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Abstract

We consider a particle system on Zd with compact state space and interactions of
infinite range in a high-noise regime. Assuming that the rate of change is continuous
and that a Dobrushin-like condition holds, we obtain a Kalikow-type decomposition
of the infinite range change rates as a mixture of finite range change rates. As an
application of this decomposition we obtain a feasible perfect simulation algorithm to
sample from the stationary process.
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1 Introduction

In this paper we present a Kalikow-type decomposition for interacting multicolor systems
on Zd having compact state space and interactions of infinite range. By a Kalikow-type
decomposition we mean a representation of the infinite range rates as a countable mixture
of local change rates of increasing range. This decomposition extends the notion of random
Markov chains to interacting particle systems and has many potential theoretical conse-
quences and applications. As an example we present here a perfect simulation algorithm
which based on the decomposition.

We do not assume that the system has a dual, or is attractive, or monotone in any sense.
Our system is not spatially homogeneous. The basic assumptions are the continuity of
the infinite range change rates together with a high-noise or Dobrushin-like condition
(Condition (??) : fast decay of the long range influence on the change rate and a cer-
tain subcriticality-criterion). This regime has traditionally been studied by perturbation
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methods which rely on sophisticated combinatorial estimations (see for instance Brydges
1984). This is not the approach we follow here. Our approach is probabilistic, based on
an explicit construction and gives probabilistic insight into the structure of the stationary
law of the process, without combinatorial or complex-analysis techniques. Let us stress
that our approach is not an alternative to cluster expansions. It has a different regime of
validity and different aims.

Our construction is reminiscent of Harris’ graphical representation for particle systems and
it is similar in spirit to procedures adopted in Bertein and Galves (1977), Ferrari (1990),
Van den Berg and Steif (1999), Ferrari et al. (2002), and Garcia and Marić (2006) among
others. However, all these papers only consider particular models, satisfying restrictive
assumptions which are not assumed in the present paper. Our approach works for any
infinite range continuous interaction under the only assumption of high-noise.

By a perfect simulation algorithm we mean a simulation which samples in a finite window
precisely from the stationary law of the infinite process. More precisely, for any finite set
of sites F we want to sample the projection of the stationary law on F . Our approach is
feasible in the sense that it stops almost surely after a finite number of steps.

There are several techniques for perfect simulation of Markov processes. Among the most
popular ones figures Coupling from the Past (CFTP) originally proposed by Propp and
Wilson (1996) and applied to several special cases in a vast literature. A good review
can be found in Kendall (2005). This kind of technique applies to invariant measures of
Markov processes with finite coalescence time. One main point of the CFTP technique
is that one has to be able to control the coalescence times uniformly with respect to all
possible starting points. This is an issue that becomes particularly difficult in the case of
“big” state spaces. The problem of large state spaces can be overcome for processes with
certain monotonicity properties or for some specific cases. For example, for spatial point
processes there is a vast literature on the subject, we point the works of Kendall (1998),
Kendall and Thönnes (1999), Kendall and Møller (2000) among others.

For continuous state spaces, Cai (2005) proposes a non-monotone CFTP but as he points
out “the detailed construction of the non-monotone CFTP algorithm is problem specific”.
Connors and Kendall (2007) show that for a large class for positive recurrent Markov
processes it is always possible to perform CFTP, although not always feasible. However,
for interacting particle systems with continuous state spaces, it seems to be out of reach
to apply CFTP successfully. In general, the continuous case requires more complicated
coupling techniques, such as ε−coupling or Nummelin splitting, see for instance Nummelin
(1978) and Löcherbach and Loukianova (2008). See also, Murdoch and Green (1998) and
Fernández, Ferrari and Grynberg (2007) for some special cases. The aim of the present
article is to present an efficient perfect simulation technique which allows to overcome
these problems without requiring any duality or monotonicity properties.

We conclude by recalling that the notion of random Markov chains was introduced ex-
plicitly in Kalikow (1990) and Bramson and Kalikow (1993) and appeared implicitly in
Ferrari et al. (2000) and Comets et al. (2002).

This paper is organized as follows. The model and the Kalikow-type decomposition (The-
orem ??) are presented in Section 2. In Section ?? we present examples where all terms
involved in the convex decomposition are explicitly given. In particular, we apply The-
orem ?? to the important case of Gibbs measures with infinite range interactions and
continuous spin values. In Section ?? we present the perfect simulation algorithm as a

2



main application of the convex decomposition. In particular, Theorem ?? shows that the
proposed algorithm is feasible under a Dobrushin-like condition. The proofs are given in
Sections ?? and ??. We conclude the article with a small section on the impatient user
bias.

2 Definitions, notation and convex decomposition

We consider interacting particle systems on Zd having compact state space and interactions
of infinite range. The elements of the state space are called colors. To each site in Zd we
assign a color. The coloring of the sites changes as time goes by. The rate at which the
color of a fixed site i changes from a color a to a new color b is a function of the entire
configuration and depends on b.

In what follows, % will be a bounded non-singular non-negative reference measure on
(R,B(R)) with compact support A ∈ B(R). The initial lowercase letters a, b, c, . . . will
denote elements of A. We endow A with its Borel σ−algebra A = B(A) and denote

by S = AZd
the configuration space with its product sigma algebra, S. We will call

configuration any element of S. Configurations will be denoted by Greek letters η, ζ, ξ, ...
A point i ∈ Zd will be called site. We define on Zd the L1 norm, ‖i‖ =

∑d
k=1 |ik|. For

k ≥ 0, let the ball of radius k to be denoted as

Vi(k) = {j ∈ Zd; ‖j − i‖ ≤ k}.

As usual, for any i ∈ Zd, η(i) will denote the value of the configuration η at site i.
By extension, for any subset V ⊂ Zd, η(V ) ∈ AV will denote the restriction of the
configuration η to the set of positions in V. For any η, i and a, we shall denote ηi,a the
modified configuration

ηi,a(j) = η(j), for all j 6= i, and ηi,a(i) = a.

For any i ∈ Zd, η ∈ AZd
, let a 7→ ci(a, η) be a positive A − B(R+)−measurable function

such that, for any i ∈ Zd, there exists a constant Γi < +∞ with

ci(a, η) ≤ Γi, (2.1)

for every η and %−almost all a.

A multicolor system with interactions of infinite range is a Markov process on S whose
generator is defined on cylinder functions by

G f(η) =
∑
i∈Zd

∫
A
%(da)ci(a, η)[f(ηi,a)− f(η)] , (2.2)

where % is a non-singular arbitrary reference measure.

By Theorem 3.9 of Chapter 1 of Liggett (1985) the following condition implies that G is
the generator of a Feller process (σt) on S :

sup
i∈Zd

∑
j 6=i

sup
η

sup
b∈A
{
∫
A
ρ(da)|ci(a, η)− ci(a, ηj,b)|} <∞. (2.3)
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In the following we shall work under conditions stronger than (??) ensuring not only that
G is the generator of a unique Feller process, but also the possibility of perfect simulate
the stationary process correspondent to this infinitesimal generator. As a byproduct this
implies that the system admits the existence of a unique invariant measure µ for the
system.

The main result of this article is a Kalikow-type convex decomposition of the change rates.
We will prove that the change rate can be decomposed as

ci(a, η) = Mi

λi(−1)p
[−1]
i (a) +

∑
k≥0

λi(k)p
[k]
i (a|η)

 , (2.4)

where

• Mi, i ∈ Zd are positive constants,

• for each i ∈ Zd, {λi(k), k ≥ −1} is a probability distribution,

• for each i ∈ Zd, p[−1]
i (·) is a probability density on A with respect to the reference

measure %, which does not depend on the configuration,

• for each k ≥ 0 and for each η ∈ S, p[k]
i (·|η(Vi(k)) is a probability density with respect

to the reference measure %, depending only on the local configuration η(Vi(k)).

For convenience of the presentation we will add additional invisible jumps in (??). This
is obtained by adding a cemetery ∆ to A and defining A∗ := A ∪ {∆}. Define also

%∗ := %+ δ∆.

Denote

Mi := sup
η∈AZd

∫
ci(a, η)%(da). (2.5)

Notice that Mi is finite under condition (??), and define

ci(∆, η) := Mi −
∫
A
ci(a, η)%(da). (2.6)

Observe that
inf
η
ci(∆, η) = 0. (2.7)

Therefore we can rewrite the generator given by (??) as

G f(η) =
∑
i∈Zd

∫
A∗
%∗(da)ci(a, η)[f(ηi,a)− f(η)], (2.8)

where, by convention, for any i ∈ Zd and any η ∈ S = AZd
we define

ηi,∆ = η.

It follows that (??) is a representation of the same generator as (??).
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In order to obtain the decomposition we need the following continuity condition.

Continuity condition. For %−almost all a,

sup
i∈Zd

sup
η,ζ:η(Vi(k))=ζ(Vi(k))

|ci(a, η)− ci(a, ζ)| → 0 , (2.9)

as k →∞.
To describe the convex decomposition of the rate function ci, we have to introduce the
following quantities. Define

αi(−1) =

∫
A∗

inf
ζ∈AZd

ci(a, ζ)%∗(da), (2.10)

and for any k ≥ 0,

αi(k) = inf
w∈AVi(k)

(∫
A∗

inf
ζ:ζ(Vi(k))=w

ci(a, ζ)%∗(da)

)
. (2.11)

Note that by (??) ∫
A∗

inf
ζ∈AZd

ci(a, ζ)%∗(da) =

∫
A

inf
ζ∈AZd

ci(a, ζ)%(da).

Further, by construction, we have that αi(k) ≤ αi(k + 1), for each k ≥ −1 and

Mi = lim
k→∞

αi(k). (2.12)

To obtain equality (??), fix some w ∈ AVi(k) and observe that∫
A∗

inf
ζ:ζ(Vi(k))=w

ci(a, ζ)%∗(da) =

∫
A

inf
ζ:ζ(Vi(k))=w

ci(a, ζ)%(da)+Mi− sup
ζ:ζ(Vi(k))=w

∫
A
ci(a, ζ)%(da).

But ∫
A

inf
ζ:ζ(Vi(k))=w

ci(a, ζ)%(da)− sup
ζ:ζ(Vi(k))=w

∫
A
ci(a, ζ)%(da)→ 0

as k →∞ thanks to condition (??).

Hence to each site i we can associate a probability distribution λi by

λi(−1) =
αi(−1)

Mi
, (2.13)

and for k ≥ 0

λi(k) =
αi(k) − αi(k − 1)

Mi
. (2.14)

Now we are ready to state the decomposition theorem.

Theorem 1 Let (ci)i∈Zd be a family of measurable rate functions satisfying conditions
(??), (??) and (??). Then, for each site i, for Mi defined by (??), and λi(·) defined by
(??) and (??), there exist
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• p[−1]
i a probability density with respect to % with support A∗,

• a family of conditional probability densities p
[k]
i , k ≥ 0 on A∗, with respect to %∗,

depending on the local configurations η(Vi(k)) ∈ AVi(k)

such that for all a ∈ A∗,
ci(a, η) = Mi pi(a|η) (2.15)

where
pi(a|η) = λi(−1)p

[−1]
i (a) +

∑
k≥0

λi(k)p
[k]
i (a|η(Vi(k))). (2.16)

As a consequence, the infinitesimal generator G given by (??) can be rewritten as

G f(η) =
∑
i∈Zd

Mi

[
λi(−1)

∫
A
p

[−1]
i (a)[f(ηi,a)− f(η)]%(da) (2.17)

+
∑
k≥0

λi(k)

∫
A∗
p

[k]
i (a|η(Vi(k)))[f(ηi,a)− f(η)]%∗(da)

 .
Note that for k = −1, p

[−1]
i (a) does not depend on the configuration and λi(−1) represents

the spontaneous self-coloring rate of site i in the process. We will see in the proof that

p
[−1]
i is defined in such way that p

[−1]
i (∆) = 0 and therefore, the choice k = −1 implies

always a choice of a real color a ∈ A, not of a = ∆.

The decomposition given in Theorem ?? was designed in such way that the probability of
self-coloring is maximized. This is important to speed up the perfect simulation algorithm.
Obviously, slight modifications can be employed for different purposes as we will see in
Example 2 (Section ??).

The representation given by (??) provides a random finite range description of the time
evolution of the process. We start with an initial configuration η at time zero. For
each site i ∈ Zd, we consider a rate Mi Poisson point process N i. The Poisson processes
corresponding to distinct sites are all independent. If at time t, the Poisson clock associated
to site i rings, we choose a range k with probability λi(k) independently of everything else.
And then, we update the value of the configuration at this site by choosing a symbol a

with probability p
[k]
i (a|σt(Vi(k)))%∗(da). Choosing the symbol ∆ means that we actually

keep the current value of the spin.

In Section ?? we give examples of infinite range interacting systems where all terms in the
decomposition (??) and (??) are explicitly computed.
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3 Proof of Theorem ??

Put for any a ∈ A∗,

c
[−1]
i (a) = inf

ζ
ci(a, ζ),

∆
[−1]
i (a) = c

[−1]
i (a),

c
[0]
i (a|η(i)) = inf

ζ:ζ(i)=η(i)
ci(a, ζ),

∆
[0]
i (a|η(i)) = c

[0]
i (a|η(i))− c[−1]

i (a).

For any k ≥ 1, define

c
[k]
i (a|η(Vi(k))) = inf

ζ:ζ(Vi(k))=η(Vi(k))
ci(a, ζ),

∆
[k]
i (a|η(Vi(k))) = c

[k]
i (a|η(Vi(k)))− c[k−1]

i (a|η(Vi(k − 1))).

Then we have that for any a ∈ A,

ci(a, η) =
k∑

j=−1

∆
[j]
i (a|η(Vi(j))) +

[
ci(a, η)− c[k]

i (a|η(Vi(k)))
]
. (3.18)

Note that

c
[−1]
i (∆) = inf

η
ci(∆, η) = Mi − sup

η

∫
A
ci(a, η)%(da) = 0.

Therefore, for a = ∆ decomposition (??) starts with j = 0,

ci(∆, η) =
k∑
j=0

∆
[j]
i (∆|η(Vi(j))) +

[
ci(∆, η)− c[k]

i (∆|η(Vi(k)))
]
.

By continuity of ci(a, η) for every fixed η, we have for %∗− almost all a ∈ A∗ that

c
[k]
i (a|η(Vi(k)))→ ci(a, η) as k →∞.

Hence for %∗− almost all a and all η,

∞∑
j=−1

∆
[j]
i (a|η(Vi(j))) = ci(a, η).

Taking into account (??) and (??)

Miλi(−1) =

∫
A

∆
[−1]
i (a)%(da).

Hence we can define

p
[−1]
i (a) =

∆
[−1]
i (a)

Miλi(−1)

and
p

[−1]
i (∆) = 0.
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Hence, p
[−1]
i (a) is a probability density with respect to %∗. Now, for k ≥ 0, put

λ̃i(k, η(Vi(k))) =
1

Mi

∫
A∗

∆
[k]
i (a|η(Vi(k)))%∗(da), (3.19)

and for any i, k such that λ̃i(k, η(Vi(k))) > 0, we define

p̃
[k]
i (a|η(Vi(k))) =

∆
[k]
i (a|η(Vi(k)))

Mi λ̃i(k, η(Vi(k)))
.

For i, k such that λ̃i(k, η(Vi(k))) = 0, define p̃
[k]
i (a|η(Vi(k))) in an arbitrary fixed way.

Hence for %∗− almost all a ∈ A∗,

ci(a, η) = Mi

[
λi(−1)p

[−1]
i (a) +

∞∑
k=0

λ̃i(k, η(Vi(k)))p̃
[k]
i (a|η(Vi(k)))

]
. (3.20)

In (??) the factors λ̃i(k, η(Vi(k))), k ≥ 0, still depend on η(Vi(k)). To obtain the decom-
position as in the theorem, we must rewrite it as follows.

For any i, take Mi as in (??) and the sequences αi(k), λi(k), k ≥ −1, as defined in (??)
and (??), respectively. Define the new quantities

αi(k, η(Vi(k))) = Mi

∑
l≤k

λ̃i(l, η(Vi(l))).

Finally, for any k ≥ 0, we define the conditional finite range probability densities by

p
[k]
i (a|η(Vi(k))) =

k−1∑
−1=l′≤l

1{αi(l′−1,η(Vi(l′−1)))<αi(k−1)≤αi(l′,η(Vi(l′)))}1{αi(l,η(Vi(l)))<αi(k)≤αi(l+1,η(Vi(l+1)))}[
αi(l

′, η(Vi(l
′)))− αi(k − 1)

Mi λi(k)
p̃

[l′]
i (a|η(Vi(l

′)))

+
l∑

m=l′+1

λ̃i(m, η(Vi(m))

λi(k)
p̃

[m]
i (a|η(Vi(m)))

+
αi(k)− αi(l, η(Vi(l)))

Mi λi(k)
p̃

[l+1]
i (a|η(Vi(l + 1)))

]
.

The desired decomposition follows from a straightforward computation. •

4 Examples

In this section we show that the decomposition presented in Theorem ?? can be effectively
implemented in several interesting Gibbsian systems with compact-valued spins. In all the
examples we take A = [−1, 1].
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Definition 1 A pairwise potential is a collection {J(i, j), (i, j) ∈ Zd×Zd} of real numbers
which satisfies

J(i, i) = 0, sup
i∈Zd

∑
j∈Zd

|J(i, j)| <∞. (4.21)

In what follows we use the notation

Σi =
∑
j∈Zd

|J(i, j)|.

For any i ∈ Zd, let η(i) be the value of the spin at site i in the configuration η ∈ S.

Definition 2 A probability measure µ on (S,S) is said to be a Gibbs state relative to the
potential {J(i, j)} if for all i ∈ Zd, a version of the conditional probability density of η(i),
given η(j), j 6= i, is given by

µ(η(i) = a|η(j) for all j 6= i}) =
exp

(
a
∑

j 6=i J(i, j)η(j)
)

Zη
,

where

Zη =

∫
A

exp

a∑
j 6=i

J(i, j)η(j)

 %(da).

In the following we consider the interaction Jβ = βJ, where β is a positive parameter. The
associated Gibbs measure will be denoted µ without indicating explicitly the dependence
on β. Now, put

ci(a, η) = e
βa

∑
j∈Zd J(i,j)η(j)

. (4.22)

Then, by construction, the process (σt) with generator (??) and this choice of change rates
is reversible with respect to the Gibbs state µ corresponding to the potential Jβ(i, j) =
βJ(i, j). It is immediate to see that condition (??) implies the continuity condition (??).

We now give the explicit decomposition in two special cases.

Example 1. Take %(da) = 1
2da, a ∈ [−1, 1], and nearest neighborhood interactions

ci(a, η) = exp

βa∑
j

J(i, j)η(j)

 ,

where
J(i, j) = 0 if j 6∈ Vi(1) \ {i}.

In other terms, in this case we are considering only nearest neighbor interactions. Then
we have

Mi =
1

2βΣi

(
eβΣi − e−βΣi

)
,

αi(−1) = αi(0) =
1

βΣi
[1− exp (−βΣi)] ,
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αi(1) = Mi,

p
[−1]
i (a) =

exp(−β|a|Σi)

αi(−1)
,

p
[−1]
i (∆) = 0,

p
[1]
i (a|η) =

ci(a, η)− exp(−β|a|Σi)

Mi − αi(−1)

and

p
[1]
i (∆|η) =

Mi −
∫
E ci(a, η)%(da)

Mi − αi(−1)
.

To check the above expressions we start by calculating the constant Mi. Notice that∫
ci(a, η)%(da) =

1

2β
∑

j J(i, j)η(j)

(
eβ

∑
j J(i,j)η(j) − e−β

∑
j J(i,j)η(j)

)
.

Maximizing the above expression with respect to η yields

Mi = sup
i

∫
ci(a, η)%(da) =

1

2βΣi

(
eβΣi − e−βΣi

)
.

We are now going to calculate the coefficients αi(k). Since ci(a, η) does not depend on
η(i), we have that αi(−1) = αi(0). Moreover, due to the nearest neighborhood interaction,
αi(k) = αi(1) = Mi for all k ≥ 1. So we only have to evaluate αi(−1). First observe that

inf
η
ci(a, η) = exp (−β|a|Σi) .

Integrating this with respect to %(da) yields

αi(−1) =

∫ (
inf
η
ci(a, η)

)
%(da) =

1

βΣi
[1− exp (−βΣi)]

and thus

λi(−1) = 2
1− exp (−βΣi)

exp(βΣi)− exp(−βΣi)
.

Note that λi(−1) ≤ 1 and evidently, λi(−1) ≥ 0. Finally note that, in this special case,

Miλ̃i(1, η(Vi(1))) =

∫
A∗

∆
[1]
i (a, η)%∗(da)

=

(∫
E
ci(a, η)%(da)−

∫
A
c

[−1]
i (a)%(da)

)
+ ci(∆, η)

= Mi − αi(−1) = Mi(1− λi(−1)),

which does not depend on η, so

λ̃i(1, η) = λi(1) and p̃
[1]
i (a|η) = p

[1]
i (a|η).

In particular, this yields

p
[−1]
i (a) =

exp(−β|a|Σi)

αi(−1)
,
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p
[−1]
i (∆) = 0,

p
[1]
i (a|η) =

ci(a, η)− exp(−β|a|Σi)

Miλi(1)

and

p
[1]
i (∆|η) =

Mi −
∫
E ci(a, η)%(da)

Miλi(1)
.

Example 2. The following example is a Gibbsian time evolution with infinite range
interaction. The decomposition we present here is inspired by the one presented in Galves
et al. (2010) in the case of two colors systems. In Galves et al. (2010), for coupling
reasons, it was convenient to give a slightly different decomposition. The goal there was
to be able to couple together the infinite range Gibbsian system with the finite range
Gibbsian system obtained by truncating the potential interaction. For the sake of the
readers, we recall here their decomposition in a more general case by adding an external
field. Let

%(da) = δ1(da) + δ−1(da).

Let {hi, i ∈ Zd} be a collection of real numbers, representing the external field, and put

ci(η) = ci(−η(i), η) = exp

−β∑
j

J(i, j)η(i)η(j)− βhiη(i)

 .

Then the decomposition (??) holds with

Mi = 2eβ
∑

j |J(i,j)|+β|hi|,

λi(−1) = exp

−2β

∑
j

|J(i, j)|+ |hi|

 ,

λi(0) = exp

−2β
∑
j

|J(i, j)|

− λi(−1),

λi(1) = e−β
∑

j:‖i−j‖>1 |J(i,j)| − e−2β
∑

j |J(i,j)|

and for k ≥ 2,
λi(k) = e−β

∑
j:‖i−j‖>k |J(i,j)| − e−β

∑
j:‖i−j‖≥k |J(i,j)|.

Moreover, for all η ∈ S and for any k ≥ 2, we define the update probabilities

p
[k]
i (−η(i)|η) =

1

Mi
e−βhiη(i)e−β

∑
j:‖i−j‖<k J(i,j)η(i)η(j)

e−β
∑

j:‖i−j‖=k J(i,j)η(i)η(j) − e−β
∑

j:‖i−j‖=k |J(i,j)|

1− e−β
∑

j:‖i−j‖=k |J(i,j)| ,

for k = 1,

p
[1]
i (−η(i)|η) =

1

Mi
e−βhiη(i) e

−β
∑

j:‖i−j‖≤1 J(i,j)η(i)η(j) − e−β
∑

j:‖i−j‖≤1 |J(i,j)|

1− e−2β
∑

j:‖i−j‖≤1 |J(i,j)|e−β
∑

j:‖i−j‖>1 |J(i,j)| ,
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and for k = 0,

p
[0]
i (−η(i)|η) =

1

2
e−β|hi|

e−βhiη(i) − e−β|hi|

1− e−β|hi|
.

To obtain a probability measure on A, we define for all k ≥ 0,

p
[k]
i (η(i)|η) = 1− p[k]

i (−η(i)|η).

Finally, for k = −1, we define

p
[0]
i (1) = p

[0]
i (−1) =

1

2
. (4.23)

Example 3. We specialize Example 2 in the case where the spin distribution % is sym-
metric and the external field h = 0.

Define for any i ∈ Zd and any k ≥ −1,

S>ki :=
∑

j:‖i−j‖>k

|J(i, j)|, S≤ki :=
∑

j:‖i−j‖≤k

|J(i, j)|.

Note that Σi = S>−1
i .

Then

Mi =

∫ 1

0

(
eaβΣi + e−aβΣi

)
%(da). (4.24)

Moreover,

αi(−1) = 2

∫ 1

0
e−aβΣi%(da) (4.25)

and

αi(k) = Mi +

∫ 1

0
eaβS

≤k
i e−aβS

>k
i %(da)−

∫ 1

0
eaβΣi%(da). (4.26)

Finally,

λi(−1) = 2

∫ 1
0 e
−aβΣi%(da)∫ 1

0 (eaβΣi + e−aβΣi) %(da)
(4.27)

and

λi(k) = ∫ 1
0 e

aβS≤k−1
i e−aβS

>k
i

(
eaβ

∑
j:‖j−i‖=k |J(i,j)| − e−aβ

∑
j:‖j−i‖=k |J(i,j)|

)
%(da)∫ 1

0 (eaβΣi + e−aβΣi) %(da)
. (4.28)

Expression (??) follows from the definition of Mi in (??) together with∫ 1

−1
ci(a, η)%(da) =

∫ 1

0

(
eβa

∑
j J(i,j)η(j) + e−βa

∑
j J(i,j)η(j)

)
%(da),

by symmetry of the measure %. Maximizing this expression with respect to η yields (??).
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Equation (??) is an immediate consequence of the definition (??) since

inf
η
ci(a, η) = e−β|a|Σi .

Concerning (??), note first that

inf
ζ:ζ(Vi(k))=w

ci(a, ζ) = eaβ
∑

j:‖j−i‖≤k J(i,j)w(j)e−|a|βS
>k
i .

Integrating this with respect to % yields∫ 1

−1
inf

ζ:ζ(Vi(k))=w
ci(a, ζ)%(da)

=

∫ 1

0
e−aβS

>k
i

(
eaβ

∑
j:‖j−i‖≤k J(i,j)w(j) + e−aβ

∑
j:‖j−i‖≤k J(i,j)w(j)

)
%(da),

by symmetry of %. Moreover, by definition of ci(∆, η),

inf
ζ:ζ(Vi(k))=w

ci(∆, ζ) = Mi − sup
ζ:ζ(Vi(k))=w

∫
ci(a, ζ)%(da)

= Mi − sup
ζ:ζ(Vi(k))=w

∫ 1

0

(
eaβ

∑
j J(i,j)ζ(j) + e−aβ

∑
j J(i,j)ζ(j)

)
%(da).

Maximizing the expression with respect to ζ under the integral yields

inf
ζ:ζ(Vi(k))=w

ci(∆, ζ) = Mi−∫ 1

0

(
eaβ(|

∑
j:‖j−i‖≤k J(i,j)w(j)|+S>k

i ) + e−aβ(|
∑

j:‖j−i‖≤k J(i,j)w(j)|+S>k
i )
)
%(da).

Putting things together we conclude that∫ 1

−1
inf

ζ:ζ(Vi(k))=w
ci(a, ζ)%∗(da) =

Mi +

∫ 1

0
eaβ|

∑
j:‖j−i‖≤k J(i,j)w(j)|

(
e−aβS

>k
i − eaβS

>k
i

)
%(da).

Taking finally the infimum with respect to w, and noticing that e−aβS
>k
i − eaβS>k

i < 0, we
obtain that

αi(k) = Mi +

∫ 1

0
eaβS

≤k
i e−aβS

>k
i %(da)−

∫ 1

0
eaβΣi%(da).

As a consequence we obtain that

λi(k) =

∫ 1
0 e

aβS≤k−1
i e−aβS

>k
i

(
eaβ

∑
j:‖j−i‖=k |J(i,j)| − e−aβ

∑
j:‖j−i‖=k |J(i,j)|

)
%(da)∫ 1

0 (eaβΣi + e−aβΣi) %(da)
.
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5 Perfect simulation

The goal of this section is to give an application of the Kalikow-type decomposition given
by Theorem ??. This application is a perfect simulation algorithm for the invariant mea-
sure of an interacting multicolor system. We assume that the interaction rates are con-
tinuous and satisfy a Dobrushin-like condition. The basis of the algorithm is the convex
decomposition given in Theorem ??. First of all, the Proposition ?? gives a sufficient
condition for exponential ergodicity which is based on the construction of a dominating
branching process.

From now on we will denote by (σηt ) (and (σµt )) the multicolor system having generator
G given by (??) with a fixed initial configuration η ( a random configuration chosen with
probability distribution µ).

Proposition 1 Let (ci)i∈Zd be a family of rate functions satisfying the conditions of The-
orem ??. Furthermore, assume that

M = inf
i∈Zd

Mi > 0 (5.29)

and
sup
i∈Zd

∑
k≥0

|Vi(k)|λi(k) = γ < 1. (5.30)

Then, the process (σt) admits a unique invariant probability measure µ. Moreover, for any
finite set of sites F ⊂ Zd, for any T > 0 and any initial configuration η, there exists a
coupling between the process (σηt ) and the stationary process (σµt ) such that

P (σηT (F ) 6= σµT (F )) ≤ |F |e−M(1−γ)T .

Let us compare the above proposition to known results in the literature on particle systems.

1. Condition (??) is stronger than Liggett’s existence condition (??) which does not
imply the uniqueness of the invariant measure.

2. Condition (3.3) of Liggett (2000), page 22, is equivalent to

sup
i

sup
η

∫
ci(a, η)%(da) = sup

i
Mi <∞,

which is implied by conditions (??) and (??). Moreover, it can be easily seen that
the quantity M appearing in Equation (3.8) of Liggett (2000), page 26, can be upper
bounded by

sup
i∈Zd

Mi

∑
k≥0

λi(k)|Vi(k)|.

Since supiMi < ∞, condition supi∈Zd

∑
k≥0 |Vi(k)|λi(k) < ∞ implies Condition

(3.8) of Liggett (2000).

3. Condition (??) is a high-noise condition which implies a Dobrushin-like condition,
see Dobrushin (1968). It is a sufficient condition ensuring that there is no phase
transition.
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4. For infinite range Gibbs measures, in the situation of Example 3, a sufficient condi-
tion for (??) is

sup
i∈Zd

∑
k

|Vi(k)|

 ∑
j:‖j−i‖=k

|J(i, j)|

 <∞

and β < βc, where βc is solution of

2β
∑
k≥1

|Vi(k)|
∑

j:‖j−i‖=k

|J(i, j)|

 = 1.

This follows from (??), using that 1− e−x ≤ x for x ≥ 0.

We are now in position to present the perfect simulation scheme. Suppose we want to
sample the configuration at site i under µ. In a first step, we determine the set of sites
whose spins influence the spin at site i under equilibrium. We call this set of sites ancestors
of i and this stage backward sketch procedure. First, we climb up from time 0 using a reverse
time Poisson point process with rate Mi. We stop when the last Poisson clock before time
0 rings. At that time, we choose a range k with probability λi(k). If k = −1, we decide the

value of the spin using the law p
[−1]
i d%, independently of everything else. If k is different

from −1, we restart the above procedure from every site j ∈ Vi(k). The procedure stops
once each site involved has chosen range −1. When this occurs, we can start the second
stage, in which we go back to the future assigning spins to all sites visited during the first
stage. We call this procedure forward spin assignment procedure. This is done from the

past to the future by using the update probability densities p
[k]
i starting at the sites which

ended the first procedure by choosing range −1. For each one of these sites a spin is chosen
according to p[−1]d%. The values obtained in this way enter successively in the choice of
the values of the spins depending on a neighborhood of range greater or equal to 0.

We now give the precise form of the algorithm. Fix a finite set F ⊂ Zd. The following
variables will be used.

• N is an auxiliary variables taking values in the set of non-negative integers {0, 1, 2, . . .}

• N (F )
STOP is a counter taking values in the set of non-negative integers {0, 1, 2, . . .}

• I is a variable taking values in Zd

• K is a variable taking values in {−1, 0, 1, . . .}

• B is an array of elements of Zd × {−1, 0, 1, . . .}

• C is a variable taking values in the set of finite subsets of Zd

• W is an auxiliary variable taking values in A∗

• σ is a function from Zd to A∗

Algorithm 1 Backward sketch procedure

1. Input: F ; Output: N
(F )
STOP , B

15



2. N ← 0, N
(F )
STOP ← 0, B ← ∅, C ← {F}

3. WHILE C 6= ∅

4. N ← N + 1

5. Choose randomly a position I ∈ C and an integer K ≥ −1 according to the proba-
bility distribution

P (I = i,K = k) =
Miλi(k)∑

j∈C
∑

l≥−1Mjλj(l)

6. IF K = −1, C ← C \ {I}

7. ELSE C ← C ∪BI(K)

8. ENDIF

9. B(N)← (I,K)

10. ENDWHILE

11. N
(F )
STOP ← N

12. RETURN N
(F )
STOP , B.

Now we use the following Forward spin assignment procedure to sample from the invariant
measure µ. Recall that the choice of ∆ in (??) implies that the system does not change
its colors. This explains Step 9 in Algorithm 2.

Algorithm 2 Forward spin assignment procedure

1. Input: N
(F )
STOP , B; Output: {(i, σ(i)) : i ∈ F}

2. N ← N
(F )
STOP

3. σ(j)← ∆ for all j ∈ Zd

4. WHILE N ≥ 1

5. (I,K)← B(N).

6. IF K = −1 choose W randomly in A according to the probability distribution

p
[−1]
I d%

7. ELSE choose W randomly in A∗ according to the probability distribution

p
[K]
I (·|σ)d%∗

8. ENDIF

9. IF W 6= ∆ put σ(I)←W
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10. ENDIF

11. N ← N − 1

12. ENDWHILE

13. RETURN {(i, σ(i)) : i ∈ F}

The next theorem summarizes the properties of Algorithms 1 and 2.

Theorem 2 Suppose that the sub-criticality condition (??) holds. The Algorithm 1 stops
almost surely after a finite number of steps and

sup
i∈Zd

P (N
(F )
STOP > N) ≤ |F |γN , (5.31)

where γ is given in (??). The law of the set {(i, σ(i)) : i ∈ F} printed at the end of
Algorithm 1 and 2 is the projection on AF of the unique invariant measure µ of the
process.

The proofs of Proposition ?? and Theorem ?? will be given in the next section.

6 Proofs of Proposition ?? and Theorem ??

The proofs rely on the notion of black and white time-reverse sketch process that we will
introduce now. The black and white time-reverse sketch process gives the mathematically
precise description of the backward black and white Algorithm 1 given above.

We start by introducing some more notation. For each i ∈ Zd, denote by . . . T i−2 < T i−1 <
T i0 < 0 < T i1 < T i2 < . . . the occurrence times of the rate Mi Poisson point process N i on
the real line. The Poisson point processes associated to different sites are independent. To
each point T in associate an independent mark Ki

n according to the probability distribution
(λi(k))k≥−1. As usual, we identify the Poisson point processes and the counting measures
through the formula

N i[s, t] =
∑
n∈Z

1{s≤T i
n≤t}.

It follows from this identification that for any t > 0 we have T i
N i(0,t]

≤ t < T i
N i(0,t]+1

, and

for any t ≤ 0, T i−N i(t,0]
≤ t < T i−N i(t,0]+1

.

For each i ∈ Zd and t ∈ R we define the time-reverse point process starting at time t,
associated to site i,

T̃ (i,t)
n = t − T iN i(0,t]−n+1, t ≥ 0,

T̃ (i,t)
n = t − T i−N i(t,0]−n+1, t < 0. (6.32)

We also define the associated marks

K̃(i,t)
n = Ki

N i(0,t]−n+1, t ≥ 0,

K̃(i,t)
n = Ki

−N i(t,0]−n+1, t < 0. (6.33)
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For each site i ∈ Zd, k ≥ −1, the reversed k-marked Poisson point process returning from
time t is defined as

Ñ (i,t,k)[s, u] =
∑
n

1{s≤T̃ (i,t)
n ≤u}1{K̃(i,t)

n =k}. (6.34)

To define the black and white time-reverse sketch process we need to introduce a family of
transformations {π(i,k), i ∈ Zd, k ≥ −1} on the set of finite subsets of Zd, F(Zd), defined
as follows. For any unitary set {j},

π(i,k)({j}) =

{
Vi(k), if j = i
{j}, otherwise

}
. (6.35)

Notice that for k = −1, π(i,k)({i}) = ∅. For any set finite set F ⊂ Zd, we define similarly

π(i,k)(F ) = ∪j∈Fπ(i,k)({j}). (6.36)

The black and white time-reverse sketch process starting at site i at time t will be denoted

by (C
(i,t)
s )s≥0. C

(i,t)
s is the set of sites at time s whose colors affect the color of site i at

time t. We call this set C
(i,t)
s set of ancestors of i at time s before time t. The evolution of

this process is defined through the following equation: C
(i,t)
0 := {i}, and

f(C(i,t)
s ) = f(C

(i,t)
0 ) +

∑
k≥−1

∑
j∈Zd

∫ s

0
[f(π(j,k)(C

(i,t)
u− ))− f(C

(i,t)
u− )] Ñ (j,t,k)(du), (6.37)

where f : F(Zd) → R is any bounded cylindrical function. This family of equations

characterizes completely the time evolution {C(i,t)
s , s ≥ 0}. For any finite set F ⊂ Zd

define
C(F,t)
s = ∪i∈FC(i,t)

s .

The following proposition summarizes the properties of the family of processes defined
above.

Proposition 2 For any finite set F ⊂ Zd, {C(F,t)
s , s ≥ 0} is a Markov jump process

having as infinitesimal generator

Lf(C) = Mi

∑
i∈C

∑
k≥0

λi(k)[f(C ∪ Vi(k))− f(C)] + λi(−1)[f(C \ {i})− f(C)], (6.38)

where f is any bounded cylindrical function.

Proof The proof follows in a standard way from the construction (??). •

If we are interested in simulating from the invariant measure of the process, then we will
start the black and white time-reverse sketch process at time t = 0, if however we wish
to construct the process at time t, we shall start the black and white time-reverse sketch
process at that time t precisely.
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6.1 Backwards oriented percolation and sub-criticality

For the algorithm to be successful it is crucial to show that
⋃
s≥0C

(i,t)
s , the set of ancestors

of any site i, is finite with probability one. Formally, let

T
(i)
STOP = inf{s : C(i,0)

s = ∅}

be the relaxation time. We introduce the sequence of successive jump times T̃
(i)
n , n ≥ 1,

of processes N (j,k) whose jumps occur in (??), for t = 0. Let T̃
(i)
1 = T

(i,0)
1 and define

successively for n ≥ 2

T̃ (i)
n = inf{t > T̃

(i)
n−1 : ∃j ∈ C(i,0)

T̃
(i)
n−1

,∃k : N (j,k)(]T̃
(i)
n−1, t]) = 1}. (6.39)

We write K̃
(i)
n for the associated marks. Now we put

C(i)
n = C

(i,0)

T̃
(i)
n

(6.40)

and
N

(i)
STOP = inf{n : C(i)

n = ∅}.

This is the number of steps of the backward sketch process – and it is exactly the number
of steps of Algorithm 1. For the perfect simulation algorithm to be successful, it is crucial

to show that both relaxation time T
(i)
STOP and the number of steps N

(i)
STOP are finite. To

this aim we start estimating the volume of the set C
(F,t)
s = ∪i∈FC(i,t)

s where F is a bounded
set of Zd.

Lemma 1
E(|C(F,t)

s |) ≤ |F |e−M(1−γ)s, (6.41)

where M is defined in (??) and γ in (??).

Proof Fix some N ∈ N. Let Lis = |C(i,t)
s | and

TN = inf{t : Lit ≥ N}.

Then by (??),

Lis∧TN ≤ 1 +
∑
k≥1

∑
j∈Zd

∫ s∧TN

0
[|Vj(k)| − 1]1{j∈C(i,t)

u− }
Ñ (j,t,k)(du)

−
∑
j∈Zd

∫ s∧TN

0
1{j∈C(i,t)

u− }
Ñ (j,t,−1)(du). (6.42)

Recall that that M = infi∈Zd Mi > 0. Passing to expectation and using that, by condition
(??),

Mj

(
∑
k≥1

λj(k)[|Vj(k)| − 1])− λj(−1)

 ≤ −M(1− γ) < 0,
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this yields

E(Lis∧TN ) ≤ 1 +
∑
j∈Zd

Mj

(
∑
k≥1

λj(k)[|Vj(k)| − 1])− λj(−1)


×E

∫ s∧TN

0
1{j∈C(i,t)

u− }
du

≤ 1−M(1− γ)E

∫ s∧TN

0
Liudu. (6.43)

Letting N →∞, we thus get that

E(Lis) ≤ 1−M(1− γ)

∫ s

0
E(Liu)du,

and Gronwall’s lemma yields
E(Lis) ≤ e−M(1−γ)s. (6.44)

Hence, since |C(F,t)
s | ≤

∑
i∈F |C

(i,t)
s | =

∑
i∈F L

i
s,

E(|C(F,t)
s |) ≤ |F |e−M(1−γ)s. (6.45)

•

6.2 Proof of Proposition ??

The proof of Proposition ?? is an immediate consequence of the following Lemma.

Lemma 2 Fix a time t > 0, some finite set of sites F ⊂ Zd and two initial configurations
η and ζ ∈ AZd

. Then there exists a coupling of the two processes (σηs )s and (σζs)s such that

P (σηt (F ) 6= σζt (F )) ≤ |F |e−M(1−γ)t.

From this lemma, it follows immediately that µ is the unique invariant measure of the
process and that the convergence towards the invariant measure takes place exponentially
fast.

Proof of Lemma ??. We use a slight modification of Algorithm 1 and 2 in order to
construct σηt . The modification is defined as follows. Let TSTOP and T be variables taking
values in (0,∞). Replace Steps 1− 3 of Algorithm 1 by

1. Input: F ; Output: N
(F )
STOP , B,C.

2. N ← 0, N1
STOP ← 0, B ← ∅, C ← F, TSTOP ← 0

3. WHILE TSTOP < t and C 6= ∅

3’. Choose a time T ∈ (0,+∞) randomly according to the exponential distribution with
parameter

∑
j∈CMj . Update

TSTOP ← TSTOP + T.

20



Finally replace Step 12 of Algorithm 1 by

12. RETURN N
(F )
STOP , B,C.

In this modified version, we stop the algorithm after time t, hence the output set C might

not be empty. The output C is exactly the set C
(F,t)
t , the set of sites at time 0 whose

colors influence the colors of sites in F at time t.

Concerning Algorithm 2, replace Step 1 of Algorithm 2 by

1. Input: N
(F )
STOP , B,C; Output: {(i, σ(i)) : i ∈ F}.

and Step 3 by

3. σ(j)← η(j) for all j ∈ C; σ(j)← ∆ for all j ∈ Zd \ C.

Then the law of the set {(i, σ(i)) : i ∈ F} printed at the end of the modified Algorithm 2
is the law of σηt (F ). Now, in order to realize the coupling, we use the same realizations of

T, I and K for the construction of σηt and σζt . Write Ls for the cardinal of C
(F,t)
s . Clearly,

both realizations of σηt and σζt do not depend on the initial configuration η, ζ respectively
if and only if the output C of Algorithm 1 is void. Thus, by Lemma ??

P (σηt (F ) 6= σζt (F )) ≤ P (TSTOP ≥ t)
= P (Lt ≥ 1)

≤ E(Lt) ≤ |F |e−M(1−γ)t.

This concludes the proof of Lemma ??. •

6.3 Proof of Theorem ??

We only have to prove (??). Let
L(i)
n = |C(i)

n |

be the cardinal of the set C
(i)
n after n steps of the algorithm (recall (??)). Then due to our

assumptions, L
(i)
n can be compared to a multi-type branching process Zn having offspring

mean which is bounded by γ at each step, such that L
(i)
n ≤ Zn for all n. Thus,

P (N
(i)
STOP > n) = P (L(i)

n > 0) = P (L(i)
n ≥ 1) ≤ P (Zn ≥ 1) ≤ E(Zn) = γn.

When starting with the initial set F instead of the singleton {i}, then the above estimates
remain true by multiplying with |F |, due to the independence properties of the branching
process.

7 Impatient user bias

Perfect simulation procedures, very often cannot be run until the algorithm stops either
by limitations of time or limitations of buffer. In this section we give upper bounds for
the probability of these two types of errors.
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According to our construction, the perfect simulation algorithm of µ presented in this
article is a function F : [0, 1]N×Z

d
to S such that, if (Un)n = (Un(i), i ∈ Zd)n is a sequence

of i.i.d. families, indexed by Zd, of uniform in [0, 1] random variables, then for any site

i ∈ Zd, there exists a stopping time N
(i)
STOP , such that F depends only on the first N

(i)
STOP

families of (Un)n, i.e. for any measurable B ∈ A,

P
[
F ((U1(j))j , . . . , (UN(i)

STOP

(j))j)(i) ∈ B
]

= µ(σ(i) ∈ B).

Note that N
(i)
STOP is not the number of uniform random variables that have to be simulated

in order to sample from µ, this number will in general be considerably larger. N
(i)
STOP is

the number of steps of the backward sketch procedure.

A first kind of “impatient user bias” occurs whenever the user, for reasons independent of
the algorithm, has to stop the algorithm after, say N steps maximal. In this case, we do
not sample from µ, but instead sample from

P
[
F ((U1(j))j , . . . , (UN(i)

STOP

(j))j)(i) ∈ B|N (i)
STOP ≤ N

]
.

By Proposition 6.2 of Fill (1998), compare also to section 6 of Ferrari et al. (2002), the
error made above can be bounded by

P (N
(i)
STOP > N)

1− P (N
(i)
STOP > N)

≤ γN

1− γN
,

see Theorem ?? above.

At each step of the backward sketch procedure, a range of order k is chosen, where k
is, in general, not bounded from above. In practical situations, however, a user will be
limited in the choice of the interaction range and will restrict the simulation to the choice
of ranges bounded by a a certain upper bound L that he decided to fix in advance. More
precisely, writing

T
(i)
L := inf{T̃ (i)

n : K̃(i)
n > L},

the use will therefore sample from the measure

P
[
F ((U1(j))j , . . . , (UN(i)

STOP

(j))j)(i) ∈ B|{N (i)
STOP ≤ N} ∩ {T

(i)
L > T

i)
STOP }

]
.

In order to control the error made induced by this “space-time impatient user bias”, we
have to control

P (T
(i)
L ≤ T

i)
STOP ).

Using arguments similar to Lemma 2 of Galves et al. (2010), this can be bounded by

P (T
(i)
L ≤ T

i)
STOP ) ≤ sup

i∈Zd

(
Mi − αi(L)

Mi

)
1

1− γ
.
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