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Abstract. We analyze the continuous time evolution of a d-dimensional system of N
self propelled particles subject to a feedback rule inspired by the original Vicsek’s one
[VCB-JCS]. Interactions among particles are specified by a pairwise potential in such a
way that the velocity of any given particle is updated to the weighted average velocity
of all those particles interacting with it, which makes the system non-Hamiltonian.
The weights are given in terms of the interaction rate function. When the size of the
system is fixed, we show the existence of an invariant manifold in the phase space
and prove its exponential asymptotic stability. In the kinetic limit we show that the
particle density satisfies a Boltzmann-Vlasov equation under suitable conditions on the
interaction. We study the qualitative behaviour of the solution and we show that the
Boltzmann-Vlasov entropy is strictly decreasing.

1. Introduction

The analysis of the evolution of a network of a large number of coordinated self
propelled particles (agents) is a sub discipline of control theory which is has seen a
rapid development during the last decade [BDT, W, JLM, CKFL, B-NVR, CS, CHDB].
This is due to its several potential application in understanding the emerging of collective
behavior in biological systems (for example fish schools and bird flocks), computer science
[R, BDT], engineering [JLM, CS, CHDB], economy [DY] and social sciences [W, CKFL,
B-NVR]. To model the particle self-organized behavior one assigns to any particle a
simple communication/interaction rule in order for the whole system to dynamically
reproduce, in a given regime of the model’s parameters, specific phase space patterns.

The emergence of phase space patterns persistent in time described by a large con-
nected cluster of coherently moving particles is called flocking or swarming (also school-
ing or herd behavior). Basic models of flocking behavior generally follow three simple
rules: 1) separation, that is to avoid crowding neighbors (usually modeled by short range
repulsion interactions); 2) alignment, i.e. to steer towards average heading of neighbors;
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3) cohesion, i.e. to steer towards the average position of neighbors (usually modeled by
long range attraction interactions).

The seminal work in the direction of modeling flocking behavior is the one of Vicsek
et al. [VCB-JCS]. They proposed a model of N interacting particles located on a
2-dimensional torus of diameter D. The velocity of each given particle belongs to the
unit circle and at each time step its direction is updated at the empirical average of
the velocity’s directions of all the particles lying in a neighborhood of radius 1 from
the given one, including itself, plus a random perturbation. Particles positions are
then updated according to their velocity. Computer simulations proved that, when the
particle density N

D2 is sufficiently high and the noise intensity sufficiently small, the
distribution of the velocities of the particles concentrates around the velocity of the
barycenter of the system, although this is not a quantity preserved by the dynamics.

We propose a simple model of continuous time noiseless multi-agent evolution closely
inspired to the original Vicsek’s one. The particles interact (communicate) with each
other trough a pairwise interaction function, which can be chosen to have the shape of
an ordinary interaction potential, in such a way that the velocity of any given particle
is updated to the weighted average velocity of all those particles communicating with
it, with a weight given in terms of the communication rate function. This makes the
system non-Hamiltonian. For what concerns flocking behaviour our model takes into
account allignment and cohesion, but violates the separation rule since the particles can
overlap.

We prove for such model two type of results. First, we analyze the N particle dynamics
in Rd. We show that there exists an invariant manifold in the phase space and prove
exponential asymptotic stability of the invariant manifold when the initial conditions for
particles dynamics are suitably chosen. This implies that the system, under the chosen
initial conditions, will reach a state of flocking. Then, we will study the mean-field limit
(N →∞) of the system and prove that the particle density satisfies a Boltzman-Vlasov
equation when the particles are confined on a torus and subject to a short-range potential
of Gaussian type. The same result holds in Rd when the interaction among particles is
given by a suitable regularization of a finite range potential. We further show that the
Boltzmann-Vlasov entropy is strictly decreasing. As a consequence, one can argue that,
even if the initial distribution of the particles is absolutely continuous w.r.t. Lebesgue
measure, the limit density distribution is singular w.r.t. Lebesgue measure.

A continuous time version of Vicsek’s model, as well as its stochastic counterpart
driven by the Brownian motion, has been proposed in [DM] and the corresponding kinetic
equations heuristically derived and studied. In fact, at present time, to our knowledge,
a rigorous derivation and analysis of Vicsek’s model kinetics, as well as hydrodynamics,
is lacking.

Another basic model for flocking is the Cucker-Smale one [CS]. In this and related
models [DCBC, AIR] the variation in time of the momentum of a given particle is the
weighted sum of the differences between the particle’s momentum and those of the other
system’s components, with weights depending of the relative distances among particles
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divided by the total number of particles N. It is worth notice that, for all these models,
the interaction among two given particles is of order 1/N, therefore when the size of
the system becomes large, particles tend to decorrelate. On the contrary, in the original
Vicsek’s model, the interaction between a given couple of particles is of order one.
Moreover, Cucker-Smale dynamics preserves the velocity of the barycenter, which is not
the case for Vicsek’s. As a matter of fact, we believe that the order of the interaction
with respect to the size of the system is the peculiar feature distinguishing Vicsek’s
from Cucker-Smale algorithm. Therefore, in our opinion, variants of the Cucker-Smale
momenta updating rule taking into account only the differences among the directions
of the momenta of the particles, rather than those of the momenta as vectors, are
somewhat improperly ascribed to variants of the Vicsek’s model [BCC2]. Cuker-Smale
and related models have been more deeply investigated in the mathematical literature
and their mean-field limit equations rigorously derived and studied in [HT, HL, CFRT,
CCR, AIR] in the noiseless case and in [BCC1, BCC2] in the stochastic case driven by
Brownian motion. Moreover, the hydrodynamics equations for these models have also
been rigorously studied but formally derived [HT, CDP, CCR].

The plan of the paper is the following. In Section 2 we describe the model and set the
notations. In Section 3 we analyze the system when the number of particles is fixed. In
Section 4 we analyze the system when the number of particles goes to infinity. In the
appendix we collect proofs of results used along the previous sections.

Acknowledgements. Enza Orlandi thanks Carlangelo Liverani for useful discussions.
Michele Gianfelice thanks Fabio Fagnani and Marco Isopi for interesting discussions on
the subject.

2. Description of the model and notation

2.1. Notations. Given x ∈ Rd, d ≥ 1, we denote by xi its i-th component, i = 1, .., d,
with respect to the canonical basis (e1, .., ed) . For any x, y ∈ Rd we set x ·y :=

∑d
i=1 x

iyi

to be the scalar product between x and y. Hence, we denote by |x| :=
√
x · x the

associated Euclidean norm and by Br (x) := {y ∈ Rd : |y − x| ≤ r} the ball of radius
r > 0 centered in x and Br := Br (0) . Furthermore we set ‖x‖∞ := maxi=1,..,d |xi| .

Given an integer N ≥ 2, let x := (x1, .., xN) ∈ RNd. We denote by x · y :=
∑N

i=1 xi · yi
and |x| :=

√
x · y respectively the scalar product and the Euclidean norm in RNd. We

also denote by Br (x) := {y ∈ RNd : |y − x| ≤ r} the ball of radius r > 0 centered in x.
Partial derivative w.r.t. any component xi of x ∈ Rd will be denoted by ∂xi , so that
∇x stands for (∂x1 , .., ∂xd) while, for any q ∈ RNd, we set ∇q := (∇q1 , ..,∇qN ) .

Moreover, we denote by Ln (R) the Banach space of linear operators from Rn to itself
and by ‖·‖ and ‖·‖∞ the operator norm induced by respectively the Euclidean and the
supremum norm. In particular In,0n ∈ Ln (R) denote respectively the identity and the
null operator.
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2.2. The model. Let N ≥ 2 be an integer. We consider N particles of unitary mass in
Rd evolving according the equations:

dqi(t)
dt

= pi(t)
dpi(t)
dt

=
∑N
j=1 UR(qi(t)−qj(t))(pj(t)−pi(t))∑N

j=1 UR(qi(t)−qj(t))
, i = 1, .., N

qi(0) = q0i ; pi(0) = p0i

(2.1)

where, for i = 1, .., N, (qi, pi) ∈ Rd × Rd, (q0i , p
0
i ) are the initial conditions and UR(·) is

the two particles interaction. We assume that UR(·) is a sufficiently smooth, spherically
symmetric positive function, actually a probability density concentrating the mass in
the ball of radius R centered at zero, such that supx∈Rd UR(x) = UR(0). This implies
that the denominator in the second equation of (2.1) is always strictly positive. Other
assumptions on UR will be done in Section 3, where the kinetic limit as N → ∞ will
be considered. The vector field in (2.1) is Lipschitz, therefore the existence and the
uniqueness of the solution is granted at least for short time. Since the vector field
increases at most linearly in (q,p) the solution exists and it is unique for all t ≥ 0.

2.2.1. Communication graph. We recall some basic definition of graph theory and its
applications to Markov chains used in the next section. We refer the reader to basic
textbooks such as [B] and [St] for an account on this subject.

A directed graph G is a ordered pair of sets (V , E) where V is a finite set called set
of vertices and E ⊆ V × V is called set of edges or bonds. G ′ = (V ′, E ′) such that
V ′ ⊆ V and E ′ ⊆ (V ′ × V ′) ∩ E is said to be a subgraph of G and this property is
denoted by G ′ ⊆ G. Two vertices are said to be adjacents if belong to the same bond,
so that u, v ∈ V are adjacents w.r.t. b ∈ E if either b = (u, v) or b = (v, u) . For any
b ∈ E , let then Vb := {{u, v} ⊂ V : u and v are adjacent w.r.t. b} . Then, if b = (u, v) ,
b is said outgoing from u and ingoing in v. Let E+v := {b ∈ E : b = (v, u) , u ∈ V} be
the set of bonds outgoing from v. We denote by N+ (v) :=

(
∪b∈E+v Vb

)
⊆ V the closed

outgoing neighborhood of v and set, for any W ⊂ V , N+ (W) := ∪v∈WN+ (v) to be
the closed outgoing neighborhood of W . Given v ∈ V , we set N+

1 (v) := N+ (v) and,
for k ≥ 2, N+

k (v) := N+
(
N+
k−1 (v)

)
to be the outgoing k-neighborhood of v. Given

two vertices u and v, u is said to communicate with v if there exists k ≥ 1 such that
u ∈ N+

k (v) . Therefore, u, v ∈ V are said to be connected if one communicates with the
other. In fact, since if u ∈ N+

k (v) for some k ≥ 1, then u ∈ N+
l (v) , ∀l > k, for u and v

to be connected there must be k1, k2 ≥ 1 such that u ∈ N+
k1

(v) and v ∈ N+
k2

(u) , that is

u ∈ N+
k1∨k2 (v) , v ∈ N+

k1∨k2 (u) . G is then said to be strongly connected if any two distinct
vertices are connected. The maximal connected subgraphs of G are called components
of G.

An example of directed graph is the one which can be associated to a Markov chain.
In this case, V coincides with the set of states of the chain and, denoting by P the
transition matrix associated to the chain E = E (P ) := {(u, v) ∈ V × V : Pu,v > 0} .
Then, the directed graph associated to the Markov chain with transition matrix P is
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denoted by G (P ) . Hence, the chain and therefore P are said to be irreducible if and
only if G (P ) is strongly connected.

Definition 2.1. Given any particles configuration q ∈ RNd, we define the geomet-
ric communication graph of the particle system to be the directed graph GR (q) :=
(V (q) ,ER (q)) , where V (q) is the finite subset of Rd associated to q and

ER (q) := {(q, q′) ∈ V (q)× V (q) : UR (q − q′) > 0} . (2.2)

When considering the particles configuration at a given time t, q (t) , we set Vt :=
V (q (t)) and GR (t) := GR (q (t)) .

Definition 2.2. The system is said to have reached a state of flocking if there exists
v ∈ Rd such that, for any ε > 0,∃Tε > 0 : ∀t > Tε,

• pi (t) ∈ Bε (v) ,∀i = 1, .., N ;
• the geometric communication graph GR (t) is connected and |Vt| ≥ 2.

Definition 2.3. The state of the system (q,p) such that q1 = · · · = qN , p1 = · · · = pN
is called rendez-vous state.

From (2.1) it follows that rendez-vous states belong to the collection of the invariant
states for the dynamics.

3. Particle dynamics

In the following we analyze the evolution of N particles according equations (2.1). In
this section N is kept fixed, so we omit in the notation to write explicitly the dependence
on N. We show that there exists an invariant (N + 1)d manifold for evolution (2.1) and
prove first its stability, see Corollary 3.5, and then its asymptotic stability, see Theorem
3.11.

3.1. Stability. We first notice that if the velocities of the particles at time zero are
bounded, that is, for all i = 1, .., N, p0i ∈ Br for some r > 0, then they will lie in Br for
later times. In fact we have the following result:

Lemma 3.1. For any i = 1, .., N, assume that pi (0) ∈ Br. Then, pi(t) ∈ Br, for all
t > 0.

Proof. Assume, without loss of generality that r = 1 and that there is a t∗ such that
there is at least one pi(t

∗) such that |pi(t∗)| = 1 and |pj(t∗)| ≤ 1 for j 6= i. Then

1

2

d

dt
|pi(t∗)|2 =

∑N
j=1 UR(qi(t

∗)− qj(t∗)) [pj(t
∗)− pi(t∗)] · pi(t∗)∑N

j=1 UR(qi(t∗)− qj(t∗))
≤ 0 . (3.1)

�

Remark 3.2. The result of Lemma 3.1 holds for any positive smooth interaction UR,
regardless of its support. In particular, it holds if UR does not have compact support.
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Remark 3.3. The only critical point of the system (2.1) is (0,0) . Moreover, if the
particles at initial time have all the same velocity, that is, for j = 1, .., N, p0j = v ∈ Rd,
their velocity will remain constant during the evolution and the system describes the
motion of N non-interacting particles.

From Remark 3.3 one deduces that the (N + 1)d linear manifold

I = ∪{v∈Rd}I(v) (3.2)

where

I(v) = {(q,p) ∈ RdN × RdN : pi = v, i = 1, .., N} (3.3)

is invariant for the evolution (2.1). Namely, if the initial data belong to I (v) the particles
evolve independently one from the other with constant velocity v.

The next result shows that if at time t = 0 the velocity of the N particles is close to
its mean velocity vector, then, at any further time t, it will always remain close to the
mean initial velocity vector. Let Ω ∈ LNd be the operator such that

RNd 3 x 7−→Ωx ∈ RNd , (3.4)

where Ωx is the vector in RNd whose component are the vectors (Ωx)i = 1
N

∑N
j=1 xj ∈ Rd

for i = 1, .., N. Notice that by definition Ω is the orthogonal projector on{
x ∈ RNd : x1 = · · · = xN

}
.

Theorem 3.4. Let w(t, w0) = (q(t),p(t)) be the solution of (2.1) at time t starting from
w0 = (q0,p0) ∈ R2Nd. Given ε > 0, assume that |p0 − Ωp0| < ε. Then

|p(t)− Ωp0| ≤ ε, ∀t ≥ 0 . (3.5)

Proof. We proceed as in the proof of Lemma 3.1. Let us denote by vi(t) = pi(t)−(Ωp0)i ∈
Rd, i = 1, .., N, and assume that there is a t∗ so that there is at least one components
|vi(t∗)| = ε and |vj(t∗)| < ε for j 6= i. We have

1

2

d

dt
|vi(t)|2 = vi(t) ·

d

dt
vi(t) (3.6)

=

∑N
j=1 UR(qi(t

∗)− qj(t∗)){vj(t∗)− vi(t∗)} · vi(t∗)∑N
j=1 UR(qi(t∗)− qj(t∗))

≤ 0 .

�

Note that, for any w ∈ R2Nd,

dist (w, I) = inf
w0∈I
|w − w0| = inf

{p0∈RNd:w=(q0,p0)∈I}
|p− p0| = |p− Ωp| , (3.7)

where Ω is the operator defined in (3.4). From Theorem 3.4 one deduces that the
invariant manifold I is stable for the evolution (2.1).
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Corollary 3.5. For any ε > 0 let B(ε, I) =
{
w ∈ R2Nd : dist (w, I) ≤ ε

}
be a neigh-

borhood of radius ε of I. Let w(t, w0) be the solution of (2.1) at time t starting from
w0 = (q0,p0) ∈ B(ε, I). Then

dist
(
w(t, w0), I

)
≤ 2ε, ∀t > 0 . (3.8)

Proof. By (3.7) we have

dist
(
w(t, w0), I

)
= |p(t)− Ωp(t)| ≤ |p(t)− Ωp0|+ |Ωp(t)− Ωp0| . (3.9)

By definition of Ω, see (3.4),

|Ωp(t)− Ωp0| = |Ω(p(t)− Ωp0)| ≤ |p(t)− Ωp0| . (3.10)

Hence, by Theorem 3.4,

dist
(
w(t, w0), I

)
≤ 2|p(t)− Ωp0| ≤ 2ε , ∀t ≥ 0 . (3.11)

�

3.2. Asymptotic stability. Next we show a stronger result. Choosing suitably the ini-
tial datum, the solution of (2.1) converges exponentially towards the invariant manifold.
We show that the N particles will not split into non interacting groups and the velocity
of each particle converges exponentially fast to a velocity vector which is the same for
all the N particles. In other words, the system will reach a state of flocking as given in
Definition 2.2.

We rewrite the non linear system (2.1) as follows:
( dq(t)

dt
dp(t)
dt

)
= C (q(t))

(
q(t)
p(t)

)
q(0) = q0,p(0) = p0

(3.12)

where

RNd 3 q 7−→ C (q) :=

(
0Nd INd
0Nd L (q)

)
∈ L2Nd (R) , (3.13)

L (q) := A (q)− INd (3.14)

and A(q) is the linear operator valued function so defined

RNd 3 q 7−→ A(q) :=

a1,1(q)Id a1,2(q)Id . . . a1,N(q)Id
a2,1(q)Id a2,2(q)Id . . . a2,N(q)Id
aN,1(q)Id . . . aN,N−1(q)Id aN,N(q)Id

 ∈ LNd (R)

(3.15)

ai,j(q) :=
UR(qi − qj)∑N
j=1 UR(qi − qj)

, j = 1, .., N, i = 1, .., N. (3.16)

Remark 3.6. Notice that for q ∈ RNd

ai,j(q) = ai,j(q + Ωx), ∀x ∈ RNd, j = 1, .., N, i = 1, .., N (3.17)
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and
N∑
j=1

ai,j(q) = 1. (3.18)

These two properties are important when studying the spectrum of C (q) for a fixed value
of q.

3.2.1. Spectral Analysis of C (q). Let q ∈ RNd be fixed. The eigenvalues of C (q) are
the roots of the characteristic equation

Det [C (q)− λI2Nd] = (−λ)Nd Det [L (q)− λINd] = 0. (3.19)

We need then to study the spectrum of L (q) and therefore, by (3.14) the spectrum of
A(q). To do this it is convenient to introduce the tensor space RN ⊗ Rd. We denote by
F the isomorphism

RNd 3 x −→ F (x) :=
N∑
i=1

d∑
j=1

xjiei ⊗ ej ∈ RN ⊗ Rd , (3.20)

such that F(x)i,j = xji , i = 1, .., N and j = 1, .., d.
To ease the notation we omit in the following to write the dependence on q if no confu-

sion arises. We therefore set A := A (q) . One obtains immediately that A : RNd −→ RNd

acts on RN ⊗ Rd as follows

Ã⊗ Id : RN ⊗ Rd −→ RN ⊗ Rd , (3.21)

where, by (3.16), setting ai,j := ai,j(q),

Ã :=

a1,1 a1,2 . . . a1,N
a2,1 a2,2 . . . a2,N
aN,1 . . . aN,N−1 aN,N

 . (3.22)

Namely, one has that (
Ã⊗ Id

)
F(x) = F (Ax) . (3.23)

Furthermore, denoting by Σ(A) ⊂ C the spectrum of A,

Σ(A) = Σ(Ã⊗ Id) = Σ(Ã)Σ(Id)1 . (3.24)

Since the only eigenvalue of Id is 1 with multiplicity d, the problem is reduced to study
the spectrum of Ã. The matrix Ã is a (right) stochastic matrix, that is it has non-

negative entries and, by (3.18),
∑N

j=1 ai,j = 1,∀i = 1, .., N. Then, if it is irreducible one

can apply the Perron-Frobenius Theorem. We recall that a matrix D ∈ Ln (R) with
non-negative entries is said to be irreducible if there exists an integer m so that Dm has
strictly positive entries.

1If Z := {z1, .., zn} and W := {w1, .., wm} are two discrete subsets of C we denote by

ZW := {ziwj ∈ C : i = 1, .., n ; j = 1, ..,m} .
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The existence of m ∈ N such that Ãm (q) has strictly positive entries is related to

have the graph G
(
Ã (q)

)
associated to Ã (q) strongly connected. In fact, G(Ã (q))

is strongly connected if and only if Ã (q) is irreducible. Clearly this property is also
shared by GR (q) which is nothing else but a geometric representation of G(Ã (q)) in Rd.
Therefore, it follows:

Lemma 3.7. For any q ∈ RNd, let Ã(q) be irreducible. Then 1 is the maximum eigen-
value and all the other eigenvalues λ(q) ∈ C are strictly smaller in absolute value of
1, i.e. |λ(q)| < 1. The eigenspace associate to the eigenvalue 1 is one dimensional.
Furthermore, there exists an eigenvector η ∈ RN associated to 1 with strictly positive
entries, i.e. Ã(q)η = η and ηi > 0 for i = 1, .., N. Moreover, ηi = 1√

N
for i = 1, .., N

and there are no other positive eigenvectors except multiples of η.

Proof. Because for any q ∈ RNd, ‖Ã (q) ‖∞ ≤ maxi=1,..,N

∑N
j=1 ai,j (q) = 1, we have that

the maximum eigenvalue is 1 and any other eigenvalue λ(q) ∈ C is strictly smaller in
absolute value of 1. By Perron Frobenius Theorem the maximum eigenvalue is simple
and the associated positive eigenvector is η with ηi = 1√

N
for i = 1, .., N. �

Lemma 3.8. For any q ∈ RNd, so that Ã(q) is irreducible, let A(q) be the matrix
as in (3.15). We have that 1 ∈ Σ(A(q)) is the maximum eigenvalue. The associated
eigenspace is the d-dimensional manifold {p ∈ RNd : pi = v, i = 1, .., N ; v ∈ Rd}. All
the other eigenvalues λ(q) ∈ Σ(A(q)) are such that |λ(q)| < 1.

Proof. It is an immediate consequence of (3.24) and Lemma 3.7. �

We have finally the following result.

Theorem 3.9. For any q ∈ RNd, so that Ã(q) is irreducible, let C(q) be defined in
(3.13). We have that 0 ∈ Σ(C(q)). The (N + 1)d dimensional manifold I defined in
(3.2) is the eigenspace associated to the eigenvalue 0. All the other eigenvalues of C(q)
have real part strictly negative.

Proof. From (3.19) and Lemma 3.8 we deduce that 0 ∈ Σ(C(q)) and all other eigenvalues
have real part strictly negative. It is immediate to see that the algebraic multiplicity
of 0 is Nd + d. The (N + 1) d-dimensional manifold I defined in (3.2) is the associated
eigenspace. Namely, if w ∈ I then C (q)w ∈ I. From this one deduces that I is an
eigenspace for the matrix C(q). Moreover, since the kernel of C2 (q) is I, we get that I
is the eigenspace associated to the eigenvalue 0. �

We denote by α(q) the spectral gap of the matrix C(q), that is

α(q) := min {|Re(λ(q))| : λ(q) ∈ Σ(C(q)), Re(λ(q)) < 0} . (3.25)

Let q ∈ RNd so that Ã(q) is irreducible. By Theorem 3.9, I is the eigenspace associated
to the 0 eigenvalue of C(q) for any q. We can therefore decompose R2Nd as follows:

R2Nd = W (q)⊕ I (3.26)
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in such a way thatW (q) and I are eigenspaces of C(q) and denote by Π(q) the projection
operator

Π(q) : R2Nd → W (q) . (3.27)

3.3. Asymptotic Analysis. Let w0 = (q0,p0) ∈ I be such that Ã(q0) is irreducible
and let us set, for any r > 0 and ε > 0,

B̃(r, ε, w0) := {w = (q,p) ∈ R2Nd : |q− q0| ≤ r ; |p− p0| ≤ ε} . (3.28)

Denote by r0 the biggest value of r such that, for any w = (q,p) ∈ B̃(r0, ε, w
0), Ã(q) is

still irreducible and α(q) ≥ 1
2
α(q0). We set

B(r0, ε, w
0) :=

{
w = (q,p) ∈ B̃(r0, ε, w

0) : α(q) ≥ 1

2
α(q0)

}
. (3.29)

The existence of r0 is granted since, by assumption, Ã(q0) is irreducible and UR is
smooth. To apply the spectral results obtained for C(q), (q fixed), to the nonlinear
system (3.12) we write

C(q(t)) = C(q(0)) + Γ(q(t)) , (3.30)

where

Γ(q(t)) :=

(
0Nd 0Nd
0Nd B (q (t))

)
, (3.31)

and

B(q(t)) := A(q(t))− A(q(0)) . (3.32)

Next we estimate the norm of B(q(t)).

Lemma 3.10. Let (q(t),p(t)) be the solution of (3.12) starting from the initial data
(q0,p0). Then, setting

bi,j(q(t)) := ai,j(q(t))− ai,j(q0) i, j = 1, .., N , (3.33)

we have

‖B(q(t))‖ ≤ 2N
supx∈Rd |∇U(x)|

UR (0)
sup

i,k∈{1,..,N}

∣∣−(q0i − q0k) + qi(t)− qk(t)
∣∣ . (3.34)

We defer the proof of this result to the appendix.

Theorem 3.11. Let w0 = (q0,p0) ∈ I and assume that Ã(q0) is irreducible. There
exist three positive constants r0 = r0(w0), T = T (w0) and ε0 = ε0 (N,w0) such that, for
any initial datum w1 ∈ B(r0, ε0, w

0) ⊂ R2Nd,

dist
(
w(t, w1), I

)
≤ ε0e

−t log 2
T , (3.35)

where w(t, w1) is the solution at time t of (3.12) starting from w1.
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Proof. For any s > 0, we define

Q̃(s, w0) := {w = (q,p) ∈ R2Nd : |[INd − Ω]
(
q− q0

)
| ≤ s} , (3.36)

where Ω is the operator defined in (3.4). Denote by s0 the largest value of s such that,
for any w = (q,p) ∈ Q̃(s0, w

0), Ã(q) is still irreducible and α(q) ≥ 1
4
α(q0). Such a value

s0 exists since Ã(q0) is irreducible and UR is smooth. Let us set

Q(s0, w
0) :=

{
w = (q,p) ∈ Q̃(s0, w

0) : α(q) ≥ 1

4
α(q0)

}
. (3.37)

We have that
B(r0, ε, w

0) ⊂ Q(s0, w
0) , ∀ε > 0 . (3.38)

Namely we have that s0 ≥ r0 since requirement (3.29) is stronger than (3.37) and

|[INd − Ω](q− q0)| ≤ |q− q0| ≤ r0 . (3.39)

Let w(t, w1) = (q(t, w1),p(t, w1)) be the solution of system (3.12) starting from an
initial datum w1 ∈ B(r0, ε, w

0) and let t∗(w1) > 0 be the first exit time of w(t, w1) from
Q(s0, w

0). If w(t, w1) ∈ Q(s0, w
0) for all t ≥ 0, then we set t∗(w1) =∞. Next we analyze

the solution for t < t∗(w1) and we will show that t∗(w1) = ∞ for any initial datum
w1 ∈ B(r0, ε, w

0), provided that ε in (3.28) is suitably chosen. Let us define

ξ(t) := Π(q(t, w1))w(t, w1) , (3.40)

χ(t) :=
(
I2Nd − Π(q(t, w1)

)
w(t, w1) , t < t∗(w1) . (3.41)

By construction χ(t) ∈ I, ξ(t) ∈ W (q(t, w1)). We then have

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
w(t, w1) + Π(q(t))

d

dt
w(t, w1) (3.42)

=

(
d

dt
Π(q(t))

)
w(t, w1) + Π(q(t))C(q(t))w(t, w1) .

Taking into account that w(t, w1) = ξ(t) + χ(t) we get

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
ξ(t) +

(
d

dt
Π(q(t))

)
χ(t) + Π(q(t))C(q(t))ξ(t) . (3.43)

Since for any given w ∈ I, by the definition Π(q(t)), we have d
dt

Π(q(t))w = 0 and
C(q(t)) and Π(q(t)) commute, we obtain

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
ξ(t) + C(q(t))ξ(t) . (3.44)

Setting
C(q(t)) = C(q(0)) + Γ(q(t)) , (3.45)

where Γ(q(t)) is defined in (3.31), we get

d

dt
ξ(t) =

(
d

dt
Π(q(t))

)
ξ(t) + C(q(0))ξ(t) + Γ(q(t))ξ(t) . (3.46)
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By the formula of variation of constants:

ξ(t) = eC(q(0))tξ(0) +

∫ t

0

eC(q(0))(t−s)
{(

d

ds
Π(q(s))

)
ξ(s) + Γ(q(s))ξ(s)

}
ds. (3.47)

Performing the exponential of the matrix C(q(0)) one needs to take into account that,
because of the possible presence of Jordan blocks, powers of t might appear. We control
such terms paying e−

1
2
α(q(0))t and multiplying the remaining exponential by a constant

D(C(q(0))) which depends only on C(q(0)). Since q(0) ∈ Br0 (q0) , which is a compact
set in RNd, we denote by D0 := supq∈Br0 (q0)D(C(q)), which depends only on C(q0) and
r0. Therefore, we get

|ξ(t)| ≤ D0e
− 1

2
α(q(0))t|ξ(0)|+D0

∫ t

0

e−
1
2
α(q(0))(t−s)

{
|
(
d

ds
Π(q(s))

)
ξ(s)|+ |Γ(q(s))ξ(s)|

}
ds .

(3.48)
Next we estimate

∥∥ d
dt

Π(q(t))
∥∥ . Let Π(q(t)) = {πi,j(q(t))}i,j=1,..,,N , we then have

d

dt
Π(q(t)) =

(
∇q(t)πi,j(q(t)) · p(t)

)
i,j=1,..,,N

(3.49)

=
(
∇q(t)πi,j(q(t)) · [p(t)− Ωp(t)]

)
i,j=1,..,,N

.

The last equality holds since, by (3.17), Π(q(t)) = Π(q(0)),∀t ∈ R, when q(t) is the
evolution given by the flow on the invariant manifold, i.e. when p(t) = Ωp(t). We get
by Corollary 3.5∥∥∥∥ ddtΠ(q(t))

∥∥∥∥ ≤ sup
{q∈RNd : w=(q,p)∈Q(s0,w0)}

sup
i,j=1,..,N

|∇qπi,j(q)| |p(t)− Ωp(t)| (3.50)

≤ D′(s0)ε , ∀t ∈ [0, t∗(w1)) ,

where D′(s0) > 0. Furthermore, by (3.31) and Lemma 3.10, we have

‖Γ(q(t))‖ = ‖B(q(t))‖ ≤ 2
N

UR (0)
sup
x∈Rd
|∇U(x)| max

1≤i,k≤N

∣∣−(q1i − q1k) + qi(t)− qk(t)
∣∣

(3.51)
and, by Theorem 3.4, for i, k = 1, .., N,∣∣qi(t)− qk(t)− (q1i − q1k)

∣∣ =

∫ t

0

|pi(s′)− pk(s′)| ds′ (3.52)

=

∫ t

0

∣∣pi(s′)− p0i + p0k − pk(s′)
∣∣ ds′ ≤ 2εt,

where p0i = p0k since (q0,p0) ∈ I. Thus, setting D1 := 2
sup

x∈Rd |∇U(x)|
UR(0)

,∀t ∈ [0, t∗(w1)) we

obtain

|ξ(t)| ≤ D0e
− 1

2
α(q(0))t|ξ(0)|+D0ε

∫ t

0

e−
1
2
α(q(0))(t−s) {[D′ (s0) + 2ND1s] |ξ(s)|} ds . (3.53)
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Given K ≥ max{D′ (s0) , 2D1}, take T ∈ (0, t∗(w1)). A suitable choice of T will be done
later. Then,

|ξ(t)| ≤ D0e
− 1

2
α(q(0))t|ξ(0)|+ εD0K {1 + TN}

∫ t

0

e−
1
2
α(q(0))(t−s)|ξ(s)|ds, ∀t ∈ [0, T ].

(3.54)
By the Gronwall’s inequality, which we recall in appendix (see Lemma 5.1), we get

|ξ(t)| ≤ D0|ξ(0)|e−t[
1
2
α(q(0))−εδ] ≤ D0|ξ(0)|e−t[

1
8
α(q0)−εδ] , ∀t ∈ [0, T ] , (3.55)

where we made use of (3.37) and set δ := D0K {1 +NT} . Let us choose ε such that

1

16
α(q0) ≥ εD0K{1 +NT} . (3.56)

Then,

|ξ(t)| ≤ D0|ξ(0)|e−t
1
16
α(q0) , ∀t ∈ [0, T ] . (3.57)

Since

dist
(
w(t, w1), I

)
= inf

w̃∈I
|w(t, w1)− w̃| = inf

w̃∈I
|χ(t) + ξ(t)− w̃| (3.58)

≤ |ξ(t)|+ inf
w̃∈I
|χ(t)− w̃| = |ξ(t)| ,

we have

dist
(
w(t, w1), I

)
≤ D0|ξ(0)|e−t

1
16
α(q0) , ∀t ∈ [0, T ] . (3.59)

Then, recalling that dist (w(t, w1), I) = |p(t)− Ωp(t)|, and, since for w1 ∈ B(r0, ε, w
0),

|ξ(0)| ≤ D(s0) dist
(
w1, I

)
≤ D(s0)ε , (3.60)

we have

|p(t)− Ωp(t)| ≤ D0D(s0)εe
− 1

16
α(q0)t ≤ ε(D0D(s0) ∨ 1)e−

1
16
α(q0)t , ∀t ∈ [0, T ] . (3.61)

From this we get

|[INd − Ω]
(
q(t)− q0

)
| ≤ |[INd − Ω]

(
q(0)− q0

)
|+
∫ t

0

| [INd − Ω] p(s)|ds (3.62)

≤ |q(0)− q0|+ (D0D(s0) ∨ 1)
16

α(q0)
ε(1− e−

1
16
α(q0)t)

≤ |q(0)− q0|+ (D0D(s0) ∨ 1))
16

α(q0)
ε .

Let us choose ε such that

r0 + (D0D(s0) ∨ 1))
16

α(q0)
ε ≤ 1

2
s0 , (3.63)

and denote this chosen value by ε̃1. Now we first choose T such that

(D0D(s0) ∨ 1)e−
1
16
α(q0)T =

1

2
∧ 1

2D0

(3.64)
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and denote this chosen value by T0, then we choose ε̃2 in such a way that (3.56) holds
with T replaced by T0. We then set

ε0 := min {ε̃1, ε̃2} . (3.65)

Notice that, by (3.63),

ε̃1
16

α(q0)
≤ r0 + (D0D(s0) ∨ 1))

16

α(q0)
ε ≤ 1

2
s0 (3.66)

so, since α (q0) < 1,

ε0 ≤ ε̃1 ≤
1

32
s0 . (3.67)

We remark that the choice of T0 depends only on w0 ∈ I, while the choice of ε0 depends
on w0 ∈ I, on T0 and N. Therefore, at time T0 we have

|[INd − Ω]
(
q(T0)− q0

)
| ≤ 1

2
s0 (3.68)

and

dist
(
w(T0, w

1), I
)

= |p(T0)− Ωp(T0)| ≤
ε0
2
. (3.69)

We can then repeat the previous argument for the solution of the system (2.1) starting at
time T0 from the initial datum (q(T0),p(T0)). We need to recall that α(q(T0)) ≥ 1

4
α(q0).

In a similar way we can show that that for t ∈ [T0, 2T0],

|p(t)− Ωp(t)| ≤ D0|ξ(T0)|e−(t−T0)
1
16
α(q0) , ∀t ∈ [T0, 2T0] . (3.70)

Therefore, by (3.64), we have

dist (w(2T0, w(T0)), I) = |p(2T0)− Ωp(2T0)| ≤
ε0

22(D0D(s0) ∨ 1)
≤ ε0

22
, (3.71)

and, by (3.70),

|[INd − Ω]
(
q(t)− q0

)
| ≤ |[INd − Ω]

(
q(T0)− q0

)
|+
∫ t

T0

|[INd − Ω]p(s)|ds (3.72)

≤ |[INd − Ω]
(
q(T0)− q0

)
|+D0|ξ(T0)|

∫ t

T0

e−(s−T0)
1
16
α(q0)ds

≤ 1

2
s0 +

1

4
s0 ,

the last inequality being a consequence of (3.63) and (3.64). Thus, at time T1 = 2T0

|[INd − Ω]
(
q(T1)− q0

)
| ≤ 1

2
s0 +

s0
4
. (3.73)

Hence, we have that (q(T1),p(T1)) ∈ Q(s0, w
0). Iterating this procedure m times we get

dist
(
w(Tm, w

1), I
)

= |p(Tm)− Ωp(Tm)| ≤ ε0
2m+1

, (3.74)
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and

|[INd − Ω]
(
q(Tm)− q0

)
| ≤ s0

m∑
k=0

1

2k+1
. (3.75)

Since
∑

k≥1
1
2m

= 1
2

we obtain the thesis of the theorem. �

4. Kinetic limit: Boltzmann-Vlasov equation

We would like to study system (2.1) when the number of particles N goes to infinity
and to derive the kinetic equation for the density ft(x, v) of particles at x with velocity
v at time t. Let (qj(t), pj(t)), j = 1, .., N be the solution of the system (2.1) for some
initial datum (q0j , p

0
j), ‖p0j‖ ≤ 1, j = 1, .., N and

µNt (dx, dv) =
1

N

N∑
j=1

δ(qj(t)− x)δ(pj(t)− v)dxdv , (4.1)

the empirical measure. By Lemma 3.1 and Remark 3.2 µNt (dx, dv) has support on
Rd ×B1. Given a smooth function g on Rd ×B1, we denote by

µNt (g) =

∫
Rd×B1

g(x, v)µNt (dx, dv) . (4.2)

Writing the second equation of (2.1) in term of µNt we get

dpi(t)

dt
=

∑N
j=1 UR(qi(t)− qj(t)) (pj(t)− pi (t))∑N

j=1 UR(qi(t)− qj(t))
(4.3)

=

∫
Rd×B1

UR(qi(t)− y) (u− pi (t))µNt (dy, du)∫
Rd×B1

UR(qi(t)− y)µNt (dy, du)

=: M(qi(t), pi(t), µ
N
t ) .

Therefore, the evolution of µNt is given by

∂(µNt (g))

∂t
= µNt (v · ∇xg) + µNt (M

(
·, ·, µNt

)
· ∇vg) . (4.4)

In the equation (4.4), N is fixed. To study the limit as N →∞ we assume that at t = 0

µN0 (dx, dv) =
1

N

N∑
j=1

δ(q0j − x)δ(p0j − v)dxdv
w

=⇒ µ0(dx, dv) , (4.5)

where the convergence is weakly as measures, i.e., for every bounded and continuous
function g,

lim
N→∞

∫
g(x, v)µN0 (dx, dv) =

∫
g(x, v)µ0(dx, dv) .

We want to show that if (4.5) holds at time t = 0, then

µNt (dx, dv)
w

=⇒ µt(dx, dv) , (4.6)
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where µt is the measure solution of the following equation

∂(µt(g))

∂t
= µt(v · ∇xg) + µt(M (·, ·, µt) · ∇vg) , (4.7)

which is the formal limit of (4.4). Furthermore, if

µ0(dx, dv) = f0(x, v)dxdv , (4.8)

i.e. the initial measure is absolutely continuous with respect to Lebesgue measure, then
we want to show that

µt(dx, dv) = ft(x, v)dxdv , (4.9)

where ft is the weak solution of

∂

∂t
ft(x, v) + v · ∇xft(x, v) +∇v · [M(x, v, ft)ft(x, v)] = 0 . (4.10)

If one assumes that µt(dx, dv) = ft(x, v)dxdv, equation (4.10) is obtained integrating by
parts in (4.7)∫

Rd×B1

∂

∂t
µt(dx, dv)g(x, v) =

∫
Rd×B1

v · ∇xg(x, v)µt(dx, dv) (4.11)

+

∫
Rd×B1

M(x, v, µt) · [∇vg(x, v)]µt(dx, dv) .

Therefore,∫
Rd×B1

∂

∂t
ft(x, v)g(x, v)dxdv = −

∫
Rd×B1

v · ∇xft(x, v)g(x, v)dxdv (4.12)

−
∫
Rd×B1

g(x, v)∇v · [(M(x, v, ft)) ft(x, v)] dxdv ,

where, for F (v) ∈ Rd, we denote by ∇v · F (v) =
∑d

i=1
∂Fi(v)
∂vi

= div(F (v)). This

holds for any test function g(·, ·); therefore equation (4.10) holds. This is a sort of
Boltzmann-Vlasov equation where the collision kernel is replaced by M(x, v, ft). When
M(x, v, ft) = 0 the equation (4.10) becomes linear and describes the motion of particles
moving independently from each other with the same velocity.

We prove rigorously the previous argument under some assumptions over the inter-
action UR and the configurations space. We first show in Theorem 4.5 the existence in
a suitable space of measure of the evolution (4.7). Then we show in Corollary 4.7 that
if (4.5) holds, then (4.6) holds and it is the measure solution of (4.7). Furthermore, in
Theorem 4.8, we show that if (4.8) holds then (4.9) holds and ft is the weak solution
of (4.10). Requiring more regularity to the initial distribution f0 and to the interaction
UR we proved that ft is the strong solution of (4.10).

The results are shown adapting to our context the method reported in Spohn’s book
(1991) [S] (see also Neunzert (1984) [N] and Dobrushin (1979) [D]) and some classical
tools of dynamical systems.
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In Subsection 4.1 we present some qualitative properties of the solution of (4.7). More
accurate analysis of the qualitative behavior of this solution, in special way its long time
behavior, is behind the aim of this paper.

We start defining the space of measures and the metric we will be using. We will
consider measures with finite total mass on (X ×B1,B (X ×B1)) where the symbol X
stands either for Rd or for the torus of linear size D > 0, TD and B (X ×B1) is the Borel
σalgebra on X×B1. We will denote byM the space of such measures and, without loss
of generality, we will take into account only probability measures. Notice that we will be
using the same notations either to denote the space of probability measure on TD×B1 or
the space of probability measure on Rd×B1, unless we will have the need to distinguish
between the two configuration space and therefore use the notation M(X × B1). The
bounded Lipschitz distance2, dbL, between two measures µ and ν in M is given by

dbL(µ, ν) = sup
g∈D

∣∣∣∣∫ g(x, v)µ(dx, dv)−
∫
g(x, v)ν(dx, dv)

∣∣∣∣ , (4.13)

where

D :=

{
g | g : X ×B1 → [0, 1], |g(x, v)− g(y, w)| ≤

√
|v − w|2 + |x− y|2

}
. (4.14)

For any smooth function g we consider the evolution (4.7) in M. To prove existence
and uniqueness of the solution of equation (4.7), an important assumption we make is
that M(·, ·, ν) is Lipschitz continuous in x and v for any ν ∈ M. We are then forced
to consider only those interactions UR for which not only M(·, ·, ν) can be well defined
for all (x, v) ∈ X × B1 and for any ν ∈ M, but is also Lipschitz continuous in x and
v for any ν ∈ M. As a matter of fact, it is not clear even how to define the quantity
M(x, v, µNt ) for (x, v) ∈ X × B1 regardless of how smooth one can take the interaction
UR. The problem is caused by the presence of the denominator in (4.3). When x is in
the support of µNt the denominator is always positive, actually bigger than 1

N
and then

M(x, v, µNt ) is well defined. When x is not in the support of µNt it might happen that∫
Rd×B1

UR(x− y)µNt (dy, du) = 0, therefore it is not clear how to define M(x, v, µNt ). To
overcome this problem we consider two classes of interaction UR. The first one is the
collection of smooth interactions UR such that (UR ?ν)(x) > 0 for all x ∈ X. In this case
we define

M(x, v, ν) =

(∫
X×B1

UR(x− y)uν(dy, du)∫
X×B1

UR(x− y)ν(dy, du)

)
− v =: A(x, ν)− v . (4.15)

2The bounded Lipschitz distance is identical to the Kantorich-Rubinstein (Vaserstein) distance. The
metric dbL generates the weak ∗-topology on M. For a sequence µN ,

lim
N→∞

dbL(µN , ν) = 0

is equivalent to

lim
N→∞

∫
g(x, v)µN (dx, dv) =

∫
g(x, v)ν(dx, dv)

for all bounded and continuous functions g.
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The second one is the class of smooth interactions UR with compact support. In this
case, we fix ε > 0 and define

M ε(x, v, ν) :=

(∫
X×B1

UR(x− y)(u− v)ν(dy, du)∫
X×B1

UR(x− y)ν(dy, du) + ε

)
. (4.16)

Hence, in the case UR has compact support, we modify the interaction term in such a
way that when

∫
X×B1

UR(x− y)ν(dy, du) = 0 then M ε(x, v, ν) = 0, when
∫
X×B1

UR(x−
y)ν(dy, du) > ε thenM ε(x, v, ν) = M(x, v, ν)+O(ε), when ε >

∫
X×B1

UR(x−y)ν(dy, du) >

0 then M ε(x, v, ν) is a large perturbation of M(x, v, ν). Notice that if one considers the
system (2.1) replacing UR with the modified interaction, the one in (4.16), then Lemma
3.1 continues to hold. This is the reason why we kept the velocity in the ball B1.

It is easy to see that for any measure ν on Rd ×B1 we have

sup
(x,v)∈Rd×B1

|M(x, v, ν)| ≤ 2 , sup
(x,v)∈Rd×B1

|M ε(x, v, ν)| ≤ 2 . (4.17)

The Lipschitz continuity of M(·, ·, ν) with respect to v follows from the linearity of
M(·, ·, ν) as a function of v. The Lipschitz continuity of M(·, ·, ν) with respect to x does
not hold in general even if one takes a smooth interaction UR. The problem is created
by the presence of the denominator in M(·, v, ν). The denominator of the derivative in
xi, i = 1, .., d, of any component of the vector A(·, ν) might be very small while the
numerator, because of the presence of the derivative of UR, might be not of the same
order. Hence, one can certainly control the gradient of A(·, ν) if the gradient of UR is of
the same order of UR. We have then the following lemma.

Lemma 4.1. Let ν ∈M and let K be a positive constant such that supx∈Rd |∇ logUR(x)| ≤
K. Then

|Ai(x, ν)− Ai(z, ν)| ≤ L |x− z| , x ∈ X, z ∈ X, i = 1, .., d, L = 2K . (4.18)

Proof. ∀i = 1, .., d, we have

∇xAi(x, ν) =

∫
X×B1

ui∇xUR(x− y)ν(dy, du)(UR ? ν)(x)−
∫
X×B1

UR(x− y)uiν(dy, du)∇x(UR ? ν)(x)

[(UR ? ν)(x)]2

(4.19)

=

∫
(X×B1)2

ν(dy, du)ν(dy′, du′)ui [∇xUR(x− y)UR(x− y′)− UR(x− y)∇xUR(x− y′)]
[(UR ? ν)(x)]2

,
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Taking into account that |u| ≤ 1 we have

|∇xAi(x, ν)| ≤

∫
(X×B1)2

ν(dy, du)ν(dy′, du′) |∇xUR(x− y)UR(x− y′)− UR(x− y)∇xUR(x− y′)|
[(UR ? ν)(x)]2

≤ 2

∫
(X×B1)2

ν(dy, du)ν(dy′, du′) |∇xUR(x− y)|UR(x− y′)
[(UR ? ν)(x)]2

= 2

∫
(X×B1)2

ν(dy, du)ν(dy′, du′) |∇xUR(x− y)| UR(x−y)
UR(x−y)

UR(x− y′)
[(UR ? ν)(x)]2

(4.20)

≤ 2 sup
y

|∇xUR(x− y)|
UR(x− y)

≤ 2K .

�

Remark 4.2. The assumption about the boundedness of supx∈Rd |∇ logUR(x)| is quite
strong. As a matter of fact, an interaction UR verifying this assumption should decay

for |x| large as e−
|x|
R . Interactions with compact support do not satisfy this assumption

as well as the interaction Rd 3 x 7−→ UR(x) = 1

(2πR2)
d
2
e−
|x|2

2R2 ∈ R+ considered next.

Lemma 4.3. Let TD be a d dimensional torus of linear size D > 0,

Rd 3 x 7−→ UR(x) =
1

(2πR2)
d
2

e−
|x|2

2R2 ∈ R+ (4.21)

and VR be the corresponding interaction defined on TD through the periodization of UR

Rd 3 x 7−→ V̄R(x) =
∑
n∈Zd

UR(x+ nD) ∈ R+ . (4.22)

For ν ∈M and A(·, ν) as defined in (4.15), with UR replaced by VR we have

|Ai(x, ν)− Ai(z, ν)| ≤ L |x− z| , x, z ∈ TD, i = 1, .., d, L =
D

R2
. (4.23)

Proof. Let us write

|Ai(x, µ)− Ai(z, µ)| =
∣∣∣∣∫ 1

0

ds
d

ds
Ai(sx+ (1− s)z, µ)

∣∣∣∣ (4.24)

≤ sup
s∈[0,1]

∣∣∣∣ ddsAi(sx+ (1− s)z, µ)

∣∣∣∣ , i = 1, .., d,
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and set x0 = sx+ (1− s)z and (VR ? µ)(x) =
∫
TD×B1

VR(x− y)µ(dy, du), we obtain

d

ds
Ai(x0, µ) =

(x− z)

R

∫
TD×B1

−(x0−y)
R

VR(x0 − y)uiµ(dy, du)(VR ? µ)(x0)

[(VR ? µ)(x0)]2
(4.25)

− (x− z)

R

∫
TD×B1

VR(x0 − y′)u′iµ(dy′, du′)
∫
TD×B1

−(x0−y)
R

VR(x0 − y)µ(dy, du)

[(VR ? µ)(x0)]2

(4.26)

=
(x− z)

R
Ci(x0, R, µ) , (4.27)

where we denote by

Ci(x0, R, µ) :=
1

[(VR ? µ)(x0)]2
× (4.28)[∫

TD×B1

−(x0 − y)

R
VR(x0 − y)uiµ(dy, du)(VR ? µ)(x0)

−
∫
TD×B1

VR(x0 − y′)u′iµ(dy′, du′)

∫
TD×B1

−(x0 − y)

R
VR(x0)µ(dy, du)

]
.

Finally, rewriting

Ci(x0, R, µ) =

∫ (y′−y)
R

VR(x0 − y′)VR(x0 − y)
∫
u′iµ(dy′, du′)µ(dy, du)∫

VR(x0 − y′)VR(x0 − y)
∫
µt(dy′, du′)µ(dy, du)

(4.29)

and recalling that |u| ≤ 1, we obtain

|C(x0, R, µ)| ≤
∫
TD×B1

|y′−y|
R

VR(x0 − y′)VR(x0 − y)
∫
TD×B1

µt(dy
′, du′)µ(dy, du)∫

TD×B1
VR(x0 − y′)VR(x0 − y)

∫
TD×B1

µ(dy′, du′)µt(dy, du)
≤ D

R
,

(4.30)
since in the torus |y′ − y| ≤ D and the result follows by (4.25). �

M ε(·, v, ν) is easily seen to be Lipschitz continuous in X. In fact we have:

Lemma 4.4. Let ν ∈ M, ε > 0, UR(·) a smooth interaction whose support contained in
a ball of radius R such that supx∈BR |∇UR(x)| ≤ 1 and M ε(·, v, ν) as in (4.16). Then
M ε(·, v, ν) is Lipschitz continuous in X.

|M ε
i (x, v, ν)−M ε

i (y, v, ν)| ≤ L |x− y| , x, y ∈ X, i = 1, .., d, L =
2

ε
. (4.31)

To prove the existence of the solution of (4.7) we prescribe a curve t → µt ∈ M
weakly continuous in t and we consider the following non-autonomous system of ordinary
differential equations: {

d
dt
x(t) = v(t)

d
dt
v(t) = M(x(t), v(t), µt)

. (4.32)
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Under the assumption that M(·, ·, µt) is Lipschitz continuous in X ×B1 there exists an
unique global solution of (4.32) for any given initial datum. The corresponding time
dependent two parameters flow is denoted by Tt,s[µ·]. Under this time dependent flow
any initial measure evolves as

νt = ν0 ◦ T0,t[µ·] , (4.33)

where T0,t[µ·] is the push forward of the measure ν0. For any test function g we have
that

νt(g) = ν0(g ◦ Tt,0[µ·]) , (4.34)

where Tt,0[µ·] is the pull back acting over the test functions. By the existence and
uniqueness of the solution of (4.32) for any initial datum, the inverse flow (Tt,s[µ·])

−1 is
well defined. The equation for the evolution of νt, easily derived, is

∂(νt(g))

∂t
=
∂(ν0(g ◦ Tt,0[µ·]))

∂t
= ν0((v∇xg) ◦ Tt,0[µ·]) + ν0((M(x, v, µt)∇vg) ◦ Tt,0[µ·])

(4.35)

= νt(v · ∇xg) + νt(M(x, v, µt) · ∇vg) .

One immediately realizes that proving the existence and uniqueness of the solution of
(4.7) is equivalent to prove the existence of a fixed point for the time dependent flow
µt = µ0 ◦ T0,t[µ·]. This is the content of the next theorem.

Theorem 4.5. Let UR be as in Lemma 4.1 or as in Lemma 4.3 and let M(·, ·, ν) be
defined as in (4.15) for any ν ∈M(TD×B1). The equation (4.7) has an unique solution
in the space M(TD×B1) if µ0 ∈M(TD×B1). Furthermore, take two solutions of (4.7),
µt starting at µ0 = µ and νt starting at ν0 = ν then in the bounded Lipschitz distance

dbL(νt, µt) ≤ ectdbL(µ, ν) , (4.36)

where c is a constant which depends on the Lipschitz constant of M(·, ·, ν) and on
infx∈TD UR(x) =: a > 0.3

The proof is obtained adapting the method explained in Chapter 5 of [S] to our context.
The main difference between the case considered here and the one presented in Section 5
of [S] is that, in our case, the dependence of M(·, ·, ν) from ν is not linear. To overcome
this problem we assume that the interaction UR is such that infx∈TD UR(x) = a > 0. This
is the case for interactions as in Lemma 4.1 but defined on TD × B1 via periodization
or as in Lemma 4.3. To facilitate the reader we report the proof of Theorem 4.5 in the
Appendix.

Remark 4.6. Theorem 4.5 does not hold in Rd × B1 when UR satisfies Lemma 4.1.
Although in this case UR is globally Lipschitz continuous in Rd, we are not able to show
that M(x, v, ·) when x ∈ Rd, is Lipschitz continuous with respect to ν ∈ M in the dbL
metric. The theorem applies with obvious modification if we take an interaction UR with
compact support and define M ε as in (4.16). In such case the theorem holds either for

3Notice that for UR as in Lemma 4.1 or as in Lemma 4.3 (UR ? ν)(x) > a for all x ∈ TD, where
a = infx∈TD

UR(x) > 0.
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the system defined on TD×B1 or on Rd×B1. The constant c in the statement of Theorem
4.5 will then depend on ε, the lower bound of the denominator of M ε.

Corollary 4.7. Let µ ∈ M and (q0
N ,p

0
N) ∈ (TD × B1)

N be a sequences of particle
configurations, so that

lim
N→∞

dbL(µN , µ) = 0 , (4.37)

where µN is the empirical measure. Let (qN(t),pN(t)) ∈ (TD × B1)
N be the solution of

(2.1) with initial datum (q0
N ,p

0
N) and with UR chosen as in Lemma 4.1 in TD × B1 or

as in Lemma 4.3. Then there exists µt ∈M such that

lim
N→∞

dbL(µNt , µt) = 0 , (4.38)

and µt solves equation (4.7).

The proof is immediate from (4.36). The validity of Corollary 4.7 for smooth compact
potential UR and for the local mean velocity increment M ε is immediate as well.

Theorem 4.8. Let M(·, ·, µ) be as in (4.15) and assume that M(·, ·, µ) ∈ C1(X×B1) for
µ ∈ M. If µ0(dx, dv) = f0(x, v)dxdv, then µt(dx, dv) = ft(x, v)dxdv and ft is the weak
solution of (4.10). Furthermore, if f0 ∈ Ck(X×B1), k ≥ 1, and M(·, ·, µ) ∈ Ck(X×B1)
for µ ∈M, then ft ∈ Ck(X ×B1).

Proof. We start showing that for any given weakly continuous curve t → µt ∈ M,
if ν0(dx, dv) = q0(x, v)dxdv, i.e. absolutely continuous with respect to the Lebesgue
measure, then νt(dx, dv) = qt(x, v)dxdv, where

∂

∂t
qt(x, v) +∇xqt(x, v) · v +∇v · [M(x, v, µt)qt(x, v)] = 0 , (4.39)

and, if q0 ∈ Ck(X × B1) and M(·, v, µ) ∈ Ck(X × B1) for any µ ∈ M, then qt ∈
Ck(X × B1). Note that (4.39) corresponds to a linearization of (4.10) since M(x, v, µt)
does not depend on q· once µt is given. In Theorem 4.5 we proved that the fixed point
equation µt = µ0 ◦ T0,t[µ·] holds. Therefore, by this result and the validity of (4.39), one
immediately obtains that µt has density and the thesis of the theorem is proven. We are
then left with the proof of (4.39). Let us set w = (x, v) ∈ X ×B1. For any test function
g we obtain

νt(g) = ν0 ◦ T0,t[µ·](g) = ν0(g ◦ Tt,0[µ·]) (4.40)

=

∫
X×B1

ν0(dw)(g ◦ Tt,0[µ·])(w) =

∫
X×B1

q0(w) (g ◦ Tt,0[µ·]) (w)dw

=

∫
X×B1

q0(w) ◦ (Tt,0[µ·])
−1J (w, µt)g(w)dw

where J (w, µt) = Det [∂·(Tt,0)[µ·])
−1(w)] is the Jacobian of the flow (Tt,0[µ·])

−1 computed
in w. Since the divergence of the vector field (v(s),M(x, v, µs)) is given by

d∑
i=1

[
∂vi
∂xi

+
M(x, v, µs)

∂vi

]
= −d , (4.41)
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by Liouville Theorem (see [A1] or [A2]) for any weakly continuous curve t → µt ∈ M,
we have

Det [∂·(Tt,0)[µ·])] (w) = e−dt , ∀w ∈ X ×B1 , (4.42)

hence,

J (w, µt) = edt , ∀w ∈ X ×B1 . (4.43)

Then, from (4.40) and (4.43), we obtain

νt(g) =

∫
X×B1

edt
(
q0 ◦ (Tt,0[µ·])

−1) (w)g(w)dw =

∫
X×B1

qt(w)g(w)dw , (4.44)

where we denote by

qt(w) := edt
(
q0 ◦ (Tt,0[µ·])

−1) (w) . (4.45)

Notice that qt(w) is weakly continuous in time, since µ· is weakly continuous. Fur-
thermore, if, for k ≥ 1,M(·, ·, µ) ∈ Ck(X × B1), µ ∈ M and q0 ∈ Ck(X × B1), then
qt ∈ Ck(X × B1). Writing e−dt(qt ◦ Tt,0[µ·])(w) = q0(w) and differentiating with respect
to t we get

∂

∂t

(
e−dtqt ◦ (Tt,0[µ·])(w)

)
= −de−dt(qt ◦ Tt,0[µ·])(w)+ (4.46)

+e−dt
∂

∂t
(qt ◦ Tt,0[µ·])(w) + e−dt∇x(qt ◦ Tt,0[µ·])(w) · v ◦ Tt,0[µ·]+

+e−dt∇v ((qt ◦ Tt,0[µ·])(w)) · (M(·, ·, µt) ◦ Tt,0[µ·])(w) = 0 .

Multiplying both members of the previous identity for edt and applying to (Tt,0[µ·])
−1w

we obtain

−dqt(x, v) +
∂

∂t
qt(x, v) +∇xqt(x, v) · v +∇vqt(x, v) ·M(x, v, µt) = 0 . (4.47)

Notice that this last equation is linear in q· since µ· is given. Therefore, the equation for
ft is

∂

∂t
ft(x, v)− dft(x, v) +∇xft(x, v) · v +M(x, v, ft) · ∇vft(x, v) = 0 (4.48)

which corresponds to (4.10). �

Remark 4.9. Theorem 4.8 can be proven when UR is a smooth function with compact
support and the local mean velocity increment is M ε for ε > 0 as defined in (4.16). In
this case the theorem holds either in Rd × B1 or in TD × B1. The only difference in the
computations done in Theorem 4.8 is that

∇ ·M ε(x, v, µs) = −d (UR ? µs)(x)

(UR ? µs)(x) + ε
≡ −dhs(x) ≡ −dh(µs)(x) . (4.49)

Then, for any weakly continuous curve t→ µt ∈ M and any w ∈ X × B1, by Liouville
Theorem, we have

Det [∂·(Tt,0[µ·])] (w) = e−d
∫ t
0 ds(hs◦Ts,0[µ·])(w) , (4.50)
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therefore

J (w, µt) = Det
[
∂·[(Tt,0[µ·])

−1]
]

= ed
∫ t
0 ds(hs◦Ts,t[µ·])(w) . (4.51)

Then, from (4.40) and (4.51), we obtain

νt(g) =

∫
TD×B1

ed
∫ t
0 ds(hs◦Ts,t[µ·])(w)

(
q0 ◦ (Tt,0[µ·])

−1) (w)g(w)dw (4.52)

=

∫
TD×B1

qt(w)g(w)dw ,

where we denoted by

qt(w) := ed
∫ t
0 ds(hs◦Ts,t[µ·])(w)

(
q0 ◦ (Tt,0[µ·])

−1) (w) . (4.53)

Notice that qt(w) is weakly continuous in time, since µ· is weakly continuous. Further-
more, if M(·, ·, µ) ∈ Ck(X × B1), µ ∈ M and q0 ∈ Ck(X × B1), then qt ∈ Ck(X × B1).
Writing

e−d
∫ t
0 ds(hs◦Ts,0[µ·])(w)(qt ◦ Tt,0[µ·])(w) = q0(w) (4.54)

and differentiating with respect to t we get

∂

∂t

(
e−d

∫ t
0 ds(hs◦Ts,0[µ·])(w)(qt ◦ (Tt,0[µ·])(w)

)
= −d(ht◦Tt,0[µ·])(w)e−d

∫ t
0 ds(hs◦Ts,0[µ·])(w)(qt◦Tt,0[µ·])(w)

+e−d
∫ t
0 ds(hs◦(Ts,0[µ·])(w)

∂

∂t
(qt◦Tt,0[µ·])(w)+e−d

∫ t
0 ds(hs◦Ts,0[µ·])(w)∇xqt(w)◦Tt,0[µ·] ·v◦Tt,0[µ·]

+ e−d
∫ t
0 ds(hs(◦Ts,0[µ·])(w)∇v ((qt ◦ Tt,0[µ·])(w)) · (M(·, ·, µt) ◦ Tt,0[µ·])(w) = 0 .

Multiplying by ed
∫ t
0 ds(hs◦(Ts,0[µ·])(w) and applying to (Tt,0[µ·])

−1w we obtain

−dh(µt)(x)qt(x, v) +
∂

∂t
qt(x, v) +∇xqt(x, v) · v +∇vqt(x, v) ·M(x, v, µt) = 0, (4.55)

which is linear in q· since µ· is given. Therefore the equation for ft is

∂

∂t
ft(x, v)− dh(ft)(x)ft(x, v) +∇xft(x, v) · v +M(x, v, ft) · ∇vft(x, v) = 0 , (4.56)

which corresponds to (4.10) taking into account the definition of h in (4.49).

4.1. Qualitative behaviour of the solution of (4.7).

Lemma 4.10. Let t→ µt ∈M be the solution of (4.7) with initial datum µ0. We have

µt(x) = µ0(x) +

∫ t

0

µs(v)ds , (4.57)

∫
X×B1

|v|2 µt(dx, dv) ≤
∫
X×B1

|v|2 µ0(dx, dv) . (4.58)
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Proof. By (4.7) we have

d

dt

∫
X×B1

xiµt(dx, dv) = µt(vi) , i = 1, .., d , (4.59)

which imply (4.57). To obtain (4.58), again from equation (4.7) we get

d

dt

∫
X×B1

|v|2 µt(dx, dv) =
d

dt
µt(|v|2) (4.60)

= µt(v · ∇x |v|2) + µt(M(·, ·, µt) · ∇v |v|2)

= 2
d∑
i=1

µt(Mi(·, ·, µt)vi) ≤ 0 .

Namely, for i = 1, .., d, when Mi(·, ·, µt) 6= 0, we obtain

µt(Mi(·, ·, µt)vi) =

∫
X×B1

µt(dx, dv)Mi(x, v, µt)vi (4.61)

=

∫
X×B1

µt(dx, dv)

(∫
X×B1

UR(x− y) (viui − v2i )µt(dy, du)∫
X×B1

UR(x− y)µt(dy, du)

)

=

∫
(X×B1)2

µt(dx, dv)µt(dy, du)
UR(x− y)viui∫

X×B1
UR(x− y)µt(dy, du)

−
∫
X×B1

µt(dx, dv)v2i ≤ 0 ,

by Schwartz inequality. �

Jensen inequality and (4.58) imply the boundedness of
∣∣∣∫X×B1

vµt(dx, dv)
∣∣∣ . Any-

way, we are not able to show more interesting estimates about the mean velocity∫
X×B1

vµt(dx, dv).

Lemma 4.11. Take M as in (4.15). The equation (4.10) is not time reversible, i.e.
invariant under simultaneous reflection t→ −t and v → −v.

Proof. Let us set bt(x, v) := f−t(x,−v). We have that ∂
∂t
bt(x, v) = − ∂

∂t
f−t(x,−v) and

∂bt(x,v)
∂vi

= −∂f−t(x,−v)
∂vi

. Therefore, by (4.10),

∂

∂t
bt(x, v) = − ∂

∂t
f−t(x,−v) = −v·∇xf−t(x,−v)−df−t(x,−v)+

d∑
i=1

Mi(x,−v, f−t)
∂f−t(x,−v)

∂vi

(4.62)
and

M(x,−v, f−t) =

(∫
Rd×Rd UR(x− y) (u+ v) f−t(y, u)dydu∫

X×B1
UR(x− y)f−t(y, u)dydu

)
(4.63)

=

(∫
X×B1

UR(x− y) (−u+ v) bt(y, u)dydu∫
X×B1

UR(x− y)bt(y, u)dydu

)
= −M(x, v, bt) .



26 MICHELE GIANFELICE AND ENZA ORLANDI

Thus, the equation for bt(x, v) is

∂

∂t
bt(x, v) + v · ∇xbt(x, v) + dbt(x, v)−

d∑
i=1

Mi(x, v, bt)
∂bt(x, v)

∂vi
= 0

which differs from equation (4.10). �

Remark 4.12. Lemma 4.11 also holds when UR has compact support and M is replaced
by M ε.

Let ft be the solution at time t of the equation (4.10). We denote by H(ft) the
Boltzmann-Vlasov entropy

H(ft) := −
∫
X×B1

ft(x, v) ln(ft(x, v))dxdv . (4.64)

In the next lemma we show that H(ft) is a decreasing function of the time.

Lemma 4.13. Let f· be the solution of (4.10) with M chosen as in (4.15), then

d

dt
H(ft) = −d . (4.65)

Let f ε· be the solution of (4.10) with M replaced by M ε chosen as in (4.16), then

d

dt
H(f εt ) = −d

∫
X×B1

ht(x)f εt (x, v)dxdv , (4.66)

where, as in (4.49), ht =
(UR?f

ε
t )

(UR?f
ε
t )+ε

.

Proof. We start showing (4.65). The proof of (4.66) is similar and we will only outline
the differences.

d

dt
H(ft) = −

∫
X×B1

∂ft
∂t

(x, v) [ln(ft(x, v)) + 1] dxdv (4.67)

=

∫
X×B1

[ln ft(x, v) + 1] [v · ∇xft(x, v) +∇v ·M(x, v, t)ft(x, v)] dxdv .

Integrating by part the last term in (4.67) we get

d

dt
H(ft) = −

∫
X×B1

∇x [ln ft(x, v) + 1] · vft(x, v)dxdv (4.68)

−
∫
X×B1

∇v [ln ft(x, v) + 1] · [M(x, v, ft)ft(x, v)] dxdv

= −
∫
X×B1

∇xft(x, v) · vdxdv −
∫
X×B1

∇vft(x, v) · [M(x, v, ft)] dxdv .
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The first integral gives zero contribution since
∫
X×B1

ft(x, v)dxdv = 1 for all t > 0, i.e.

ft ∈ L1(X ×B1). For the second term notice that ∇v · [M(x, v, ft)] = −d, therefore∫
X×B1

∇vft(x, v) · [M(x, v, ft)] dxdv = −
∫
X×B1

ft(x, v)∇v · [M(x, v, ft)] dxdv (4.69)

= d

∫
X×B1

ft(x, v)dxdv = d .

We then obtain (4.65). To get (4.66) we proceed in the same way. We need only to
modify (4.69) as∫

X×B1

∇vf
ε
t (x, v) · [M ε(x, v, ft)] dxdv = −

∫
X×B1

f εt (x, v)∇v · [M(x, v, f εt )] dxdv (4.70)

= d

∫
X×B1

ht(x)f εt (x, v)dxdv .

�

By the above lemma, if ht(·) 6= 0 for t large enough then

lim
t→∞

H(ft) = −∞ .

From this we can deduce that even starting at time t = 0 from a measure which is
absolutely continuous with respect to Lebesgue measure in X × B1, having therefore
finite Boltzmann-Vlasov entropy, at infinity the asymptotic measure is singular with
respect to the Lebesgue one.

5. Appendix

5.1. Proof of Lemma 3.10. We remark that (3.15) and (3.18) imply

N∑
j=1

bi,j (q (t)) = 0 , i = 1, .., N . (5.1)

We write ai,j(q(t)) defined in (3.16) as

ai,j(q(t)) = ai,j(q
0) +

∫ 1

0

ds
d

ds
ai,j((1− s)q0 + sq(t)). (5.2)

We can therefore decompose A(q(t)) as

A(q(t)) = A(q0) +B(q(t)) , (5.3)

where B(q(t)) = {bi,j(q(t))Id}i,j=1,..,N and

bi,j(q(t)) =

∫ 1

0

ds
d

ds
ai,j((1− s)q0

N + sqN(t)). (5.4)
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Making use of the isomorphism F introduced in (3.23), it is enough to consider the
matrix B̃ (q (t)) : RN −→ RN since

‖B(q(t))‖ ≤
∥∥∥B̃ (q (t))

∥∥∥
∞

= max
i=1,..,N

N∑
j=1

|bi,j(q(t))| . (5.5)

Therefore, setting

xi,j(s, t) := (1− s)(q0i − q0j ) + s (qi(t)− qj(t)) , i, j = 1, .., N , (5.6)

we have

d

ds
ai,j((1− s)q0 + sq(t)) =

d

ds

(
UR((1− s)(q0i − q0j ) + s(qi(t)− qj(t)))∑N
k=1 UR((1− s)(q0i − q0k) + s(qi(t)− qk(t)))

)
(5.7)

=
d

ds

(
UR(xi,j(s, t))∑N
k=1 UR(xi,k(s, t))

)

=
∇UR(xi,j(s, t)) ·

[
−(q0i − q0j ) + qi(t)− qj(t)

]∑N
k=1 UR(xi,k(s, t))

− UR(xi,j(s, t))
∑N

k=1∇UR(xi,k(s, t)) · [−(q0i − q0k) + qi(t)− qk(t)](∑N
k=1 UR(xi,k(s, t))

)2 .

Hence, since by definition of UR, supx∈Rd |UR(x)| ≤ UR (0) ,∀i = 1, .., N,

N∑
j=1

|bi,j(q(t))| ≤ 2

∑N
j=1 |∇UR(xi,j(s, t))|

∣∣−(q0i − q0j ) + qi(t)− qj(t)
∣∣∑N

k=1 UR(xi,k(s, t))
(5.8)

≤ 2
N

UR (0)
sup
x∈Rd
|∇UR(x)| max

i,j∈{1,..,N}

∣∣−(q0i − q0j ) + qi(t)− qj(t)
∣∣ .

5.2. Proof of Theorem 4.5. We follow [S] Theorem 5.1 and divide the proof in two
steps.

Step 1 We start proving (4.36). Assume that νt and µt solve (5.28). We have, by the
triangular inequality, that

dbL(νt, µt) = dbL(ν0 ◦ T0,t[ν·], µ0 ◦ T0,t[µ·]) (5.9)

≤ dbL(µ0 ◦ T0,t[ν·], µ0 ◦ T0,t[µ·]) + dbL(µ0 ◦ T0,t[ν·], ν0 ◦ T0,t[ν·]) .

Denote by w = (x, v), V (µ·)s(w) = (v(s), A(x(s), µs)− v(s)) the vector field on the right
hand side of (4.32). The second term can be bounded as

dbL(µ0 ◦ T0,t[ν·], ν0 ◦ T0,t[ν·]) = eLt sup
f∈D

∣∣∣∣∫
TD×B1

[dµ0 − dν0]
(
e−Ltf ◦ Tt,0[ν·]

)∣∣∣∣ (5.10)

≤ eLtdbL(µ0, ν0)
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where L is the Lipschitz constant of V (µ·)s(·). Notice that the Lipschitz bound of
V (µ·)s(·) can be easily derived from the Lipschitz bound of A(·, µ·). We get (5.10) if
we can show, since f ∈ D, that e−Ltf ◦ Tt,0[ν·] is Lipschitz continuous with constant
one and therefore it belongs to D. Let w(t) = (x(t), v(t)) be the solution of (4.32) with
initial condition w0 = (x0, v0) and let w̃(t) be the solution of (4.32) with initial condition
w̃0 = (x̃0, ṽ0), then we need to show that

|f(w(t))− f(w̃(t))| ≤ C(t)|w0 − w̃0| , (5.11)

with C(t) ≤ eLt. Writing

w(t) = w0 +

∫ t

0

V (µ·)s(w(s)) (5.12)

and

w̃(t) = w̃0 +

∫ t

0

V (µ·)s(w̃(s)) , (5.13)

since f ∈ D, we have

|f(w(t))− f(w̃(t))| ≤ |w(t)− w̃(t)| . (5.14)

Furthermore,

|w(t)− w̃(t)| ≤ |w0 − w̃0|+
∫ t

0

|V (µ·)s(w(s))− V (µ·)s(w̃(s))|ds (5.15)

≤ |w0 − w̃0|+ L

∫ t

0

|w(s)− w̃(s)|ds .

By the Gronwall’s inequality

|w(t)− w̃(t)| ≤ eLt|w0 − w̃0| (5.16)

proving e−Ltf ◦ Tt,0[ν·] ∈ D and so (5.10). We are then left with the estimate the other
term in (5.9) which, since f ∈ D,

dbL(µ0 ◦ T0,t[ν·], µ0 ◦ T0,t[µ·]) = sup
f∈D

∣∣∣∣∫
TD×B1

dµ0 {f ◦ Tt,0[ν·]− f ◦ Tt,0[µ·]}
∣∣∣∣ (5.17)

≤
∫
TD×B1

µ0 (dw) |Tt,0[ν·]w − Tt,0[µ·]w| =: λ(t)
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where Tt,0[ν·] and Tt,0[µ·] are both solutions of the equation (4.32) with the same initial
conditions but with different vector fields. We have

λ(t) =

∫
TD×B1

µ0(dw) |{Tt,0[ν·]w − Tt,0[µ·]w|} (5.18)

=

∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

dsV (ν·)s(Ts,0[ν·]w)−
∫ t

0

dsV (µ·)s(Ts,0[µ·]w)

∣∣∣∣
≤
∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (ν·)s(Ts,0[ν·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣

+

∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (µ·)s(Ts,0[µ·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣ .

The first term of (5.18) can be estimated by the Lipschtiz property of the vector field∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (ν·)s(Ts,0[ν·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣ (5.19)

≤ L

∫
TD×B1

µ0(dw)

∫ t

0

ds |Ts,0[ν·]w − Ts,0[µ·]w]|

= L

∫ t

0

ds

∫
TD×B1

µ0(dw) |Ts,0[ν·]w − Ts,0[µ·]w]| = L

∫ t

0

λ(s)ds .

For the second term of (5.18) we have∫
TD×B1

µ0(dw)

∣∣∣∣∫ t

0

ds {V (µ·)s(Ts,0[µ·]w)− V (ν·)s(Ts,0[µ·]w)}
∣∣∣∣ (5.20)

≤
∫
TD×B1

µ0(dw)

∫ t

0

ds |V (µ·)s (Ts,0[µ·]w)− V (ν·)s (Ts,0[µ·]w)|

=

∫ t

0

ds

∫
TD×B1

µ0(dw) |V (µ·)s(Ts,0[µ·]w)− V (ν·)s(Ts,0[µ·]w)|

=

∫ t

0

ds

∫
TD×B1

µs(dw) |V (µ·)s(w)− V (ν·)s(w)| .

But,

|V (µ·)s(w)− V (ν·)s(w)| ≤ |A(x, µs)− A(x, νs)| (5.21)

≤

∣∣∣∣∣
∫
TD×B1

UR(x− y)uµs(dy, du)−
∫
TD×B1

UR(x− y)uνs(dy, du)∫
TD×B1

UR(x− y)µs(dy, du)

∣∣∣∣∣
+

∣∣∣∣∣
∫
TD×B1

UR(x− y)µs(dy, du)−
∫
TD×B1

UR(x− y)νs(dy, du)∫
TD×B1

UR(x− y)µs(dy, du)

∣∣∣∣∣
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Since for any measure ν ∈M,
∫
TD×B1

UR(x− y)νs(dy, du) ≥ infx∈TD UR(x) = a, we have∣∣∣∣∣
∫
TD×B1

UR(x− y)µs(dy, du)−
∫
TD×B1

UR(x− y)νs(dy, du)∫
TD×B1

UR(x− y)µs(dy, du)

∣∣∣∣∣ (5.22)

≤
supx∈TD |∇UR(x)|+ supx∈TD UR(x)

a
dbL(µs, νs)

and ∣∣∣∣∣
∫
TD×B1

UR(x− y)uµs(dy, du)−
∫
TD×B1

UR(x− y)uνs(dy, du)∫
TD×B1

UR(x− y)µs(dy, du)

∣∣∣∣∣ (5.23)

≤
d∑
i=1

∣∣∣∣∣
∫
TD×B1

UR(x− y)uiµs(dy, du)−
∫
TD×B1

UR(x− y)uiνs(dy, du)∫
TD×B1

UR(x− y)µs(dy, du)

∣∣∣∣∣
≤ d

supx∈TD |∇UR(x)|+ supx∈TD UR(x)

a
dbL(µs, νs) .

Therefore,

|V (µ·)s(w)− V (ν·)s(w)| ≤ 2d
supx∈TD |∇UR(x)|+ supx∈TD UR(x)

a
dbL(µs, νs) =

c0
a
dbL(µs, νs) ,

(5.24)
where we have set c0 := 2d(supx∈TD |∇UR(x)|+supx∈TD UR(x)). It is essential that a > 0.
This is the case for interactions considered in the Lemmata 4.1 and 4.3 once the system
is confined on the torus TD4. Thus, by (5.18), (5.19), (5.20) and (5.21) we have that

λ(t) ≤ L

∫ t

0

λ(s)ds+
c0
a

∫ t

0

dbL(µs, νs)ds . (5.25)

Hence, since by (5.18) λ (0) = 0 we obtain

λ(t) ≤ c0
a

∫ t

0

eL(t−s)dbL(µs, νs)ds . (5.26)

Taking in account (5.9), (5.10), (5.17) and (5.26) we get

dbL(νt, µt) ≤ eLtdbL(µ0, ν0) +
c0
a

∫ t

0

eL(t−s)dbL(µs, νs)ds . (5.27)

Applying the Gronwall’s lemma we get bound (4.36).

Step 2 To prove the existence of a solution for the fixed point equation

µt = µ0 ◦ T0,t[µ·] , (5.28)

4In the case where UR is with compact support and M is replaced by M ε we have that

inf
x∈X

(UR ? ν)(x) + ε ≥ inf
x∈X

UR(x) + ε ≥ ε.

In this case X can be either Rd or TD.
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we use the Banach fixed point theorem. Let µ be the initial condition. To every curve
t→ µt, µ0 = µ we obtain the solution curve

t→ µ ◦ T0,t[µ·] (5.29)

Let us denote this map F : CM → CM, where CM is the space of weakly continuous
function [0, T ]→M with µ0 = µ· We equip CM with the metric

dα(µ(·), ν(·)) = sup
t∈[0,T ]

[
e−αtdbL(νt, µt)

]
, (5.30)

for some α > 0 which will be suitably chosen. Since (M, dbL) is a complete metric space,
so is (CM, dα). Now from Step 1 we have

dbL(νt, µt) = dbL(F(µ(·))(t),F(ν(·))(t)) ≤ c0
a

∫ t

0

eL(t−s)dbL(µs, νs)ds (5.31)

and therefore

dα(F(µ(·))(t),F(ν(·))(t)) ≤ c0
a(α− L)

dα(µ(·), ν(·)) (5.32)

for α > L. By a suitable choice of α this proves that F is a contraction. �
We recall the integral form of the Gronwall’s inequality.

Lemma 5.1. Let L and T positive numbers, f and η in C([0, T ],R). If, for all t ∈ [0, T ],

η(t) ≤ L

∫ t

0

η(s)ds+ f(t) , (5.33)

then

η(t) ≤ f(t) + L

∫ t

0

eL(t−s)f(s)ds . (5.34)
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