
σ(m)x2

1∇ (Bv)
)
β
(
v(v + 2m)J ∗ ∇v

)
dx

where the first term in A1 comes from the first term of (5.8), and the remaining term of A1

together with the term A2 from differentiating the product σ(m)x2
1Bv. We have also used the

fact that J ?∇v = ∇J ? v. Because of (1.10), by Lemma 8.1 in the appendix and the inequality

‖v‖∞ ≤ c(d, s)‖v‖W s,2 , for s > D
2

|A1| ≤ C‖v‖∞‖v‖22 ≤ Cc(d, s)‖v‖W s,2‖v‖22 ≤ Cc(d, s)‖v‖W s,2

1

γ(L)

[
F(m+ v)−F(m)

]
(5.19)

where C is a constant depending only on β and J . Then for any ε > 0 there are constants δ > and

κ > 0 such that for all t the quantity in (5.19) is no greater than

|A1| ≤
ε

3

[
F(m+ v)−F(m)

]
. (5.20)

To estimate A2 we need to commute an x1 past B. Applying (5.9), these become

A2 = 4

∫
C
(
σ(m)Bv

)
e1β
(
v(v + 2m)J ∗ ∇v

)
dx+ 2

∫
C
(
σ(m)x1∇

(
Bv
))
β
(
v(v + 2m)J ∗ ∇v

)
dx

− 4

∫
B
(
σ(m)Bv

)
e1β
(
v(v + 2m)x1J ∗ ∇v

)
dx− 2

∫
B
(
σ(m)x1∇

(
Bv
))
β
(
v(v + 2m)x1J ∗ ∇v

)
dx.

Now, it is exactly the convolution by J in B that doesn’t commute with multiplication by x1 so

that

x1J ? w = J ? (x1w) + Cw

so that the integrals above can be partially rewritten as

A2 = 4

∫
C
(
σ(m)Bv

)
β
(
v(v + 2m)e1∇J ∗ v

)
dx+ 2

∫
C
(
σ(m)x1∇

(
Bv
))
β
(
v(v + 2m)J ∗ ∇v

)
dx

− 4

∫
B
(
σ(m)Bv

)
β
(
v(v + 2m)e1C(∇v)

)
dx− 2

∫
B
(
σ(m)x1∇

(
Bv
))
β
(
v(v + 2m)C(∇v

)
dx

− 4

∫
B
(
σ(m)Bv

)
β
(
v(v + 2m)e1J ∗ (x1∇v)

)
dx

− 2

∫
B
(
σ(m)x1∇

(
Bv
))
β
(
v(v + 2m)J ∗ (x1∇v)

)
dx.

Clearly there is a constant C depending only on β and J so that

‖C(∇v)‖2 ≤ C‖v‖2,

and hence the four terms containing C may be estimated, as in (5.19) by

‖v‖∞‖v‖22 ≤ c(d, s)‖v‖W s,2

1

γ(L)

[
F(m+ v)−F(m)

]
.

Hence there are constants κ and δ so that

Cc(d, s)‖v‖W s,2

1

γ(L)

[
F(m+ v)−F(m)

]
≤ ε

3

[
F(m+ v)−F(m)

]
(5.21)
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for all t with ‖v(t)‖2 ≤ δ, ‖v‖W s,2 ≤ κ and |a(t)| ≤ 1.

Next, by the Schwarz inequality, and then (5.12) of Lemma 5.3,

−4

∫
B
(
σ(m)Bv

)
β
(
v(v + 2m)e1J ∗ (x1∇v)

)
dx ≤ C‖v‖∞‖v‖2‖J ∗ (x1∇v)‖2

≤ C‖v‖∞‖v‖2
×

[
‖v‖2 + ‖B1/2σ(m)x1∇

(
Bv
)
‖2
]

(5.22)

and

−2

∫
B
(
σ(m)x1∇

(
Bv
))
β
(
v(v + 2m)J ∗ (x1∇v)

)
dx ≤ C‖v‖∞‖B1/2σ(m)x1∇

(
Bv
)
‖2‖J ∗ (x1∇v)‖2

≤ C‖v‖∞‖B1/2σ(m)x1∇
(
Bv
)
‖2

×
[
‖v‖2 + ‖B1/2σ(m)x1∇

(
Bv
)
‖2
]
. (5.23)

Hence the sum of the two terms in (5.22) and (5.23) is no greater than

C‖v‖∞
[
‖v‖22 + ‖B1/2σ(m)x1∇

(
Bv
)
‖22
]

and now decreasing δ and κ as necessary, we obtain as before from ‖v‖∞ ≤ c(d, s)‖v‖W s,2 and

Lemma 8.1 in the Appendix that this is no greater than

|A2| ≤
ε

3

[
F(m+ v)−F(m)

]
+ ε‖B1/2σ(m)x1∇

(
Bv
)
‖22 (5.24)

for all t with ‖v(t)‖2 ≤ δ, ‖v‖W s,2 ≤ κ and |a(t)| ≤ 1. Thus the estimate on (5.18) follows from

(5.20), (5.21) and (5.24).

It remains to estimate the contributions to (5.6) from the other of the two non-linear terms in

(5.5), namely

−2

∫
∇
(
B
(
σ(m)x2

1Bv
)) (

v2J ?∇m
)
dx.

Proceeding as above, though with with much less effort, one obtains that this term is bounded by

‖v‖∞
(
C‖v‖22 + ‖B1/2σ(m)x1∇

(
Bv
)
‖22
)

where the extra factor of ‖v‖∞ comes from the nonlinearity. Using once more the inequality

‖v‖∞ ≤ c(d, s)‖v‖W s,2 , one sees that for δ sufficiently small, one can combine the above estimates,

once more using Lemma 8.1 in the Appendix, to obtain the proof of the lemma.

5.5 THEOREM. Let v be a solution of (5.5). For any ε > 0 there are constants δ = δ(β, J, ε, L) >

0 and κ = κ(β, J, ε, L) > 0 such that for all t with ‖v(t)‖2 ≤ δ, ‖v‖W s,2 ≤ κ, for s > D
2 and

|a(t)| ≤ 1,

d

dt
φ(t) ≤ −4

∫
B
(
σ(m)Bv

)
x1σ(m)e1 · ∇(Bv)dx− 2‖B1/2

(
σ(m)x1∇

(
Bv
))
‖22

+ I1 + I2 + I3 + I4

+ ε
[
F(m+ v)−F(m)

]
+ ε‖B1/2

(
σ(m)x1∇

(
Bv
))
‖22 (5.25)
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where

I1 = −2

∫
g(x1)

(
σ(m)x2

1Bv
)
e1σ(m)∇(Bv)dx,

I2 = −2

∫
B
(
σ(m)′x2

1Bv
)
e1σ(m)∇(Bv)dx,

I3 = −4

∫
C
(
σ(m)Bv

)
e1σ(m)∇(Bv)dx,

I4 = −2

∫
C
(
σ(m)x1∇(Bv)

)
σ(m)∇(Bv)dx.

Proof: Denote by A

A = 2

∫
B
(
σ(m)x2

1Bv
)
∇ · (σ(m)∇(Bv)) = −2

∫
∇
(
B
(
σ(m)x2

1Bv
))
σ(m)∇(Bv).

By Lemma 5.4 the only term to take care to get (5.25) is A. Now applying (5.8) yields

A = −2

∫
g(x1)

(
σ(m)x2

1Bv
)
e1σ(m)∇(Bv)dx− 2

∫
B
(
∇
(
σ(m)x2

1Bv
))
σ(m)∇(Bv)dx. (5.26)

Further differentiating the product σ(m)x2
1Bv we have

−2

∫
B
(
∇
(
σ(m)x2

1Bv
))
σ(m)∇(Bv)dx = −2

∫
B
(
(σ(m))′x2

1Bv
)
e1σ(m)(∇(Bv)dx

− 4

∫
B
(
σ(m)x1Bv

)
e1σ(m)∇(Bv)dx

− 2

∫
B
(
σ(m)x2

1∇(Bv)
) (
σ(m)(∇(Bv)

)
dx.

Denote

I1 = −2

∫
g(x1)

(
σ(m)x2

1Bv
)
e1σ(m)∇(Bv)dx,

I2 = −2

∫
B
(
(σ(m))′x2

1Bv
)
e1σ(m)∇(Bv)dx.

We obtain, see (5.26),

A = I1 + I2

− 4

∫
B
(
σ(m)x1Bv

)
e1σ(m)∇(Bv)dx

− 2

∫
B
(
σ(m)x2

1∇(Bv)
) (
σ(m)(∇(Bv)

)
dx .

Next, to exploit the positivity of B, we need to distribute the factors of x1 symmetrically in the last

integral. To do this, apply (5.9) to account for commuting multiplication by x1 with B. We also do

this in the other integral, so that the same function σ(m)x1∇(Bv) is produced there as well. The

result is

A = I1 + I2
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− 4

∫
C
(
σ(m)Bv

)
e1σ(m)∇(Bv)dx

− 2

∫
C
(
σ(m)x1∇(Bv)

)
σ(m)∇(Bv)dx

− 4

∫
B
(
σ(m)Bv

)
x1e1σ(m)∇(Bv)dx

− 2

∫
B
(
σ(m)x1∇(Bv)

)
σ(m)x1∇(Bv)dx .

Now denote the first two terms after I1 and I2; i.e., those containing C, by I3 and I4 respectively.

Then, by Lemma 4.4, the result is proved.

Proof of Theorem 5.1: The starting point for proving both (5.2) and (5.4) is Theorem 5.5. We

start proving (5.2). The first two terms in (5.25) are the key to the analysis. They correspond to

the two terms produced in (1.27) when similar estimates were performed on the heat equation as

an illustration of the method. To see this more easily, introduce the following notations:

f = e1σ(m)Bv (5.27)

and

h = σ(m)x1∇(Bv) , (5.28)

〈f, h〉 =
D∑
i=1

∫
R×Λ

fi(x)hi(x)dx.

Notice that fi = 0 for all i ≥ 2. These first two terms in (5.25) can be written as following:

−4〈f,Bh〉 − 2〈h,Bh〉 = −〈h+ 2f,B(h+ 2f)〉 − 〈h,Bh〉+ 4〈f,Bf〉
≤ −〈h,Bh〉+ 4〈f,Bf〉.

(5.29)

The next step is to estimate each of the Ij appearing in (5.25) in terms of ‖v‖22, using the negative

term in (5.29) to absorb contributions from ∇v.

First, using the Schwarz inequality, and then the arithmetic–geometric mean inequality,

I1 ≤ 2‖gσ(m)x2
1Bv‖2‖σ(m)∇(Bv)‖2 ≤ λ‖gσ(m)x2

1Bv‖22 +
1

λ
‖σ(m)∇(Bv)‖22

for any λ > 0. Now choose λ so large that the estimate (5.11) of Lemma 5.3 gives

1

λ
‖σ(m)∇(Bv)‖22 ≤

1

4

(
‖v‖22 + 〈h,Bh〉

)
where h is given in (5.28). The choice of λ depends also on L. One obtains a constant C depending

on β, J and L such that

I1 ≤
1

4
〈h,Bh〉+ C‖v‖22 . (5.30)

It is easier to deal with I2. Schwarz and (1.10) suffice to establish that there is a constant C

depending only on β, and certain finite moments of m′ so that

I2 ≤
1

4
〈h,Bh〉+ C‖v‖22 . (5.31)
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To bound I3, we will integrate by parts. Note that using (5.27)

I3 = −4

∫ (
Cf
)
σ(m)∇(Bv)dx = 4

∫
∇(Cf

)
σ(m)

(
Bv
)
dx+ 4

∫ (
Cf
)
σ(m)′

(
Bv
)
dx.

Using this, (5.10) and the rapid decay of σ(m)′ coming from (1.10), there is clearly a constant C

depending only on β and J so that

I3 ≤ C‖σ(m)Bv‖22 . (5.32)

Finally, to bound I4, we use (5.28) and again integrate by parts:

I4 = −2

∫ (
Ch
)
σ(m)∇

(
Bv
)
dx = 2

∫
∇
(
Ch
)
σ(m)

(
Bv
)
dx+ 2

∫ (
Ch
)
σ(m)′

(
Bv
)
dx.

Now proceeding as with I3, one obtains a constant C depending only on β and J so that

I4 ≤ C‖σ(m)Bv‖2〈h,Bh〉1/2 ≤
1

4
〈h,Bh〉+ 4C2‖σ(m)Bv‖22 . (5.33)

Then, from (5.30), (5.31), (5.32) and (5.33) we have

I1 + I2 + I3 + I4 ≤
3

4
〈h,Bh〉+ C‖v‖22. (5.34)

¿From Theorem 5.5, taking into account (5.29) and (5.34) we have

d

dt
φ(t) ≤ −〈h,Bh〉+ 4〈f,Bf〉+

3

4
〈h,Bh〉+ C‖v‖22

+ ε
[
F(m+ v)−F(m)

]
+ ε‖B1/2

(
σ(m)x1∇

(
Bv
)
‖22.

Take ε < 1
4 , and using the fact that B is bounded, with a bound depending only on β J and L,

Lemma 8.1, we have (5.2). To get (5.4) we estimate I1 through I4 under the assumption (5.3). We

have

I1 = −2〈gσ2(m)x2
1Bv, (Bv)x1〉L2

≤ 2‖gσ2(m)x2
1‖∞‖Bv‖2‖(Bv)x1‖2

≤ 2‖gσ2(m)x2
1‖∞

(
2α̃ε1(1 + 2ε)

(1− 3ε)σ(mβ)

)1/2 [
F(m+ v)−F(m)

]
where we used (4.26) ( ‖Bv‖2L2(R×Λ) ≤ 2α̃(1 + 2ε)[F

(
m(t)) − F

(
m
)]

) of Lemma 4.4, (3.5) of

Theorem 3.1 in the last step, together with the assumption (5.3). Note that ‖gσ(m)2x2
1‖∞ is

bounded by a constant depending only on β and J by (1.10) and the hypothesis that |a(t)| ≤ 1,

since (1.10) implies that g is a rapidly decaying bump function centered on a(t). Other L∞ estimates

involving x1 will be treated in the same way without further mention. This is the only use made

of |a(t)| ≤ 1. Similarly,

I2 = −2〈σ(m)B
(
σ(m)′x2

1Bv
)
e1,∇

(
Bv)〉L2

≤ 2‖σ(m)‖∞‖‖B‖‖σ(m)′x2
1‖∞‖Bv‖2‖∇

(
Bv)‖2

≤ 2‖σ(m)‖∞‖‖B‖‖σ(m)′x2
1‖∞

(
2α̃ε1(1 + 2ε)

(1− 3ε)σ(mβ)

)1/2 [
F(m+ v)−F(m)

]
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In the same way, one obtains similar bounds for I3 and I4 and then since all of the ‖ · ‖∞ terms are

bounded a–priori in terms of β and J , there is a constant C depending only on β and J such that

I1 + I2 + I3 + I4 ≤ Cε1
[
F(m+ v)−F(m)

]
.

Choosing ε1 = ε/C, one has

I1 + I2 + I3 + I4 ≤ ε
[
F(m+ v)−F(m)

]
. (5.35)

Recalling notations (5.27) and (5.28), Theorem 5.5 and (5.35) one has

d

dt
φ(t) ≤ −4〈f,Bh〉L2 − (2− ε)〈h,Bh〉L2

+ 2ε
[
F(m+ v)−F(m)

]
. (5.36)

Now, since B is non negative,

−4〈f,Bh〉L2 − (2− ε)〈h,Bh〉L2 = −〈(2− ε)1/2h+ 2(2− ε)−1/2f,B
(
(2− ε)1/2h+ 2(2− ε)−1/2f

)
〉L2

+ 4(2− ε)−1〈f,Bf〉L2

≤ 4(2− ε)−1〈f,Bf〉L2 . (5.37)

To bound this in terms of the excess free energy, one makes repeated use of (8.10) of Lemma 8.2

together with the self adjointness and boundedness of B, to replace factors of σ(m) with factors of

σ(mβ):

〈f,Bf〉L2 = 〈σ(m)Bv,Bσ(m)Bv〉L2

= 〈σ(mβ)Bv,Bσ(m)Bv〉L2 + 〈[σ(m)Bv − σ(mβ)Bv],Bσ(m)Bv〉L2

≤ σ(mβ)〈Bv,Bσ(m)Bv〉L2 + C‖∇
(
Bv
)
‖2‖Bv‖2

= σ(mβ)〈B2v, σ(m)Bv〉L2 + C‖∇
(
Bv
)
‖2‖Bv‖2

≤ σ(mβ)2〈B2v,Bv〉L2 + 2C‖∇
(
Bv
)
‖2‖Bv‖2

≤ σ(mβ)2α̃〈Bv,Bv〉L2 + 3C‖∇
(
Bv
)
‖2‖Bv‖2

= σ(mβ)2α̃2〈v,Bv〉L2 + 4C‖∇
(
Bv
)
‖2‖Bv‖2, (5.38)

where C is constant derived from those in the cited lemmas. Combining estimates (5.36), (5.37)

and (5.38) we have

d

dt
φ(t) ≤ −σ(mβ)2α̃24(2− ε)−1〈v,Bv〉L2 + 4C‖∇

(
Bv
)
‖2‖Bv‖2 + 2ε

[
F(m+ v)−F(m)

]
.

By the hypotheses (5.3), (4.26) of Lemma 4.4 , (3.5) of and Theorem 3.1 we have

4C‖∇
(
Bv
)
‖2‖Bv‖2 ≤ ε

[
F(m+ v)−F(m)

]
for ε1 sufficiently small. By Lemma 8.1 of the Appendix 〈v,Bv〉L2 ≤ 2

(1−ε)
[
F(m + v) − F(m)

]
for

δ and κ sufficiently small. Redefining ε, one has

d

dt
φ(t) ≤ (1 + ε)4α̃2σ(mβ)2

[
F(m+ v)−F(m)

]
.

which is the desired result since α̃2σ2(mβ) = (1− σ(mβ))2.
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6 Proof of the main results

We begin this section by proving several lemmas concerning the L1 norm. The first of these will

be used in the proof of Theorem 1.1 to control |a− a(t)| when a is given by (1.12) and a(t) denotes

the shift from the origin of the closest front to m(t), see (1.16).

6.1 LEMMA. Let w be a function such that w − sgn(x1)mβ, x1 ∈ R, is integrable and b be fixed

by the condition ∫
R×Λ

(
w(x)− m̄b(x)

)
dx = 0. (6.1)

Then for any c

|b− c| ≤ 1

2mβ

1

Ld

∫
R×Λ

∣∣w(x)− m̄c(x)
∣∣dx. (6.2)

In particular, for any solution m(t) of (1.1) and any t such that m(t)− sgn(x1)mβ is integrable,

|a(t)− a| ≤ 1

2mβ

1

Ld

∫
R×Λ

∣∣m(x, t)− m̄a(t)(x)
∣∣dx (6.3)

where a is fixed by the condition that∫ (
m(x, 0)− m̄a(x)

)
dx = 0.

Proof: First, since
∫
R m̄

′
0(x1)dx1 = 2mβ > 0, there is exactly one b such that (6.1) holds. Next,

adding and subtracting m̄c, one sees∫
R×Λ

(
w(x)− m̄c(x)

)
dx =

∫
R×Λ

(
m̄b(x)− m̄c(x)

)
dx.

Also, it is clear that ∫
R×Λ

(
m̄b(x)− m̄c(x)

)
dx = 2mβ(b− c)Ld

and (6.2) easily follows.

6.2 LEMMA. Let w be any function such that∫
R×Λ
|w(x)|2(1 + x2

1)dx <∞ .

For any 0 < δ < 1 so that

C(δ, L) =

(∫
R×Λ

(1 + x2
1)−(1+δ)/2dx

)1/2

<∞

we have

‖w‖1 ≤ C(δ, L)‖(1 + x2
1)1/2w‖(1+δ)/2

2 ‖w‖(1−δ)/22 .
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Proof: Let p = (1 + δ)/2 and observe that∫
R×Λ
|w(x)|dx =

∫
R×Λ

(1 + x2
1)−p/2(1 + x2

1)p/2|w(x)|dx

≤
(∫

R×Λ
(1 + x2

1)−pdx

)1/2(∫
R×Λ

(1 + x2
1)p|w(x)|2dx

)1/2

.

(6.4)

Jensen’s inequality, for p < 1, implies

1

‖w‖22

∫
R×Λ

(1 + x2
1)p|w(x)|2dx ≤

(
1

‖w‖22

∫
R×Λ

(1 + x2
1)|w(x)|2dx

)p
. (6.5)

The result easily follows from (6.4) and (6.5).

Since φ(t) is defined in term of moments of Bv instead of v, see (5.1), we need one more lemma

to apply the previous one.

6.3 LEMMA. There is a finite constant C depending only on β and J so that for all t such that

|a(t)| ≤ 1 and ‖v(t)‖2 ≤ 1,

‖(1 + x2
1)1/2v(t)‖22 ≤ C(β, J)φ(t) (6.6)

and (
φ(t)− Ld

)
≤ C(β, J)‖x1v(t)‖22. (6.7)

Proof: Let D be the operator defined in (5.14)

Dw =
1

β(1−m2
β)
w − J ? w .

As we have pointed out in Section 5 this operator is bounded and has a bounded inverse on

L2(R× Λ). Then, using once more the rules for commuting convolution and multiplication by x1,

see (5.17), we have

‖x1v‖2 ≤‖D−1‖‖Dx1v‖2
=‖D−1‖‖x1Dv − (x1J) ? v‖2
≤‖D−1‖

(
‖x1Dv‖2 + ‖(x1J)‖1‖v‖2

)
≤C
(
‖x1Dv‖2 + ‖v‖2

)
for some constant C depending only on β and J . Next, taking into account (5.15)

‖x1Dv‖2 =‖x1Bv − x1g̃v‖2
≤‖x1Bv‖2 + ‖x1g̃‖∞‖v‖2,

where, recall (5.16),

g̃(x1) = σ(m̄(x1))−1 − σ(mβ)−1, x1 ∈ R.

Since the hypothesis |a(t)| ≤ 1, ‖x1g̃‖∞ ≤ C for some constant C depending only on β and J .

Thus we have

‖x1Dv‖2 ≤ C
(
‖x1Bv‖2 + ‖v‖2

)
.
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Finally,

σ(mβ)‖x1Bv‖22 =

∫
R×Λ

x2
1(σ(mβ)− σ(m̄))

(
Bv
)2

dx+

∫
R×Λ

x2
1σ(m̄)

(
Bv
)2

dx

≤‖x2
1(σ(mβ)− σ(m̄))‖∞‖Bv‖22 +

∫
R×Λ

x2
1σ(m̄)

(
Bv
)2

dx

and the sup norm is again bounded by some constant C(β, J) depending only on β and J by (1.10)

and the hypothesis |a(t)| ≤ 1. Combining these estimates, one easily obtains∫
R×Λ

(1 + x2
1)v2dx ≤ C

(∫
R×Λ

x2
1σ(m̄)

(
Bv
)2

dx+ ‖v‖22
)

which yields (6.6) since ‖v(t)‖2 ≤ 1 by hypothesis. The proof of (6.7) simply reverses the above

steps. With C changing from line to line, one easily obtains∫
R×Λ

x2
1σ(m̄)

(
Bv
)2

dx ≤C
(
‖x1Bv‖22 + ‖v‖22

)
≤C
(
‖xDv‖22 + ‖v‖22

)
≤ C

(
‖Dx1v‖22 + ‖v‖22

)
≤C
(
‖x1v‖22 + ‖v‖22

)
and this complete the proof.

Proof of Theorem 1.1 : First, fix ε > 0, and then choose δ1, κ1 and ε1 small enough so that

both the following three estimates hold under the condition that

I(m(t)) ≤ ε1
[
F(m(t))−F(m)

]
(6.8)

for all t such that |a(t)| ≤ 1, ‖v(t)‖2 ≤ δ1 and ‖v(t)‖W s+1,2 ≤ κ1, s > D
2 :

d

dt

[
F
(
m(t))−F

(
m̄
)]
≤ −9(1− ε)(1− σ(mβ))2

[
F
(
m(t))−F

(
m̄
)]2

φ(t)
(6.9)

and
d

dt
φ(t) ≤ (1 + ε)4(1− σ(mβ))2

[
F(m̄+ v)−F(m̄)

]
. (6.10)

This is possible by Theorems 4.1 and 5.1. By (5.2) of Theorem 5.1 and Lemma 8.1 in the appendix

decreasing δ1 > 0 and κ1 > 0 if need be, we have for a finite constant B and c(κ1)

d

dt
φ(t) ≤ B

[
F(m̄+ v)−F(m̄)

]
(6.11)

and
1

4
γ(L)‖v‖22 ≤

[
F(m̄+ v)−F(m̄)

]
≤ c(κ1)‖v‖22. (6.12)

Next define δ0 by

δ0 =
δ1

√
γ(L)

4(c(κ1) + 1)
(6.13)
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where γ(L) and c(κ1) are the constants in (6.12). Theorem 2.2 applied with the values of δ0, δ1

and κ1 fixed above, guarantees the existence of an ε0 > 0 and a t0 so that when the initial data

satisfies ‖m0 − m̄‖2 ≤ ε0, the solution to (1.1) satisfies

‖v(t0)‖2 ≤ δ0 (6.14)

and

‖v(t)‖W s,2 ≤ κ1

for all t ≥ t0 such that ‖v(t)‖2 ≤ δ1. We have from Theorem 2.2 that∫
R×Λ

(
x1(m(x, t0)− m̄0(x)

)2
dx ≤ 2c0

where c0 is the constant specified in the hypotheses of Theorem 1.1. Clearly then,

‖x1v(t0)‖22 ≤ 2
(
‖x1(m(t0)− m̄0)‖22 + 4mβa(t0)Ld

)
.

By Theorem 2.3 we may suppose, further decreasing δ1 if need be, that 4mβa(t0)Ld ≤ c0. Then

‖x1v(t0)‖22 ≤ 5c0

and hence, by (6.7) of Lemma 6.3,

φ(t0) ≤ c̃0 (6.15)

where c̃0 is a finite constant depending only on c0, β, J and L. Hence, writing f(t) =
[
F(m(t))−

F(m)
]
, we have to control on the values of both f(t0) and φ(t0) through (6.14) and (6.15).

The time t0 is the time we have to wait for the smoothing properties of the equation (1.1) to

regularize our data enough that the estimates above all hold, and it fixes the left end of the interval

on which we shall work. To fix the right end, which we shall eventually show to be +∞, define

T0 = min{ inf{ t > t0 | ‖v(t)‖2 ≥ δ1/2 } , inf{ t > t0 | |a(t)| ≥ 1 } } .

Then, uniformly on the interval (t0, T0), both of the estimates (6.11) and (6.12) holds. Moreover for

those t in (t0, T0) such that (6.8) holds, one also has (6.9) and (6.10). Hence we have the following

alternative:

One the one hand, in case

I(m(t)) ≤ ε1
[
F(m(t))−F(m)

]
d

dt
f(t) ≤ −Ãf(t)2

φ(t)

d

dt
φ(t) ≤ B̃f(t)

(6.16)

where Ã and B̃ by

Ã = 9(1− ε)(1− σ(mβ))2

B̃ = 4(1 + ε)(1− σ(mβ))2.
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On the other hand, in case

I(m(t)) ≥ ε1
2

[
F(m(t))−F(m)

]
,

d

dt
f(t) ≤ −ε1

2
f(t)

d

dt
φ(t) ≤ Bf(t).

In the application of the system of differential inequalities (1.35), it is the ratio of the constants A

and B that determines the exponent q, see Theorem 5.1 of [3]. Indeed,

q =
(A/B)

(A/B) + 1
.

The values of A and B themselves can be changed, keeping this ratio fixed, simply by rescaling the

time t. Therefore we define

A =
Ã

B̃
B

and observe that
ε1
2
f(t) =

ε1
2Af(t)

Af(t)2 ≥ ε1
2Af(t)

A
f(t)2

φ

since φ(t) ≥ 1 by definition. Now, by (6.12) we may further decrease δ1 > 0 if need be to ensure

that
ε1

2Af(t)
≥ 1 .

Doing so, we have that in case

I(m(t)) ≥ ε1
2

[
F(m(t))−F(m)

]
d

dt
f(t) ≤ −Af(t)2

φ(t)

d

dt
φ(t) ≤ Bf(t)

(6.17)

where
A

B
=
Ã

B̃
.

Now suppose that at t0,

I(m(t0)) >
ε1
2

[
F(m(t0))−F(m)

]
.

Define

t1 = inf{ t > t0 | I(m(t)) ≤ ε1
2

[
F(m(t))−F(m)

]
} ,

t2 = inf{ t > t1 | I(m(t)) ≥ ε1
[
F(m(t))−F(m)

]
} ,

t3 = inf{ t > t2 | I(m(t)) ≤ ε1
2

[
F(m(t))−F(m)

]
} ,

and so forth. We follow the usual convention that if there is no t < T0 satisfying the condition,

the infimum is set to be T0. Notice that since I(m(t)) and F(m(t)) are continuous function of t,

t3 > t2 > t1 > t0. The sequence of times tj can have no limit point except possibly T0, since at

such a limit point, the continuous function I(m(t)) would take on two values.
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If at t0,

I(m(t0)) ≤ ε1
2

[
F(m(t0))−F(m)

]
,

one would define

t1 = inf{ t > t0 | I(m(t)) ≥ ε1
[
F(m(t))−F(m)

]
} ,

and then proceed as above with the opposite alternation.

In either case, one produces a sequence of intervals [tj , tj+1] on which (6.16) and (6.17) hold

in successive alternation. On each of these intervals, we may apply Theorem 5.1 of [3]. To put all

of these estimates together in a transparent way, we rescale the intervals on which (6.17) holds.

Supposing that (6.17) holds on [t0, t1], define

s(t) =
A

Ã
(t− t0) and s1 =

A

Ã
(t1 − t0)

for t0 < t < t1,

s(t) = s1 + (t− t1) and s2 = s1 + (t2 − t1)

for t1 < t < t2,

s(t) = s2 +
A

Ã
(t− t2) and s3 =

A

Ã
(t3 − t2)

for t2 < t < t3, and so forth in alternation. It follows that

d

ds
f(s) ≤ −Ãf(s)2

φ(s)

d

ds
φ(s) ≤ B̃f(s)

for all s with 0 ≤ s ≤ s(T0). By Theorem 5.1 of [3],

f(s) ≤ f(0)1−qφ(0)q
(
φ(0)

f(0)
+ (Ã+ B̃)s

)−q
φ(s) ≤ f(0)1−qφ(0)q

(
φ(0)

f(0)
+ (Ã+ B̃)s

)1−q

where

q =
Ã

Ã+ B̃

and where f(0) and φ(0) are bounded by (6.14) and (6.15). Now, for any δ > 0, we can choose ε

so that
Ã

Ã+ B̃
=

9

13
− δ .

We shall now show that for δ small enough, |a(t)| ≤ 1/2 for all t ≤ T0. Then by Lemmas 6.2,

6.3 and estimate (6.12),

‖v(s)‖1 ≤C(δ, L)‖(1 + x2
1)1/2v(s)‖(1+δ)/2

2 ‖v(s)‖(1−δ)/22

≤C(δ, L)C(β, J)(1+δ)/4(
4

γ(L)
)(1−δ)/4φ(s)(1+δ)/4f(s)(1−δ)/4

≤C(δ, L)C(β, J)(1+δ)/4(
4

γ(L)
)(1−δ)/4f(0)(1−q)/4φ(0)q/4

(
φ(0)

f(0)
+ (Ã+ B̃)s

)(1−2q+δ)/4

.

(6.18)
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The right hand side is decreasing for δ < 5/26, and we now choose δ to be at least this small.

Moreover, the value at s = 0 can be made arbitrarily small by decreasing δ1. We now do so, if need

be, to ensure that

‖v(s)‖1 ≤ mβ/2

for all s ≤ s(T0). Hence, for a, as in (1.12), by Lemma 6.1, we have

|a(t)− a| ≤ 1/4
1

Ld

for all t ≤ T0. But then by Lemma 6.1 again, this implies that |a(t)| < 1
2Ld for all t ≤ T0. Hence

if T0 <∞, it is because ‖v(T0)‖2 = δ1/2. But since (6.12) is still valid with the same constants on

the closed interval [t0, T0], and since the excess free energy is monotone decreasing, we have

δ2
1

4
= ‖v(T0)‖22

≤ 4

γ(L)

(
F(m̄+ v(T0))−F(m̄)

)
≤ 4

γ(L)

(
F(m̄+ v(t0))−F(m̄)

)
≤c(κ1)

4

γ(L)
‖v(t0)‖22 ≤ c(κ1)

4

γ(L)
δ2

0 .

This contradicts (6.13), and hence T0 <∞ is not possible. We now clearly have (1.13) since

s(t) ≥ min

{
A

Ã
, 1

}
(t− t0) .

Also from this and (6.18), we have

‖m(t)− m̄a(t)‖1 ≤ c2(1 + c1t)
−(5/52−δ) .

But

‖m(t)− m̄a‖1 ≤‖m(t)− m̄a(t)‖1 + ‖m̄a − m̄a(t)‖1
=‖m(t)− m̄a(t)‖1 + 2mβL

d|a− a(t)|
≤2‖m(t)− m̄a(t)‖1

by (6.3). Hence (1.14) follows as well.

7 Proof of smoothing estimates

The main goal of this section is to deduce the regularity properties stated in Theorem 2.2 for the

derivatives of the solution m(t) of equation (1.1) that starts sufficiently close in the L2 norm to m̄b

for some b:

The proof depends on several intermediate results concerning the evolution of m(t) − m̄b and

its derivatives for fixed b. To simplify the notation, we will write m̄ instead of m̄b, so one should

keep in mind that in this section m̄ is not necessarily the antisymmetric, increasing instanton.

Let v = m − m̄. Notice we are not assuming that m̄ = m̄a(t), so this definition of v(t) differs

slightly from the one used in the rest of the paper. However, for most of this section, it is the most
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convenient notation. It saves us from keeping ȧ(t) terms throughout the many calculations that

follow. From the evolution equation

∂m

∂t
= ∇ ·

(
∇m− β(1−m2)J ∗ ∇m

)
and the eigenvalue equation

β(1− m̄2)J ∗ m̄′ = m̄′

we deduce the following evolution equation for v

∂v

∂t
= ∇ ·

(
∇v − β(1− m̄2)∇J ∗ v

)
+ β∇ · e1

(
v(v + 2m̄)J ∗ m̄′

)
+ β∇ · (v(v + 2m̄)∇J ∗ v) .

(7.1)

Here and in what follows, e1 denote the unit vector in the x1 direction. Define

Ψ := β
(
e1J ? m̄

′ +∇J ? v
)

and Φ := 2m̄Ψ .

We can write (7.1) as

∂v

∂t
= ∇ ·

(
∇v − β(1− m̄2)∇J ∗ v

)
+∇ ·

(
v2Ψ

)
+∇ · (vΦ) . (7.2)

Since Ψ and hence Φ depend on v, both the second and the third terms on the right in (7.2)

are nonlinear in v. However, because of the convolution with J , the dependence on v that enters

through these terms is harmless as far as smoothness of v is concerned. For any multindex α, denote

by Dα the corresponding differentiation operator. Since both ‖m‖∞ ≤ 1 and ‖m̄‖∞ ≤ mβ ≤ 1,

‖v‖∞ ≤ 2, we have

‖Dα(J ∗ v)‖∞ = ‖(DαJ) ∗ v‖∞ ≤ 2‖(DαJ)‖∞ ,

independent of v. Then, since m̄ is smooth, there exist finite constants Cα depending only on J

and α so that

‖DαΨ‖∞ ≤ Cα and ‖DαΦ‖∞ ≤ Cα . (7.3)

Our first goal is to study the smoothing properties of (7.2). We shall show that on any interval of

time on which ‖v(t)‖2 stays bounded, solutions immediately develop derivatives of all orders even

if the initial data is not smooth. To use this, we need to know that ‖v(t)‖2 stays bounded in some

interval of the origin. Later of course we shall see that if ‖v(0)‖2 is small enough, this holds globally

in time. In the next Lemma and in what follows, C will denote a constant depending only on J

and β but otherwise changing from line to line.

7.1 LEMMA. Let v be a solution of (7.1). Then there is a finite constant C depending only on

J and β so that for all t > 0,

‖v(t)‖22 ≤ eCt‖v(0)‖22 .
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Proof: From (7.2) we have

d

dt
‖v‖22 = 2

∫
v
∂v

∂t
dx =

− 2‖∇v‖22 + 2β

∫
∇v ·

(
(1− m̄2)∇J ∗ v

)
dx

− 2

∫
∇v ·

(
v2Ψ + vΦ

)
dx

≤ −2‖∇v‖22 + C‖∇v‖2‖v‖2

where in the last line we have used the bound ‖v‖∞ ≤ 2. Completing the square leads to
d

dt
‖v‖22 ≤ C‖v‖22, and the result follows directly.

7.2 LEMMA. Let v be a solution of (7.1) and suppose that for some finite δ and positive Tδ,

‖v(t)‖22 ≤ δ for all t ≤ Tδ .

Then

‖∇v(t)‖22 ≤
δ

2t
+ Cδ for all t ≤ Tδ

where C is a constant depending only on J and β.

Proof: We begin with the L2 norm of the first derivatives.

d

dt
‖∇v‖22 = −2

∫
∆v

∂v

∂t
dx

= −2‖∆v‖22 + 2β

∫
∆v∇ ·

(
(1− m̄2)∇J ∗ v

)
dx

+ 2

∫
∆v∇ ·

(
v2Ψ + vΦ

)
dx.

(7.4)

By the Schwarz inequality, this is no more than

−2‖∆v‖22 + 2‖∆v‖2
[
β‖∇ · (1− m̄2)∇J ∗ v)‖2 + ‖∇ · v2Ψ‖2 + ‖∇ · (vΦ)‖2

]
Now,

‖∇ ·
(
(1− m̄2)∇J ∗ v

)
‖2 ≤ ‖2m̄′∇J ∗ v‖2 + ‖(∆J) ∗ v‖2 ≤ C‖v‖2. (7.5)

Then by (7.3) and the a-priori estimate ‖v‖∞ ≤ 2,

‖∇ · v2Ψ‖2 ≤ C(‖∇v‖2 + ‖v‖2) and ‖∇ · (vΦ)‖2 ≤ C(‖∇v‖2 + ‖v‖2) .

Combining this with (7.5), we obtan

d

dt
‖∇v‖22 ≤ −2‖∆v‖22 + ‖∆v‖2C(‖∇v‖2 + ‖v‖2).

We use half of our dissipative term −2‖∆v‖22 to eliminate reference to ∇v and ∆v in the positive

part of this bound. To do so, note that by the Schwarz inequality

‖∇v‖22 = −
∫

(∆v)vdx ≤ ‖∆v‖2‖v‖2 .
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Therefore, ‖∆v‖2‖∇v‖2 ≤ ‖∆v‖3/22 ‖v‖
1/2
2 . By the arithmetic–geometric mean inequality,

‖∆v‖3/22 ‖v‖
1/2
2 ≤ 3ε

4
‖∆v‖22 +

1

4ε3
‖v‖22

for any ε > 0. Even more simply ‖∆v‖2‖v‖2 ≤
ε

2
‖∆v‖22 +

1

2ε
‖v‖22, and thus,

d

dt
‖∇v‖22 ≤

(
−2 +

ε5C

4

)
‖∆v‖22 +

3C

4ε
‖v‖22.

Again by the Schwarz inequality

‖∆v‖22 ≥
‖∇v‖42
‖v‖22

.

Using this, and choosing ε so that 5Cε ≤ 4, one finally obtains

d

dt
‖∇v‖22 ≤ −

‖∇v‖42
‖v‖22

+ C‖v‖22 .

Now by hypothesis, for all times t under consideration, we have the bound ‖v‖22 ≤ δ. Letting

x(t) denote the value of ‖∇v‖22 at time t, we then have the differential inequality

d

dt
x ≤ −x

2

δ
+ Cδ .

Introducing y = 1/x, one obtains a differential inequality of the form

d

dt
y ≥ 1

δ
− Cδy2.

Now let y∗

y∗ =
1√
2Cδ

,

so that for 0 ≤ y ≤ y∗, y
′ ≥ 1

2δ , and for y∗ ≤ y ≤
√

2y∗, we have at least that y′ ≥ 0. This means

that y increases with rate at least 1/2δ until y∗ is reached. At this point it is still increasing, and it

continues to increase until
√

2y∗, and it never again passes below this value, and hence never again

below y∗ either. Therefore

y(t) ≥ min{t/2δ , y∗} for all t > 0 ,

and hence

x(t) ≤ max{2δ/t ,
√

2Cδ} ≤ 2δ/t+
√

2Cδ for all t > 0 .

This proves the stated assertion about ‖∇v‖22.

We next consider the second derivatives, where a new feature emerges.

7.3 LEMMA. Let v be a solution of (7.1) and suppose that for some δ > 0 and Tδ > 0,

‖v(t)‖22 + ‖∇v(t)‖22 ≤ δ for all t ≤ Tδ .

Then

‖∆v(t)‖22 ≤
δ

2t
+ Cδ for all t ≤ Tδ

where C is a constant depending only on J and β.
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Proof:

d

dt
‖∆v‖22 = 2

∫
[(−∆)2v]

∂v

∂t
dx = −2‖∇∆v‖22 + 2β

∫
[∇∆v] · ∇div

(
(1− m̄2)∇J ∗ v

)
dx

+ 2

∫
[∇∆v] · ∇div

[(
v2Ψ

)
+ (vΦ)

]
dx.

(7.6)

By the Schwarz inequality, this is no more than

−2‖(−∆)3/2v‖22 + C‖(−∆)3/2v‖2
[
‖∆((1− m̄2)J ∗ ∇v)‖2 + ‖∆

(
v2Ψ

)
‖2 + ‖∆ (vΦ) ‖2

]
. (7.7)

The estimation of this proceeds as before, but with one new feature: Now there is a contribution

of the form

∆v2 = 2v∆v + 2|∇v|2 .

As before, we can use the bound ‖v‖∞ ≤ 2 to conclude that ‖v∆v‖2 ≤ 2‖∆v‖2. However

‖|∇v|2‖2 = ‖∇v‖24 .

Thus, using the elementary estimate ‖∇v‖2 ≤ ‖v‖2 + ‖∆v‖2, we bound the quantity in (7.7) by

− 2‖(−∆)3/2v‖22 + C‖(−∆)3/2v‖2
[
‖∆((1− m̄2)J ∗ ∇v)‖2 + ‖∆

(
v2Ψ

)
‖2 + ‖∆ (vΦ) ‖2

]
≤

− 2‖(−∆)3/2v‖22 + C‖(−∆)3/2v‖2
(
‖v‖2 + ‖∆v‖2 + ‖|∇v|2‖2

)
.

(7.8)

To handle ‖|∇v|2‖2, we compute∫
|∇v|4dx =

∫
∇v · ∇v|∇v|2dx

= −
∫
v[(∆v)|∇v|2 − 2D2v(∇v,∇v)]dx

≤ C‖D2v‖2‖|∇v|2‖2 ≤ C‖∆v‖2
(∫
|∇v|4dx

)1/2

.

That is,

‖∇v‖24 ≤ C‖∆v‖2 . (7.9)

Using this in (7.8), our estimate for right hand side of (7.6) becomes

d

dt
‖∆v‖22 ≤ −2‖(−∆)3/2v‖22 + C‖(−∆)3/2v‖2(‖v‖2 + ‖∆v‖2).

Now by Schwarz,

‖∆v‖22 = 〈(−∆)3/2v, (−∆)1/2v〉 ≤ ‖(−∆)3/2v‖2‖∇v‖2. (7.10)

Therefore

d

dt
‖∆v‖22 ≤ −2‖(−∆)3/2v‖2 + ‖(−∆)3/2v‖2C

(
‖(−∆)3/2v‖1/22 ‖∇v‖

1/2
2 + ‖v‖2

)
.

By the same type of arithmetic-geometric mean argument we made earlier, we obtain

d

dt
‖∆v‖22 ≤ −‖(−∆)3/2v‖22 + C

(
‖∇v‖22 + ‖v‖22

)
,
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and then by (7.10),

d

dt
‖∆v‖22 ≤ −

‖∆v‖42
‖∇v‖22

+ C
(
‖∇v‖22 + ‖v‖22

)
≤ −‖∆v‖

4
2

δ
+ Cδ.

The analysis of this differential inequality proceeds exactly as with (7.4) in the previous lemma.

Up to this point, our analysis had not depended in any significant way on the dimension. To

proceed to higher smoothness estimates, we need to take the dimension into account: One last new

feature enters in adapting our strategy for proving smoothness to higher derivatives.

7.4 LEMMA. For dimension D ≤ 3, let v be a solution of (7.1) and suppose that for some δ > 0

and Tδ > 0,

‖v(t)‖22 + ‖∇v(t)‖22 + ‖∆v(t)‖22 ≤ δ for all t ≤ Tδ .

Then

‖∇∆v(t)‖22 ≤
δ

2t
+ Cδ for all t ≤ Tδ

where C is a constant depending on J , β and the dimension.

Proof:

d

dt
‖∇∆v‖22 = −2

∫
(−∆)3v

∂v

∂t
dx = −2‖(−∆)2v‖22

+ 2β

∫
[(−∆)2v]∆div

(
(1− m̄2)∇J ∗ v

)
dx

+ 2

∫
[(−∆)2v]

[
∆div

(
v2Ψ

)
+ ∆div (vΦ)

]
dx

and again by the Schwarz inequality, this is no more than

−2‖(−∆)2v‖22 + 2β‖(−∆)2v‖2
[
‖∆div((1− m̄2)J ∗ ∇v)‖2 + ‖∆div

(
v2Ψ

)
‖2 + ‖∆div (vΦ) ‖2

]
.

As before, in estimating ‖∆div((1 − m̄2)J ∗ ∇v)‖2, we may let all derivatives fall on J to obtain

the bound C‖v‖2. Also, by (7.3), we have that

‖∆div (vΦ) ‖2 ≤ C [‖v‖2 + ‖∇v‖2 + ‖∆v‖2 + ‖∇∆v‖2] .

However, to estimate ‖∆div
(
v2Ψ

)
‖2, we need a bound on

‖v2‖2 + ‖v|∇v|‖2 + ‖|∇v|2‖2 + ‖v|∇∆v|‖2 + ‖|∇v||∆v|‖2

for the first, second and fourth terms we may use the a-priori bound ‖v‖∞ ≤ 2. We have already

estimated the third term in (7.9). The term that forces us to make dimension dependent estimates

is ‖|∇v||∆v|‖2. The strategy that led to (7.9)does not work here. Instead, we use the Sobolev

embedding estimate

‖∇v‖∞ ≤ C(‖∇∆v‖2 + ‖∇v‖2) ,
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valid in dimensions 2 and 3. We then use the bound ‖∆v‖2 ≤ δ ≤ 1 to obtain

‖∆div
(
v2Ψ

)
‖2 ≤ C [‖v‖2 + ‖∇v‖2 + ‖∆v‖2 + ‖∇∆v‖2] .

Finally, we estimate

‖∇∆v‖22 = −
∫

(−∆)2v∆vdx ≤ ‖(−∆)2v‖2‖∆v‖2 ≤ δ‖∆2v‖2

to obtain
d

dt
‖∇∆v‖22 ≤ −2‖(−∆)2v‖22 + C[δ + ‖(−∆)2v‖2] .

The analysis of this differential inequality proceeds as before.

We now come to the general case.

7.5 LEMMA. For dimension D ≤ 3, let v be a solution of (7.1) and suppose that for some δ > 0

and Tδ > 0, and k ∈ N

k∑
j=0

‖(−∆)j/2v(t)‖22 ≤ δ for all t ≤ Tδ .

Then

‖(−∆)(k+1)/2v(t)‖22 ≤
δ

2t
+ Cδ for all t ≤ Tδ

where C is a constant depending on J , β and the dimension.

Proof:

d

dt
‖(−∆)(k+1)/2v‖22 = −2

∫
(−∆)k+1v

∂v

∂t
dx = −2‖(−∆)(k+2)/2v‖22

+ 2β

∫
[(−∆)(k+2)/2v](−∆)k/2div

(
(1− m̄2)∇J ∗ v

)
dx

+ 2

∫
[(−∆)(k+2)/2v]

[
(−∆)k/2div

(
v2Ψ

)
+ (−∆)k/2div (vΦ)

]
dx.

As above, we have

‖(−∆)k/2div
(
(1− m̄2)∇J ∗ v

)
‖2 ≤ Cδ

and

‖(−∆)k/2div (vΦ) ‖2 ≤ Cδ .

Also,

‖(−∆)k/2div
(
v2Ψ

)
‖2 ≤ C

∑
j+`≤k+1 ,j,k ≥0

‖|(−∆)j/2v||(−∆)`/2v|‖2 .

Since we have already proved the result for k ≤ 3, we may suppose that k + 1 ≥ 4. For k + 1 ≥ 4,

whenever two non-negative integers j and ` satisfy j + ` ≤ k + 1, at least one of the integers is no

greater than k− 1. Let us suppose that j ≤ k− 1. Then we have the sobolev embedding inequality

‖(−∆)j/2v‖∞ ≤ C
(
‖(−∆)(k+1)/2v‖2 + ‖(−∆)j/2v‖2

)
,
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valid in dimensions 2 and 3, Thus, using the fact that δ ≤ 1, we have

‖(−∆)k/2div
(
v2Ψ

)
‖2 ≤ C

(
δ + ‖(−∆)(k+1)/2v‖2

)
.

Next, by Schwarz

‖‖(−∆)(k+1)/2v‖22 ≤ ‖‖(−∆)(k+2)/2v‖2‖‖(−∆)k/2v‖22 ,

and so

d

dt
‖(−∆)(k+1)/2v‖22 ≤ −2‖(−∆)(k+2)/2v‖22 + C

(
δ + ‖(−∆)(k+2)/2v‖2

)
≤ −‖(−∆)(k+2)/2v‖22 + Cδ ≤ −‖(−∆)(k+1)/2v‖42

‖(−∆)k/2v‖22
+ Cδ

≤ −‖(−∆)(k+1)/2v‖42
δ

+ Cδ.

Thus, x(t) := ‖(−∆)(k+1)/2v‖22 satisfies the differential inequality (7.4), and the result now follows

as in the proof of Lemma 7.2.

We are now ready to prove the Theorem 2.2.

Proof of Theorem 2.2: We proceed by induction on k. We shall first show that with b kept fixed,

for any ε > 0, if δ is sufficiently small, then for any t0 > 0, and any k ∈ N, there exists T0 so that

‖(−∆)k/2)v(t)‖22 ≤ ε for all t0 ≤ t ≤ T0 .

For k = 1, this result follows from Lemma 7.2. Suppose that k ≥ 2, and the result has been proved

for k− 1. Then by Lemma 7.5 we have this result for k as well. Now, recall that a(t) is defined by

‖m(t)− m̄a(t)‖2 ≤ ‖m(t)− m̄b‖2 for all b ∈ R .

As we have shown, for δ small enough, this uniquely determines a(t). Moreover, as long as ‖m(t)−
m̄a(0)‖2 is small, so is a(t)− a(0). Then, in the notation of this section,

m(t)− m̄a(t) = [m(t)− m̄a(0)] + [m̄a(0) − m̄a(t)] = v(t) + [m̄a(0) − m̄a(t)] .

Thus

‖(−∆)k/2)(m(t)− m̄a(t))‖2 ≤ ‖(−∆)k/2)v(t)‖22 + ‖(−∆)k/2)[m̄a(t) − m̄a(0)]‖22 .

Next note that

‖(−∆)k/2)[m̄a(t) − m̄a(0)]‖22 ≤ Ck|a(t)− a(0)| .

(Note: The constant Ck contains a multiple of Ld, so the constant also depend on L, which is fixed.

This is the first place L enters.) By Theorem 2.3, t 7→ a(t) is Lipschitz, and so for any ε > 0, there

is an sε so that Ck|a(t) − a(0)| ≤ ε/2 provided t ≤ sε. Then, by what has been proved above, for

any t0 < sε/2, there is a δ > 0 so that if ‖v(t)‖2 ≤ δ for all 0 ≤ t ≤ T0, then ‖(−∆)k/2)v(t)‖22 ≤ ε/2.

Combining results, we have that

‖(−∆)k/2)[m(t)− m̄a(t)]‖22 ≤ ε

for all t0 ≤ t ≤ sε. The same analysis shows that

‖(−∆)k/2[m(t)− m̄a(t)]‖22 ≤ ε
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for all sε/2 ≤ t ≤ min{3sε/2, T0}, and inductively,

‖(−∆)k/2[m(t)− m̄a(t)]‖22 ≤ ε

for all jsε/2 ≤ t ≤ min{(j + 2)sε/2, T0}. That is, in steps of fixed length sε we cover the interval

(t0, T0).

Finally, we prove the assertion in the Theorem concerning moments. Namely, in the notation

being used here, it suffices to show that that for some constant C, which may be made small by

choosing ‖v0‖2 small, ∫
R×Λ

x2
1v

2(t)dx ≤ eCt
∫
R×Λ

x2
1v

2(0)dx .

Differentiating the left side, we find

d

dt

∫
R×Λ

x2
1v

2(t)dx = 2

∫
R×Λ

x2
1v(t)

∂

∂t
v(t)dx

= 2

∫
R×Λ

x2
1v∇ ·

[(
∇v − β(1− m̄2)∇J ∗ v

)
+ v2Ψ + vΦ

]
dx

= −2

∫
R×Λ

x2
1v

2dx (7.11)

+ 2

∫
R×Λ

x2
1

[
∇v · β

(
1− m̄2)∇J ∗ v

)
− v2∇v ·Ψ− v∇v · Φ

]
dx (7.12)

− 4

∫
R×Λ

x1v
[(
∇1v − β(1− m̄2)∇1J ∗ v

)
+ v2Ψ1 + vΦ1

]
dx . (7.13)

The term in (7.11) has a sign that allows us to ignore it. The next simplest term is the integral in

(7.13). Using the Scwarz inequality, we may bound it in magnitude by(∫
R×Λ

x2
1v

2

)1/2(∫
R×Λ

[(
∇1v − β(1− m̄2)∇1J ∗ v

)
+ v2Ψ1 + vΦ1

]2
dx

)1/2

.

By what we have proved above, the second square root on the right is bounded uniformly (and

small) on the interval under consideration.

After one more integration by parts in the variable x1, the contribution in (7.12) is handled the

same way.

8 Appendix

8.1 LEMMA. Let m ∈ M, see (2.2), m = m̄ + v, where m̄ is the closest instanton to m in

L2(R× Λ). There exists κ > 0, δ > 0, c = c(κ) > 0 so that for and ‖v‖W s,2 ≤ κ, where s > D
2 , we

have
1

4
γ(L)||m− m̄||22 ≤ F

(
m
)
−F

(
m̄
)
≤ c||m− m̄||22. (8.1)

Moreover for any ε > 0 there is a κ̃(ε, L, β) so that

1− ε
2
〈v,Bv〉L2(R×Λ) ≤ F

(
m
)
−F

(
m̄
)
≤ 1 + ε

2
〈v,Bv〉L2(R×Λ) (8.2)

provided ‖v‖W s,2 ≤ κ̃ for s > D
2 .
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Proof: Denote by F ′
(
m
)
(v) and F ′′

(
m
)
(v, w) respectively the first and the second Frechet deriva-

tive of F(·) computed at m ∈M in the directions v and w in L2(R× Λ). It is easy to see that for

‖m‖∞ ≤ c < 1 repeated Frechet derivatives exist with

F ′
(
m
)
(v) =

∫
R×Λ

[
1

β
arctanhm(x)− J ? m(x)

]
v(x)dx,

and

F ′′
(
m
)
(v, w) =

∫
R×Λ

[
1

β

v(x)

(1−m2(x))
− J ? v(x)

]
w(x)dx.

When m = m̄ then

F ′′
(
m̄
)
(v, w) =

∫
R×Λ

[
1

β

v(x)

(1− m̄2(x))
− J ? v(x)

]
w(x)dx = 〈Bv, w〉,

where B is the operator defined in (3.1).

Writing m = m̄+ v, we can represent

F
(
m̄+ v

)
−F

(
m̄
)

=

∫ 1

0
dτF ′

(
m+ τv

)
(v) =

∫ 1

0
dτ

∫ τ

0
dsF ′′

(
m̄+ sv

)
(v, v).

In order to get a lower bound for the last term above we expand F ′′
(
m̄ + sv

)
(v, v) around s = 0

obtaining

F ′′
(
m̄+ s(m−m)

)
(v, v) = F ′′

(
m̄)(v, v) + F ′′′

(
m̃
)
(v, v, v)

where m̃ = m̄+ s0v for some s0 between 0 and 1 by the mean value theorem. Therefore

F
(
m
)
−F

(
m̄
)

=
1

2
〈Bv, v〉+

∫ 1

0
dτ

∫ τ

0
dsF ′′′

(
m̃
)
(v, v, v). (8.3)

Since m̄ is the closest instanton to m in L2(R× Λ),
∫
m̄′(x)v(x)dx = 0. Therefore by (3.3)

〈Bv, v〉 ≥ γ(L)‖v‖22. (8.4)

We then need a lower bound on the term involving the third derivative of the free energy. By direct

computation, ∣∣F ′′′(m̃)(v, v, v)
∣∣ =

2

β

∣∣ ∫
R×Λ

m̃

(1− m̃2)2

(
v(x)

)3
dx
∣∣. (8.5)

Take ‖v‖W s,2 ≤ δ1, so that ||m̃||∞ ≤ 1− δ0, with δ0 > 0, see Lemma 8.4. With this choice of δ1 we

have ∣∣F ′′′(m̃)(v, v, v)
∣∣ ≤ c(β, δ1)

∫
R×Λ
|v(x)|3dx

for some constant c(β, δ1) depending on β and δ1. We have that∫
R×Λ
|v(x)|3dx ≤ sup |v(x)|

∫
R×Λ
|v(x)|2

and, see Lemma (8.4), for s > D
2

sup |v(x)| ≤ C(d, s)‖v‖W s,2 .
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Therefore ∣∣F ′′′(m̃) < v, v, v >
∣∣ ≤ c(β, δ1, d)‖v‖W s,2

(
‖v‖2

)2
(8.6)

and, see (8.3),

F
(
m
)
−F

(
m̄
)
≥ ‖v‖22

[
1

2
γ(L)− c(β, δ1, d)‖v‖W s,2

]
.

Taking δ := min{δ1, δ(β, L) so that

1

4
γ(L)− c(β, δ1, d)‖v‖W s,2 ≥ 0

we have

F
(
m
)
−F

(
m̄
)
≥ 1

4
γ(L)‖v‖22.

Thus, we have established a lower bound for (8.1). The upper bound follows from the boundedness

of B and estimate (8.5) of F ′′′
(
m̃
)
(v, v, v). Note that one needs always a bound on ‖v‖W s,2 to get

‖m̃‖ ≤ 1− δ0. In this way we proved (8.1).

In a similar way the inequalities (8.2)follows. Namely, from (8.3), for any positive ε

F
(
m
)
−F

(
m̄
)

=
1

2
(1− ε)〈Bv, v〉+

[
1

2
ε〈Bv, v〉+

∫ 1

0
dτ

∫ τ

0
dsF ′′′

(
m̃
)
(v, v, v)

]
. (8.7)

From (3.3) and (8.6), denoting δ̃ the δ appearing in the formula, the last term in (8.7) is bigger

or equal to

1

2
εγ(L)||v||22 − c(β, δ̃)C(d, s)‖v‖W s,2

(
‖v‖2

)2
= ||v||22

[
1

2
εγ(L)− c(β, δ̃)C(d, s)‖v‖W s,2

]
. (8.8)

Choosing δ̃ so that the term in (8.8) is strictly positive we get the lower bound (8.2). The upper

bound (8.2) follows immediately.

8.2 LEMMA. Let ρ(x) be a probability density with∫
|x|ρ(x)dx <∞ .

Then for v ∈W 1,2(R× Λ)

‖v − ρ ? v‖2 ≤ ‖∇v‖2
∫
|x|ρ(x)dx.

Proof: We have

‖v − ρ ? v‖22 =∫
R
dx

(∫
R
ρ(x− y)[v(y)− v(x)]dy

)2

≤
(∫
|x|ρ(x)dx

)2

‖∇v‖22.
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The next lemma shows that for any function v that is orthogonal to m̄′, whenever ‖∇v‖L2(R×Λ)

is small compared to ‖v‖L2(R×Λ), then Bv is very close to being a constant multiple of v, α̃v where

α̃ is defined by

α̃ =
1

β(1−m2
β)
− 1

and it is strictly positive for β > 1. The lemma also shows that under the same condition, σ(m̄)v

is very close to σ(mβ)v.

8.3 LEMMA. Let v ∈W 1,2(R×Λ), 〈v, m̄′〉L2 = 0. There is a finite positive constant K(β, J, L, d)

so that

‖Bv − α̃v‖L2(R×Λ) ≤ K(β, J, L, d)‖∇v‖L2(R×Λ), (8.9)

and

‖σ(m̄)v − σ(mβ)v‖L2(R×Λ) ≤ K(β, J, L, d)‖∇v‖L2(R×Λ). (8.10)

Proof: Clearly,

Bv − α̃v =
1

β

(
m̄2 −m2

β

(1− m̄2)(1−m2
β)

)
v + (v − J ? v).

We will estimate these two terms separately. For the second term we apply Lemma 8.2. For the

first term split, as done in (3.16),

v(x1, x
⊥) = v1(x1) + w(x1, x

⊥).

Then
1

β

(
m̄2 −m2

β

(1− m̄2)(1−m2
β)

)
v =

1

β

(
m̄2 −m2

β

(1− m̄2)(1−m2
β)

)
[v1 + w]

We estimate
1

β

(
m̄2 −m2

β

(1− m̄2)(1−m2
β)

)
v1

as in [4], being one dimensional. First, for any y1 and x1 we have

v1(x1) = v1(y1) +

∫ x1

y1

v′1(z)dz .

Now multiply both sides by m̄′(y1) and integrate in y1. By the orthogonality of m̄′ and v1, we have

2mβv1(x1) =

∫ ∞
−∞

m̄′(y)

(∫ x1

y1

v′1(z)dz

)
dy .

But |
∫ x1
y1
v′(z)dz| ≤ |x1 − y1|1/2‖v′‖2 so that

|v1(x1)| ≤ 1

2mβ

(∫
m̄′(y)|x1 − y1|1/2dy

)
‖v′1‖L2(R) ,

and clearly there is a finite constant K(β, J) depending only on β and J so that

1

2mβ

∫
m̄′(y)|x1 − y1|1/2dy ≤ K(β, J)(1 + |x1|),
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and hence

|v1(x1)| ≤ K(β, J)(1 + |x1|)‖v′1‖L2(R). (8.11)

Next, using the pointwise bounds (8.11) established above,

‖(m̄2 −m2
β)
(
(1− m̄2)(1−m2

β)
)−1

v1‖2L2(R×Λ)

≤‖v′1‖2L2(R×Λ)K(β, J)

∫
(1 + |x1|)2(m̄2 −m2

β)2
(
(1− m̄2)(1−m2

β)
)−2

dx1

≤K̃(β, J)‖v′1‖2L2(R×Λ),

where K̃(β, J) is finite by the rapid decay of (m̄2 −m2
β)2. Further

‖ 1

β

(
m̄2 −m2

β

(1− m̄2)(1−m2
β)

)
w‖2L2(R×Λ) ≤ K(β, J)‖w‖2L2(R×Λ).

Applying the Poincaré inequality as in (4.18) we have

‖w‖2L2(R×Λ) ≤ L
2c(d)‖∇⊥w‖2L2(R×Λ).

Then

‖ 1

β

(
m̄2 −m2

β

(1− m̄2)(1−m2
β)

)
v‖2L2(R×Λ) ≤ K(β, J)

[
‖v′1‖2L2(R×Λ) + L2c(d)‖∇⊥w‖2L2(R×Λ)

]
≤ K(β, J, d, L)‖∇v‖2L2(R×Λ).

The proof of (8.10) is very similar to the proof of (8.9).

For function v ∈ W s,2(R × Λ) we have the following result which can be proven by Fourier

analysis, see [10].

8.4 LEMMA. For v ∈W s,2(R× Λ), if s > D
2 , we have

‖v‖∞ ≤ C(d, s)‖v‖W s,2 .

8.5 LEMMA. For any real number a and b and for any λ, 0 < λ < 1,

(a+ b)2 ≥ λa2 −
(

1

1− λ
− 1

)
b2.

Proof: The proof is immediate:

(a+ b)2 ≥ a2 + b2 − 2ab

= λa2 +

(
(1− λ)a2 + b2 − 2ab

)
≥ λa2 −

(
1

1− λ
− 1

)
b2.

(8.12)

The last inequality is obtained adding and subtracting 1
1+λb

2.
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