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Abstract We develop an alternative method to matched asymptotic expansions for
the construction of approximate solutions of the Cahn-Hilliard equation suitable for
the study of its sharp interface limit. The method is based on the Hilbert expansion
used in kinetic theory. Besides its relative simplicity, it leads to calculable higher
order corrections to the interface motion.

1. Introduction

1.1 The Cahn–Hilliard equation and phase segregation

The purpose of this paper is to present a method for constructing approximate
solutions to a class of evolution equations typified by the Cahn–Hilliard equation.
The method produces solutions suitable for studying the sharp interface limit, and
for studying higher order corrections to the sharp interface limit. The method itself
is based on the Hilbert expansion used in kinetic theory [5]. The work of Caflisch
[4] on constructing solutions of the Boltzmann equation from solutions of the Euler
equations can be considered as a paradigm for this sort of investigation. The sharp
interface limit of the Cahn–Hilliard equation itself has been rigorously investigated
by Alikakos, Bates and Chen [1], following the original heuristic analysis of Pego
[13]. Both [13] and [1] are based on matched asymptotic expansions. We aim to
show that the Hilbert expansion approach has advantages in the presence of the
non–locality inherent in this class of problems, and that in any case, it provides a
means to calculate higher order corrections to the sharp interface limit. We begin by
recalling some background.
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Let Ω be a compact domain in IR2. The restriction to two dimensions is for
simplicity only; we seek to explain the main ideas in the simplest interesting setting.
Let m be an integrable function on Ω. We think of m(x, t) as representing the value of
a conserved “order parameter” at x in Ω at time t. The order parameter is conserved
in the sense that

∫
Ω
m(x, t)dx is independent of t. Therefore, the evolution equation

for m can be written in the form

∂

∂t
m(x, t) = ∇ · ~J(x, t)

where the current ~J is orthogonal to the normal at the boundary of Ω. In the class
of equations to be considered, the current will have the form

~J(x, t) = σ(m(x, t))∇µ(x, t)

where σ(m) is the mobility and µ(x, t) is the chemical potential of x at time t. The
mobility is positive, so that the conserved order parameter m “flows” in the direction
of increasing chemical potential.

Finally, the chemical potential is the L2(Ω) Frechet derivative of a free energy
functional F :

µ(x) =
δF
δm

(x) .

The simplest and most familiar example is known as the Cahn–Hilliard equation. It
results from the choices σ(m) = 1; i.e., constant mobility, and *

F(m) =
1
2

∫
Ω

|∇m(x)|2dx+
1
4

∫
Ω

(m2(x)− 1)2dx .

This leads to
∂

∂t
m(x, t) = ∆ (−∆m(x, t) + f(m(x, t))) ,

where
f(m) = m3 −m . (1.1)

If m(x, t) is a solution of this equation, then

d
dt
F(m(·, t)) = −

∫
Ω

1
σ
| ~J(x, t)|2dx ,

so that the evolution decreases the free energy. Also clearly, the minimizers of the
free energy are the constant functions m(x) = ±1. These minimizers represent

* The choice of the nonlinearity 1
4
(m2−1)2 is used only to carry out the explicit computations in Section

3 and Section 4. Different choices can be made, provided they have the form of a double well potential

with equal absolute minima and are smooth enough.
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the “pure phases” of the system. However, unless the initial data m0 happens to
satisfy

∫
Ω
m0(x)dx = ±|Ω|, these “pure phases” cannot be reached because of the

conservation law. Instead, what will eventually be produced is a region in which
m(x) ≈ +1, with m(x) ≈ −1 in its complement, and with a smooth transition
across its boundary. This is referred to as phase segregation, and the boundary is
the interface between the two phases. If we “stand far enough back” from Ω, all
we see is the interface, and we do not see any structure across the interface – the
structure now being on an invisibly small scale. The evolution of m under the Cahn
Hilliard equation, or another such evolution equation of this type, drives an evolution
of the interface, and we wish to determine how it evolves. To see any evolution of the
interface, one must wait a long time. More specifically, let λ be a small parameter,
and introduce new variables τ and ξ through

τ = λ3t and ξ = λx .

Then of course
∂

∂t
= λ3 ∂

∂τ
and

∂

∂x
= λ

∂

∂ξ
.

Hence if m(x, t) is a solution of the Cahn–Hilliard equation, and we define mλ(ξ, τ)
by mλ(ξ, τ) = m(x(ξ), t(τ)), we obtain

∂

∂τ
mλ(ξ, τ) = ∆ξ

(
−λ∆ξm

λ(ξ, τ) +
1
λ
f(mλ(ξ, τ))

)
. (1.2)

Following Pego [13], we will be studying solutions of the equation (1.2) in the limit
as λ tends to zero. If we think of λ as representing the inverse of a large length scale,
the variable ξ will be dimensionless, and indeed, one often refers to the components
of ξ as being “dimensionless variables”. The dimensionless variables are “slow” and
the original variables “fast” for small λ. In what follows we keep the notation ξ for
the slow spatial variables, but drop the use of τ and replace it by t for convenience.
One should just bear in mind that now we are looking at the evolution over a very
long time scale when λ is small. For the reasons indicated above, we shall consider
initial data m0(ξ) that is −1 in the region bounded by a smooth closed curve Γ0 in
Ω, and +1 outside this region. We refer to such initial data as “sharp interface initial
data”. At later times t there will still be a fairly sharp interface between a region
where m(ξ, t) ≈ +1 and where m(ξ, t) ≈ −1, centered on a smooth curve Γt. One
might hope that for small values of λ, all information about the evolution of m(ξ, t)
is contained in the evolution of the interface Γt. This is indeed the case. To explain
the situation more clearly, let M denote the set of all smooth simple closed curves in
Ω. As we will explain in Section 2, M can be viewed as a differentiable manifold. A
vector field V on M is a functional associating to each Γ in M a function in C∞(Γ).
This function gives the normal velocity of a point on Γ, and thus describes a “flow”
on M. We may formally write

d
dt

Γt = V (Γt) . (1.3)

7/november/2004; 16:27 3



Now, given a flow on M, we can produce from it an evolution in C∞(Ω) through
the following device: Let m be any function from M to C∞(Ω). We write m(ξ,Γ)
to denote m(Γ) evaluated at ξ ∈ Ω. We can then define a time dependent function
on Ω, m(ξ, t), through

m(ξ, t) = m(ξ,Γt) . (1.4)

Notice that time dependence in m(ξ, t) enters only through the evolution of Γt. A
simple example of such a function is the following: Let d(ξ,Γ) denote the signed
distance from ξ to Γ, where the sign is negative in case ξ is in the interior of Γ, and
positive in case ξ is in the exterior of Γ. The signed distance function, unlike the
distance function itself, is smooth near Γ. Let g be any smooth function on IR and
define m(ξ,Γ) = g(d(ξ,Γ)). All the functions appearing in this paper are essentially
of this type, or only slightly more elaborate.

Now if, for small λ and sharp interface initial data, all of the information about
the evolution of solutions of the Cahn–Hilliard equation were contained in the motion
of the interface, then one might hope to find a vector field V on M governing the
evolution of the interface, and a function m from M to C∞(Ω) so that (1.4) defines
the corresponding solution of the Cahn–Hilliard equation.

In this paper, we prove a result of this type. We construct a sequence of vector
fields V0, V1, V2, . . . onM such that with V =

∑∞
j=0 λ

jVj , the interface for the solution
of (1.2) satisfies (1.3). For any N ≥ 1,

V (N) =
N−1∑
j=0

λjVj , (1.5)

and let let Γ(N)
t satisfy

d
dt

Γ(N)
t = V (N)(Γ(N)

t ), where Γ(N)
0 = Γ, the initial interface.

Then Γ(N)
t is the N th order approximate interface. We also construct a sequence of

functions m0,m1,m2, . . . from M to C∞(Ω) so that

m(N)(ξ, t) =
N∑

j=0

λjmj(ξ,Γ
(N)
t ) (1.6)

is an approximate solution of (1.2), with arbitrarily high accuracy for large enough
N .

The physical picture described above provides a natural guess for the form of the
leading term m0(ξ,Γ). We would expect this to be of the form

m0(ξ,Γ) = g

(
d(ξ,Γ)
λ

)
,

where g is “transition profile” across the boundary of the interface, so that as y
strictly increases from −∞ to +∞, g(y) increases from −1 to +1, with g(0) = 0.
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Thus, for small enough λ, m0(ξ,Γ) ≈ −1 if ξ is in the interior of the region bounded
by Γ, and m0(ξ,Γ) ≈ +1 if ξ is in the exterior. This will turn out to be correct,
with g chosen to be the transition profile that minimizes the free energy cost of the
transition.

The remaining terms will be more complicated. For j ≥ 1, mj will have the form

mj(ξ,Γ) = hj(ξ,Γ) + φj(ξ,Γ) . (1.7)

The second term in the right, φj , will satisfy a global Lipschitz condition independent
of λ, and will account for the smooth, long range part of the correction at the jth
order. It will be specified in terms of the solution of a Poisson type equation in Ω.
The first term, hj , accounts for further corrections that are needed very close to Γ. It
will be specified by solving an ordinary differential equation in a variable measuring
the signed distance from the boundary. These equations are derived by insisting that
m(N)(ξ, t) satisfy (1.2) order by order in λ, up to order λN .

This requirement relates the two expansions (1.5) and (1.6). V0 will be determined
by the Fredholm conditions for solvability arising when we seek to solve for h1 and
φ1. Likewise, for j > 1, Vj−1 will be determined by Fredholm conditions for solv-
ability arising when we seek to solve for hj and φj . In this way, the two expansions
are produced in alternation: We start from a natural guess for the leading order
approximation m0. We then see that we can find a next order correction m0 + λm1

if and only if we make a specific choice for the leading term V0 in the description of
the interface motion. Doing so, we next seek to find a second order approximation
m0 + λm1 + λ2m2, and this determines the next term λV1 in the description of the
interface motion. Continuing in this way, we produce both (1.5) and (1.6) order by
order.

This procedure is very reminiscent of the Hilbert expansion in kinetic theory,
and we explain this analogy in more detail in Section 3.2 below. From the Hilbert
expansion point of view, the two component prescription (1.7) for mj is somewhat
novel. From the matched asymptotic expansion point of view, one might expect hj

to represent an “inner layer” and φj to represent an “outer layer”. However, these
two components do not have disjoint support, and we do not match them up at any
boundary. They simply account for different parts of the solution: The functions
φj are smooth functions accounting for the very regular nature of the jth order
correction far from the interface. Closer to the interface, the Lipschitz function φj

cannot provide all of the correction necessary, and so the function hj is required
to provide the necessary corrections to m(j−1) + λjφj that are needed close to the
interface Γ. Away from Γ, m(j−1) +λjφj does well enough, and so hj(ξ,Γ) will decay
to zero exponentially fast, on the length scale λ even, as ξ moves away from Γ.

The fact that the short range correction hj and the long range correction φj do not
have disjoint support, and do not have to be matched across any boundary between
“inner and outer layers” is particularly advantageous when one is investigating non
local analog of the Cahn–Hilliard equation. We shall return to this point later.

Ansatz (Brief Version): Let V0, V1, V2, . . . be a sequence of vector fields on M
and m0,m1,m2, . . . be functions from M to C∞(Ω). For any given initial interface
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Γ0 in M, and all N > 0, let Γ(N)
t be the solution of

dΓ(N)
t

dt
=

N−1∑
j=0

λjVj

(Γ(N)
t

)
with Γ(N)

0 = Γ0. (1.8)

Then define the function m(N)(ξ, t) by

m(N)(ξ, t) = m0(
d(ξ,Γ(N)

t )
λ

) +
N∑

j=1

λjmj(ξ,Γ
(N)
t ) .

Our main result is that if the vector fields Vj and the functions mj are chosen
according to a scheme to be specified below, the function m(N)(ξ, t), just defined in
the ansatz, is a good approximate solution of the Cahn–Hilliard equation. (Indeed,
as we shall soon explain, if N is large enough and λ is small enough, there is an exact
solution very close by).

Theorem 1.1 For any N > 1 there are vector fields Vj, j = 0, ..., (N − 1) and
functions mj, j = 0, ..., N as prescribed in the ansatz having the following properties:
Let T denote the lifetime of the solution of (1.8) in M. Then there is a constant CN

so that for all t < T ,

∂

∂t
m(N)(ξ, t) = ∆

(
−λ∆m(N)(ξ, t) +

1
λ
f(m(N)(ξ, t))

)
+ ∆R(N)(ξ, t) (1.9)

where
sup

ξ∈Ω,t∈[0,T ]

∣∣∣R(N)(ξ, t)
∣∣∣ ≤ CNλ

N−1 . (1.10)

Finally the sequences of vector fields and functions are essentially uniquely deter-
mined: Given Vj for j < k, then Vk is determined up to O(λk+1), and similarly
given mj for j < k, then mk is determined up to O(λk+1).

As we have mentioned, the construction behind Theorem 1.1 is patterned on the
Hilbert expansion of kinetic theory. In particular, the work of Caflisch [4] showed
how to construct actual solutions of the Boltzmann equation starting from smooth
solutions of the Euler equations for small values of a scaling parameter known as the
Knudsen number. His first step was to construct close approximate solutions of the
Boltzmann equation using a Hilbert expansion. His second step was to show that
there is an actual solution of the Boltzmann equation very close by, for small enough
values of the Knudsen number and high enough order approximate solutions.

In our case, the second step has already been taken care of in the work of Alikakos,
Bates and Chen [1]. They proved and applied the spectral estimates for the Cahn–
Hilliard equation necessary to prove that an actual solution exists nearby a sufficiently

7/november/2004; 16:27 6



nice approximate solution. In their approach, the approximate solutions were con-
structed using a matched asymptotic expansion, which gives no information on higher
order corrections to the flow, while our approach, based on the Hilbert expansion,
does, as we explain below.

Later, in Section 3.2, we will return to discuss the analogy with the work of Caflish,
as well as with the recent and very significant work of Shih-Hsien Yu, [16], who
introduced a generalized Hilbert expansion with shock layer corrections to construct
approximations to the solutions of the Boltzmann equations with small Knudsen
number. This enabled him to extend Caflisch’s correspondence between solutions of
the Euler equation and solutions of the Boltzmann equation beyond the appearance
of shocks, whereas the analysis of Caflisch is valid only up until the appearance of
the first shock.

In the meantime however, it is necessary to explain more fully what we actually
do here. In Theorem 1.1, and in the following, O(λm) denotes terms which are of
order λm uniformly in all of their variables.

The qualified nature of the uniqueness in the theorem is an indication that there
will be choices to be made at every stage of the approximation, and that the man-
ageability of the approximation will depend on how those choices are made. The full
result, which amplifies Theorem 1.1, will be given in Theorem 5.3. In the next few
sections, we explain what the right choices for the Vj and mj turn out to be.

The leading term V0 in the vector field
∑

j=0 λ
jVj governing the interfacial flow

turns out to be something quite well known: It is the vector field generating the
Mullins–Sekerka flow, as one would expect from Pego’s pioneering work [13] on the
connection between flows of curves and the Cahn–Hilliard equation. The Mullins–
Sekerka vector field is defined as follows:

Fix a number S > 0 that will later be interpreted as a “surface tension” and
denote by K(ξ) ≡ K(ξ,Γ) the curvature at ξ ∈ Γ. Then for each Γ in M, let µ0,0 be
the solution of

∆µ0,0(ξ) = 0 for ξ ∈ Ω \ Γ (1.11)

subject to the boundary conditions

µ0,0(ξ) = S

(
K(ξ)− 2π

|Γ|

)
on Γ and

∂

∂ν
µ0,0 = 0 on ∂Ω , (1.12)

where |Γ| denotes the arc length of Γ, and ∂/∂ν denotes the normal derivative. (The
role of the double subscript will become clear later in the context of our expansion).
Now define V0(Γ) to be the real valued function on Γ given by

V0(ξ,Γ) =
[
∂

∂ν
µ0,0

]
Γ

(ξ) ξ ∈ Γ (1.13)

where the brackets on the right denote the jump in the normal derivative across Γ.
This defines a vector field on M, and the flow it generates is known as the Mullins–
Sekerka flow.
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Concerning the existence of the generated flow; i.e., the solution of the free bound-
ary problem (1.11), (1.12) and (1.13), Chen [6] established the local (in time) exis-
tence of a solution in the two dimensional case and, when the initial curve is nearly
circular, the global existence and long time behavior. The local existence of a unique
smooth solution in any space dimension has been established in [8]. Introducing
an alternative approach, Escher and Simonett [10] established the local existence
and uniqueness of classical solution to the Mullins–Sekerka problem in any dimen-
sion with and without superficial tension, granted enough regularity for the initial
hypersurface.

As it is well known, the Mullins–Sekerka flow conserves the area enclosed by Γt,
and decreases the arc length of Γt. To see this, let Ω−Γ denote the interior of Γ, and
let Ω+

Γ denote its exterior. It is an easy consequence of Green’s identity that

∫
Γt

V0(η,Γt)dSη =
∫

Γt

[
∂

∂n
µ0,0

]
Γt

(η)dSη =
∫

Ω\Γt

∆µ0,0(η)dη = 0 , (1.14)

where, using a standard potential theoretic notation, dSη denotes the element of
arclength along Γ. Therefore, since d

dt |Ω
+
Γt
| =

∫
Γt
V0(η, t)dSη, the Mullins–Sekerka

flow conserves the area of Ω+
Γt

, and hence Ω−Γt
as well. Furthermore,

d
dt
|Γt| = −

∫
Γt

K(η)V0(η,Γt)dSη = − 1
S

∫
Γt

µ0,0

[
∂

∂n
µ0,0

]
Γt

(η)dSη = − 1
S

∫
Ω

[∇µ0,0]2dξ

so that the Mullins–Sekerka flow diminishes the length of the boundary. Clearly a
single sphere or multiple spheres of the same radius are equilibria for this evolution.

The higher order terms in
∑

j=0 λ
jVj are somewhat more complicated. In this

paper, we explicitly compute V1, the next correction to V0, and show how all higher
terms could be computed. The description of V1, like that of V0, is potential theoretic.

In the following, G(ξ, η) is the Neumann Green’s function for Ω, and TΓ is the
Dirichlet–Neumann operator for Γ; i.e., the linear operator that transforms the
Dirichlet data on Γ for the solution φ of (1.11) into the corresponding Neumann
boundary data [∂φ/∂ν]Γ. Some relevant potential theoretic background is recalled in
an appendix. Finally, for any real valued function f(Γ) on M, and any vector field
V , DV f(Γ) denotes the derivative of f along the flow through Γ generated by V . If
g(ξ,Γ) is a function from M to C∞(Ω), then for fixed ξ, Γ 7→ g(ξ,Γ) is a real valued
function on M, and we denote the derivative of this function by DV g(ξ,Γ).

Theorem 1.2 The vector field V1 on M giving the next corrections to V0, the

Mullins-Sekerka vector field, is given by V1 = V
(0)
1 + 〈V1〉 where

〈V1〉
Γ

=
1

4|Γ|

∫
Ω

DV0
µ0,0(ξ,Γ)dξ , (1.15)
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V
(0)
1 (ξ,Γ) =

1
4
(2S + C)TΓV0(ξ,Γ)− 1

2
TΓ

[
p(·)− 1

|Γ|

∫
Γ

p(η,Γ)dSη

]
(ξ)

− 〈V1〉
Γ
TΓ

[∫
Γ

G(·, η)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ζ, η)dSζdSη

]
(ξ).

(1.16)

Here, µ0,0(·,Γ) is the harmonic function in Ω\Γ defining V0 in (1.11) and (1.12).
Also, S and C are explicit constants computed below in (3.31) and (3.49),

p(ξ,Γ) =
1
2

∫
Ω

G(ξ, η)
[
DV0

µ0,0(ξ,Γ)
]
dη , (1.17)

and DV0
µ0,0(ξ,Γ) denotes the rate of change of µ0,0(ξ,Γ) under the flow induced by

V0.

A formula for computing DV0
µ0,0(ξ,Γ), see (4.12), is derived in Section 4. Though

complicated, it reduces the computation to standard potential theoretic integrals over
Γ.

Pego’s work relating the Cahn–Hilliard equation and the Mullins–Sekerka flow was
made rigorous by Alikakos, Bates and Chen [1]. Their construction also yields high
order approximate solutions, but does not yield higher order corrections to the sharp
interface flow. Their work, like Pego’s, was based on matched asymptotic expansions.
Our approach is modeled on the Hilbert expansion of kinetic theory [4],[5]. Another
alternative to matched asymptotic expansions, for the spherically symmetric case,
has been developed by Stoth [15].

The plan of the paper is as follows: In Section 2 we describe M and vector fields
on M in a more precise fashion. In Section 3 we explain the Hilbert expansion, and
carry out the computations for the first two terms in explicit detail, proving Theorem
1.2. This gives us, in Section 4, the formula for V1 mentioned above. Finally, we
show that the computations can be carried out to any order, and that they yield
approximate solutions of the Cahn–Hilliard equation, as claimed in Theorem 1.1.
This is accomplished in the remaining sections. We recall the potential theory and
some technical lemmas in an Appendix.

The strategy employed here was devised to treat a non–local variant of the Cahn–
Hilliard equation that has been rigorously derived from a scaling limit of a spin
system with exchange dynamics and local mean field Kac potentials [11]. The sharp
interface limit has been investigated by [12] on a formal level as in Pego’s original
work. The present approach was developed to facilitate a rigorous treatment, which
shall appear in a forthcoming paper.

Finally, E. Orlandi would like to acknowledge discussions with Giorgio Fusco and
Nicholas Alikakos. She further thanks the department of Mathematics of Georgia
Tech, where part of the work has been completed, for warm hospitality.

2. Vector fields and flows on M

2.1 A local coordinate system near Γ ∈M
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In order to discuss motion inM, it is convenient to first introduce local coordinates
in the neighborhood of any given Γ ∈M.

Let Γ be a smooth closed simple curve in Ω. Let s 7→ η(s) be any arc length
parametrization of Γ. (The position of η(0) on Γ does not matter). In the following,
we will often denote by s the corresponding point on the curve. This slight abuse of
notation will prove very convenient. Let κ(Γ) be given by

κ(Γ) = max
ξ∈Γ

|K(ξ)| . (2.1)

Recall that the signed distance from ξ to Γ, d(ξ,Γ), is defined so that d < 0 inside Γ
and d > 0 outside Γ. As long as |d(ξ,Γ)| < 1/κ(Γ), there is a uniquely determined
point η ∈ Γ such that |ξ − η| = |d(ξ,Γ)|; this is the point in Γ that is closest to ξ.
Therefore, define for all 0 < λ0 <

1
κ(Γ) ,

N (λ0) ≡ N (λ0,Γ) = {ξ ∈ IRd : |d(ξ,Γ)| < λ0} .

In what follows, for ξ ∈ N (λ0), we define

s(ξ) = the unique η with |ξ − η| = |d(ξ,Γ)| . (2.2)

There is a natural set of coordinates in N (Γ): First, fix some arc length parame-
terization of Γ. With this parameterization fixed, let s denote arc length coordinate
of s(ξ). This definition extends the domain of definition of the arc length coordinate
from Γ itself to all of N (λ0,Γ). Denoting the corresponding coordinate function s(ξ)
introduces a useful ambiguity in notation: Either s(ξ) denotes a number, when it is
to be interpreted as a coordinate function, or it denotes a point η ∈ Γ, when it is
used as in (2.2). The ambiguity is harmless since the s coordinate of the point s(ξ)
is the number s(ξ), and whenever s(ξ) appears as the argument of a function, the
type of variable on which that function depends determine the interpretation. For
the second coordinate, define

z(ξ) =
d(ξ,Γ)
λ

.

The coordinate transformation ξ 7→ (z, s) has a simple inverse:

ξ = s(ξ) + zλn(s(ξ)) ,

where n(s) denote the unit outward normal to Γ at s(ξ). Notice that a small variation
in ξ produces a small variation in s, but can produce a large variation in z. For this
reason, we speak of s as the slow variable, and z as the fast variable.

2.2 Motion in M

The coordinates that we have just introduced in N (λ0,Γ) provide the means to give
M the structure of a differentiable manifold, and to study motions in this manifold.
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Fix any Γ ∈ M, and let s 7→ η(s) denote the arc length parameterization of Γ, as
above. Let UΓ be the subset of M consisting of curves Γ̃ such that for each ξ ∈ Γ̃,
|d(ξ,Γ)| < κ(Γ). Each Γ̃ ∈ UΓ has a parameterization

s 7→ η(s) + rΓ̃(s)n(s) (2.3)

for a uniquely determined smooth function rΓ̃. The map Γ̃ 7→ rΓ̃ maps UΓ onto an
open subset in C∞(Γ), which can of course be identified with C∞(S1), where S1

is the unit circle. Clearly this map is invertible, and we may regard it as a local
coordinate map. For each Γ in M, and each ε with 0 < ε < κ(Γ), let UΓ,ε consist of

all Γ̃ in M so that for each ξ in Γ̃,

|d(ξ,Γ)| < ε .

We take these sets as a basis for the topology on M. The local coordinates just
introduced are very useful for studying the motion of curves in M. Let t 7→ Γt be
a continuous map from some open interval about t = 0 into M such that Γ0 = Γ.
It follows from the continuity that for some a > 0, and each t with |t| < a, Γt has a
parameterization

s 7→ η(s) + r(s, t)n(s) .

In this case, knowledge of the function r(s, t) and its evolution provides complete
knowledge about Γt and its evolution. In particular, the function*

V (s) =
∂

∂t
r(s, t)

∣∣∣∣
t=0

(2.4)

can be viewed as the tangent vector to the curve t 7→ Γt in M at t = 0. Hence we
call V the velocity field of t 7→ Γt at t = 0. In this sense we write

V =
∂

∂t
Γt

∣∣∣∣
t=t0

, (2.5)

and identify the tangent space toM at Γ as the set of all smooth real valued functions
V (s) on Γ. Thus, a vector field on M is a map V assigning to each Γ in M a smooth
real valued function s 7→ V (s,Γ) on Γ. A sufficiently nice vector field on M defines
a flow on M. Given a vector field V on M, and a path t 7→ Γt in M, we say that

∂

∂t
Γt = V (Γt) (2.6)

in case computing the left hand side in the sense of (2.4) and (2.5) gives the same
result as evaluating V (Γt) according to whatever rule defines it. Then t 7→ Γt is an

* This function will be differentiable by the implicit function theorem.
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integral curve of the flow given by Γ 7→ V (·,Γ). Further, we denote the lifetime T of
the flow (2.6), starting at Γ ∈M as

T = inf{t > 0 : κ(Γt) ≤ κ0} (2.7)

where κ0 is any arbitrarily chosen positive number so that κ(Γ) ≤ κ0 < ∞. If
V (·,Γ) = K(·,Γ), the curvature at s ∈ Γ, one obtains the curve shortening flow by
curvature. The nature of this flow in d = 2 has been completely clarified by Grayson.
A more pertinent example of a vector field on M is the Mullins–Sekerka vector field
that we have described in the previous section.

There is an obvious but useful decomposition of vector fields on M. For any vector
field V on M, define

〈V 〉Γ =
1
|Γ|

∫
Γ

V (ξ,Γ)dSξ (2.8)

and
V (0)(·,Γ) = V (·,Γ)− 〈V 〉Γ .

This gives us the decomposition

V (·,Γ) = V (0)(·,Γ) + 〈V 〉Γ . (2.9)

In this decomposition, 〈V 〉Γ is constant, while V (0) is orthogonal to the constants,
and thus generates a flow that does not alter the enclosed area. In what follows, we
shall derive separate equations for the components V (0)(·,Γ) and 〈V 〉Γ for each of
the vector fields Vj in the ansatz.

We close the section giving another example of a class of functions from M to
C∞(Ω): Let some number λ0 > 0 be given. Let h be a smooth function from IR2 to
IR such that h(x, y) = 0 for all |x| ≥ λ0/λ. Define a function – also denoted by h –
on Ω×M by

h(ξ,Γ) = h

(
d(ξ,Γ)
λ

, s(ξ,Γ)
)
. (2.10)

Then h(ξ,Γ) vanishes identically in the region |d(ξ,Γ)| ≥ λ0, and it will be smooth
in the region |d(ξ,Γ)| < λ0 – and hence everywhere – in case λ0 < 1/κ(Γ). The
functions from M to C∞(Ω) that we use in the ansatz are all functions of this type,
or else potentials of them.

3. The Hilbert Expansion

3.1 The Hilbert expansion to first order and the Mullins–Sekerka flow

We begin with a derivation of Pego’s result relating the Mullins–Sekerka problem
and the Cahn-Hilliard equation from the point of view that will be the basis of our
rigorous construction. Our approach is based on a Hilbert expansion, adapted from
kinetic theory, instead of matched asymptotic expansions. Nonetheless, the first step
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is the same; we write the Cahn–Hilliard equation as a system: For each ξ ∈ Ω and
each t > 0,

∂

∂t
mλ(ξ, t) = ∆µλ(ξ, t) (3.1)

µλ(ξ, t) = −λ∆mλ(ξ, t) +
1
λ
f(mλ(ξ, t)) (3.2)

where ∆ denotes the Neumann Laplacian on Ω. Let Γ0 be a smooth closed simple
curve in Ω, and consider initial data mλ(ξ, 0) such that mλ(ξ, 0) ' −1 in the region
enclosed by Γ0 and mλ(ξ, 0) ' +1, outside Γ0. The precise profile of mλ(ξ, 0) across
Γ0 will be specified later.

Because the free energy decreases under the evolution described by the Cahn–
Hilliard equation, we expect that for initial data that is very close to +1 outside Γ0

and to −1 inside, the solution m(ξ, t) will remain very close to +1 outside some new
curve Γt and to −1 inside. We seek an approximate solution m1 of the form (to be
explained below)

m1(ξ, t) = m0

(
d(ξ,Γt)

λ

)
+ λh1

(
d(ξ,Γt)

λ
, s(ξ,Γt)

)
+ λφ1(ξ,Γt) , (3.3)

together with an approximate chemical potential µ0 so that (3.1) and (3.2) are sat-
isfied to leading order in λ:

∂

∂t
m1(ξ, t) = ∆µ0(ξ, t) +O(λ) (3.4)

and

µ0(ξ, t) = −λ∆m1(ξ, t) +
1
λ
f(m1(ξ, t)) +O(λ). (3.5)

We have in mind expansions for mλ and µλ of the form

mλ = m0

(
d(·,Γt)
λ

)
+
∑
k≥1

λk(hk + φk) and µλ =
∑
k≥0

λkµk , (3.6)

of which m1 and µ0 are simply the leading order.
The two term prescription for the form of mj , j ≥ 1, requires some explanation.

The first term on the right side of (3.3) is the easiest to explain.
The free energy minimizing transition profile across a planar interface, which we

denote by m̄, is a natural candidate for the function m0. The function m̄ is the
unique solution of the Euler–Lagrange equation

−m′′(z) + f(m(z)) = 0 for z ∈ IR

lim
z→±∞

m(z) = ±1 m(0) = 0 .
(3.7)
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It is easy to see that for f(m) = m3 −m, m̄(z) = tanh(z/
√

2) and so

m̄′(z) > 0, |m̄(z)± 1| ≤ C0e
−α|z|, | d

`

dz`
m̄(z)| ≤ C`e

−α|z| , ` = 1, 2 . . . (3.8)

for all z ∈ IR, where α =
√

2 and Cl, ` = 0, 1 . . . are positive real constants.*

The problem with this choice is that m̄
(
d(ξ,Γt)

λ

)
does not define a C∞ function

on Ω. We can remedy this as follows. Fix a number λ0. Let r(u) be a smooth, even,
unimodal cut–off function so that r(u) = 1 for |u| < 1/2, and r(u) = 0 for u > 1.
For λ < λ0, define

m0(z) = r

(
λ

λ0
z

)
m̄(z) +

(
1− r

(
λ

λ0
z

))
sgn(z) . (3.9)

Notice that for |z| < λ0/(2λ), m0(z) = m̄(z), and for other values of z, the difference
is exponentially small in λ

λ0
because of the bounds (3.8). As long as κ(Γ) < 1/λ0,

perpendicular lines through Γ meet only at points that are at a distance from Γ that
is greater than λ0, and no singularities arise. In what follows, whenever m0 is used
to denote a function on IR, it will be this function defined in (3.9). As a function

from M to C∞(Ω), it will always denote m0

(
d(ξ,Γt)

λ

)
, the first term on the right

in (3.3).
The next two terms on the right side of (3.3) require more explanation. The

functions h1 and φ1 give important corrections to the leading term m0

(
d(ξ,Γt)

λ

)
.

Long range corrections are given by φ1. It will be a smooth function with derivatives
of all orders, and will satisfy a Lipschitz bound that is independent of λ. Close to
the surface, more rapidly varying corrections may be required, and if so, these are to
be encoded in h1. We shall derive an equation for h1, and as a consequence of this
equation, we shall see that h1 is a rapidly decaying function of z, like m′

0 above.
As we shall see, there is essentially only one way to choose the motion of Γt, m0,

h1 and φ1 so that a solution of (3.4) and (3.5) is possible. As we shall see, (3.4)
and (3.5) force the motion of the interface Γt to be given, in leading order, by the
Mullins–Sekerka flow. This necessity will arise through the Fredholm alternative
when we try to solve an equation for the function h1. As in the Hilbert expansion of
kinetic theory, we shall need to satisfy a Fredholm condition at each order, and this
shall determine V at each order.

We explain how (3.4) and (3.5) lead to the Mullins–Sekerka flow. We shall see that
our prescription (3.9) for m0 is correct, and derive equations for φ1 and h1. We shall

* For more general double well potentials, the same sorts of bounds would hold with different α; see [14].

It is these sorts of bounds that we will use, and not really the explicit formula for m̄(z).
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extract these from (3.5), so we first need to determine µ0. In what follows, we shall
successively determine µ0, then φ1 and then h1. We shall see that V0 is determined
by the Fredholm alternative condition on the solvability of the equation for h1.
Determination of µ0: To leading order,

∂

∂t
m(ξ, t) ≈ 1

λ
m′

0

(
d(ξ,Γt)

λ

)
V0(s(ξ)) , (3.10)

and we wish to extract the leading order of µλ from (3.1) and this approximation.
First recall that the Cahn–Hilliard equation is conservative in that

∫
Ω
m(ξ, t)dξ, does

not depend on t. If this conservation law is to hold at every order, we would require∫
Ω

(
1
λ
m′

0

(
d(ξ,Γt)

λ

)
V0(s(ξ))

)
dξ = 0 . (3.11)

Since
dξ = λ(1− λzK(s))dsdz , (3.12)

and since m′
0 is even, this holds if and only if∫

Γt

V0(η,Γt)dSη = 0 for all t ≥ 0 . (3.13)

This of course corresponds to the fact that the flow will not change the area enclosed
by Γt. We therefore suppose that V0 satisfies (3.13), and we can now find the chemical
potential µ to leading order: The condition (3.11) is the solvability condition of

1
λ
m′

0

(
d(ξ,Γt)

λ

)
V0(s(ξ),Γt) = ∆µ0(ξ, t) , (3.14)

the equation for the leading term in the chemical potential µλ that we have obtained
from (3.1) using (3.10). Therefore, by (3.14), we have that to leading order µλ is
given by

µ0(ξ, t) =
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

)
V0(s(η),Γt)

)
dη + c0(t) (3.15)

where G(ξ, η) is the Neumann Greens function for Ω, and c0(t) is a constant (in ξ)
to be determined.

Since
1
λ
m′

0

(x
λ

)
≈ 2δ(x), (3.14) says that µ0 itself is approximately equal to a

single layer potential plus a time dependent constant c0(t):

µ0,0(ξ,Γt) = 2
∫

Γt

G(ξ, η)V0(η,Γt)dSη + c0(t) . (3.16)
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Because µ0 is a “smeared” version of µ0,0, it will be C∞, unlike µ0,0 which will only
be Lipschitz, with a jump in the normal derivative across Γt. However, the only
quantitative smoothness bound we have on µ0 that is independent of λ is that it is
globally Lipschitz: There is a constant C depending only on Γt so that

‖µ0‖Lip(Ω) ≤ C (3.17)

We can now explain why we have written the first order corrections to m0 as a
sum of two terms, λh1 + λφ1. The point is that µ0, being an approximate single
layer potential, cannot decay rapidly to a constant: Single layer potentials decay
quite slowly, especially in IR2. Therefore, we split the correction into two pieces:
One, given by φ1 will be long range, and will have a purely potential theoretic origin
and specification. It will however be defined in the whole domain, not just in an
“outer layer”. The function h1 will provide corrections to m0 +λφ1 that are required
near Γ. As we shall see, such corrections are only required very near Γ; the equation
determining h1 shall force its support to be exponentially localized near Γ.
Determination of φ1: We now use use (3.5) to determine φ1. Assuming that φ1

encodes all first order long range corrections to m0, so that m′
0 and h1 decay rapidly

for ξ far away from Γt,

m1(ξ,Γt) ≈ ±1 + λφ1(ξ,Γt) and ∆m1(ξ,Γt) ≈ λ∆φ1(ξ,Γt) . (3.18)

Now consider (3.5). Because of (3.18), and because of the rapid decay of h1, for ξ far
from Γt,

µ(ξ,Γt) ≈
1
λ
f(±1 + λφ1(ξ,Γt)) .

To leading order in λ, f(±1 + λφ1(ξ,Γt)) = λf ′(1)φ1(ξ,Γt). Hence we must have

φ1(ξ,Γt) =
1

f ′(1)
µ0(ξ,Γt) (3.19)

for ξ such that |d(ξ,Γt)| > 1/κ(Γ0). This specifies φ1 away from Γt. It will prove
very convenient to take this as the global definition of φ1, which we do.
Determination of an equation for h1: With φ1 determined, we now determine
h1. The point is that closer to Γt, further short range corrections may be needed,
and it is the job of h1 to provide these, if they are needed, so that (3.2) is satisfied
at O(λ).

Because φ1 is defined globally in Ω by (3.19), it follows immediately from (3.17)
that

‖φ1‖Lip(Ω) ≤
C

f ′(1)
. (3.20)

Moreover, with this definition

λ∆(λφ1(ξ, t)) =
λ

f ′(1)
m′

0

(
d(ξ,Γt)

λ

)
V0(s(ξ),Γt) . (3.21)
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Now we examine (3.2) close to Γt to deduce an equation for h1 and the motion of Γt.
Since in (3.2) time enters simply as a parameter we avoid writing it in the following,
when no confusion arises. We need to express the Laplacian in the (z, s) coordinate
system. This is easily worked out to be

λ2∆f = (fzz + λ2fss)− λK(s)fz − λ2K2(s)zfz +O(λ3) . (3.22)

Using (3.22), (Here and in what follows, subscripted variables denote derivatives).
we easily compute λ∆m1 to O(λ). Note that because of (3.21), the term in (3.2)
involving ∆φ1 makes no contribution at order λ0. As for m0 and h1, we have from
(3.22) that

λ2∆h1

(
d(ξ,Γ)
λ

, s(ξ,Γ)
)

=
∂2

∂z2
h1 (z, s(ξ))

∣∣∣∣
z=d(ξ,Γ)/λ

+O(λ) .

and likewise

λ∆m0

(
d(ξ,Γ)
λ

)
=
[

1
λ

∂2

∂z2
−K(s(ξ))

∂

∂z

]
m0 (z)

∣∣∣∣
z=d(ξ,Γ)/λ

+O(λ) ,

In what follows, we shall use primes to denote derivatives with respect to z. We
obtain from the calculations above and (3.2) that

µ0(ξ) =
1
λ

[−m′′
0(z) + f(m0(z))] + [h′′1(z, s) +K(s)m′

0(z) + f ′(m0)(φ1 + h1)] +O(λ)

(3.23)
where on the right hand side z = z(ξ) and s = s(ξ) as in Section 2.

Observe first that the term proportional to λ−1 in (3.23) must vanish, and so m0

must satisfy
−m′′

0(z) + f(m0(z)) = 0 .

This equation is satisfied by the free energy minimizing profile m̄, and this forces m0

to be equal to m̄ – up to corrections that are exponentially small in λ. This is the
case with m0 as we have defined it.

Introducing the operator L defined by

Lg(z) = −g′′(z) + f ′(m̄(z))g(z) , (3.24)

we write (3.23), replacing f ′(m0) with f ′(m̄), as

Lh1(z, s) = µ0(z, s)−K(s)m′
0(z)− f ′(m0)φ1 +O(λ)

=
(

1− f ′(m0(z))
f ′(1)

)
µ0(z, s)−K(s)m′

0(z) +O(λ) .
(3.25)
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We are finally in a position to determine an equation h1. Notice that f ′(m̄) is even
– indeed, f ′(m̄) = 3(m̄)2 − 1. This means that L is a parity preserving operator; a

fact we shall use later on. Now, with F (m) =
1
4
(m2 − 1)2, f = F ′ gives

f(m) = (m3 −m), f ′(m) = (3m2 − 1) and f ′′(m) = 6m . (3.26)

For this potential, we have that m̄(x) = tanh(x/
√

2), and so

m̄′ =
1√
2
(1− m̄2)

Hence it follows that(
1− f ′(m̄(z))

f ′(1)

)
=

3
2
(1− m̄2(z)) =

3√
2
m̄′(z) .

Therefore, (3.25) reduces to

Lh1(z, s) =
(

3√
2
µ0(z, s)−K(s)

)
m̄′(z) +O(λ) . (3.27)

Since m̄′(z) tends to zero exponentially as |z| increases, and since µ0 = µ0,0+O(λ),
and since both are Lipschitz, we finally have

Lh1(z, s) =
(

3√
2
µ0,0(s, 0)−K(s)

)
m̄′(z) +O(λ) . (3.28)

Thus, we take as our equation for h1,

Lh1(z, s) =
(

3√
2
µ0,0(s, 0)−K(s)

)
m̄′(z) . (3.29)

Determination of V0 via the Fredholm alternative: The operator L is self
adjoint on L2(IR), and has a null space spanned by m̄′. Therefore, the condition for
solvability of Lh1 = g is ∫

IR

g(z)m̄′(z)dz = 0 . (3.30)

Evidently this is possible in the case at hand if and only if

µ0,0(s, 0) = SK(s), where S =
1
4

∫
IR

(m̄′(z))2 dz =
√

2
3

(3.31)
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in which case the right hand side of (3.28) vanishes up to O(λ), and so we take h1 ≡ 0.
In other words, the compatibility condition (3.30) forces (3.31) and allows us to take
h1 = 0, so that there is no short range correction at the first order.* (Short range
corrections will be required at higher orders).

Next, we identify V0: It is clear from (3.31) that µ0,0 is the Dirichlet extension

of SK on Γ, with S =
√

2/3. By standard elements of the theory of single layer
potentials (see the the appendix) and their Dirichlet data,

µ0,0(ξ,Γ)− 1
|Γ|

∫
Γ

µ0,0(η)dη =
∫

Γ

G(ξ, η)V0(η)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)V0(η)dSηdSξ ξ ∈ Ω

(3.32)
where, with TΓ denoting the Dirichlet–Neumann operator for Γ,

V0(ξ) = STΓ

(
K(·)− 1

|Γ|

∫
Γ

K(s)ds
)

(ξ) . (3.33)

We see that (3.33) specifies the velocity field V0, to be the one corresponding Mullins–
Sekerka flow.

Determination of c0(t): So far, we have determined µ0, and hence φ1, only up to
the additive constant c0(t). This can now be determined, completing the specification
of m1.

For any simple closed curve Γ,
∫
Γ
K(s)ds = 2π, so that

∫
Γ

µ0,0(ξ,Γ)dSξ = 2πS.

Therefore, (3.32) becomes

µ0,0(ξ,Γ) =
∫

Γ

G(ξ, η)V0(η)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)V0(η)dSηdSξ +
2πS
|Γ|

ξ ∈ Ω .

Since we require that µ0 simply be a “smeared” version of µ0,0, we must use this
same constant as the constant c0(t) in (3.15). We finally have that

µ0(ξ,Γ) =
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

)
V0(s(η), t)

)
dη

− 1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)V0(η)dSηdSξ +
2πS
|Γ|

ξ ∈ Ω .

(3.34)

and of course

φ1(ξ,Γ) =
1

f ′(1)
µ0(ξ,Γ) =

1
2
µ0(ξ,Γ) . (3.35)

* This is a consequence of the choice f(m) = (m3 −m).
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Now that φ1 is determined, the approximate solution m1(ξ, t) in (3.3) is completely
specified.

3.2 Relation with the Hilbert expansion of kinetic theory

At this point, the analogy with the Hilbert expansion in kinetic theory [5] can be
made clear. In this analogy, the Cahn–Hilliard equation corresponds to the Boltz-
mann equation

∂f

∂t
+∇x · (vf) =

1
λ
Q(f, f)

with a small parameter λ known as the Knudsen number. When λ is small, one must
have Q(f, f) ≈ 0 and so f ≈ M , a “local Maxwellian” density on phase space. This
has the form

M(x, v, t) = ρ(x, t)
(

1
2πθ(x, t)

)3/2

e−|v−u(x,t)|2/2θ(x,t)

In our problem, the function m̄

(
d(ξ,Γt)

λ

)
plays the role of a local Maxwellian. In

the kinetic theory problem, to determine the evolution of the local Maxwellian, one
just needs to determine the evolution of the “hydrodynamic moments” ρ(x, t), u(x, t)
and θ(x, t). The functions “center” the local Maxwellian in exactly the same way

that Γt centers the front m0

(
d(ξ,Γt)

λ

)
in our problem. In the Hilbert expansion,

to leading order, one writes
f = M(1 + λh)

and seeks a solution of the equation in powers of λ just as we did here. The Fredholm
criterion provides a compatibility condition for solving an equation involving the
linearized Boltzmann operator, and this provides the equations of motion for ρ(x, t),
u(x, t) and θ(x, t) just as the compatibility condition for solving an equation involving
our operator L led to the conclusion that Γt evolves under the Mullins-Sekerka flow.

If one continues the Hilbert expansion to higher order, one obtains further refine-
ments to the evolution equations for the hydrodynamical moments: Next come the
Navier–Stokes equations, and then the Burnett equations. Continuing it still fur-
ther, one can construct high order approximate solutions of the Boltzmann equation.
These in turn, as was shown by Caflisch [4], can be used to produce solutions of the
Boltzmann equation.

This has recently been extended to go beyond the appearance of the first shocks by
Yu [16]. This very significant advance is based on the construction of a generalized
Hilbert expansion which includes shock layer corrections. There is some analogy
between these and the short range components hj in our Hilbert expansion, and in
any case, his work is a clear demonstration of the utility of developing generalized
Hilbert expansions, such as the one considered here.
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For recent work on a model with phase segregation, and hence quite directly
relevant to the present paper, see [2].

Our goal in the next section is to push this analogy further, and to obtain higher
order corrections to the evolution of Γt, and higher order approximate solutions of the
Cahn–Hilliard equation, sufficient for showing that the unique solution of the Cahn–
Hilliard equation with initial data representing phase segregation with a smooth
interface has, for later times that are O(1), a smooth interface that has evolved
according to the Mullins–Sekerka flow.

We next explicitly carry out the second order expansion, and then prove that the
expansion can be continued to arbitrary order.

3.3 The prescription at second order

In this section, we prove Theorem 1.2. For this purpose, we seek an approximate
solution m of the Cahn–Hilliard equation of the form

m2(ξ, t) = m0

(
d(ξ,Γt)

λ

)
+ λφ1(ξ,Γt) + λ2 [h2(ξ,Γt) + φ2(ξ,Γt)] (3.36)

where φ1 is the function determined in the previous section, and h2 and φ2 are to
be determined here, so that (3.1) and (3.2) is satisfied to O(λ2). This time, we will
require a short range correction, and h2 will not vanish.

It is worth doing the expansion to second order explicitly. One reason is that new
features concerning the compatibility conditions enter at second order, but after that,
the pattern is essentially the same. The second reason is that this provides the form
of the leading corrections to the Mullins–Sekerka flow.

Indeed, to carry out the expansion to second order, we let Γ(1)
t denote the solution

to
∂

∂t
Γ(1)

t = V0(Γ
(1)
t ) + λV1(Γ

(1)
t ) , Γ(1)

0 = Γ0 , (3.37)

where V0 is the Mullins–Sekerka vector field on M, and V1, as it will be soon ex-
plained, is to be determined by two different types of compatibility conditions. Our
first step will be to determine a higher order approximate chemical potential using
(3.1). Keeping terms out to first order in λ in both m and the chemical potential µ,
we have the equation:

∂

∂t

(
m0

(
d(ξ,Γ(1)

t )
λ

)
+ λφ1(ξ,Γ

(1)
t )

)
= ∆(µ0 + λµ1) . (3.38)

The quantity φ1(ξ,Γ
(1)
t ) is not so easy to differentiate, even apart from the fact that

Γ(1)
t is evolving under V0 +λV1. We must first obtain an equation specifying V1, and

for this purpose, we must isolate the leading contribution from the evolution under
V0: For each t, let Γ̃t+s be given by

d
ds

Γ̃t+s = V0(Γ̃t+s) with Γ̃t = Γ(1)
t .
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We then define DV0φ1 by

DV0φ1(ξ,Γ
(1)
t ) = lim

s→0

1
s

(
φ1(ξ, Γ̃t+s)− φ1(ξ, Γ̃t)

)
. (3.39)

This way,
∂

∂t
φ1(ξ,Γ

(1)
t ) = DV0φ(ξ,Γ(1)

t ) +O(λ)

since in computing DV0φ(ξ,Γ(1)
t ) we have only suppressed λV1. We therefore replace

(3.38) by

∂

∂t

(
m0

(
d(ξ,Γ(1)

t )
λ

))
+ λDV0φ1(ξ,Γ

(1)
t ) = ∆(µ0 + λµ1) . (3.40)

The compatibility condition for the solvability of (3.40) is that

d
dt

∫
Ω

(
m0

(
d(ξ,Γ(1)

t )
λ

))
dξ + λ

∫
Ω

DV0φ1(ξ,Γ
(1)
t )dξ = 0 . (3.41)

As one sees from the formula (3.35) for φ1, there is no reason that
∫
Ω
DV0φ1(ξ,Γ

(1)
t )dξ

will vanish in general. We shall deduce a formula for this quantity in the next section,
but what is relevant now is that it must be cancelled by the term in (3.41) involving

m0. When Γ(1)
t evolves under (3.37), we have that

∂

∂t
m0

(
d(ξ,Γ(1)

t )
λ

)
=

1
λ
m′

0

(
d(ξ,Γ(1)

t )
λ

)
[V0(s(ξ)) + λV1(s(ξ))] .

Integrating the right hand side over Ω, we find∫
m′

0(z)dz
∫

Γ
(1)
t

[V0(s) + λV1(s)] ds = 2λ
∫

Γ
(1)
t

V1(s)ds .

Hence, the compatibility condition for solvability of (3.38) will hold if and only if

2
∫

Γ
(1)
t

V1(s)ds = −
∫

Ω

DV0φ1(ξ,Γ
(1)
t )dξ . (3.42)

We therefore decompose V1 into two pieces V1 = V
(0)
1 + 〈V1〉Γ as in (2.9). The part

〈V1〉Γ denotes the average of V1 over Γ. It has a constant value is determined by
(3.42):

〈V1〉Γ = − 1

2|Γ(1)
t |

∫
Ω

DV0φ1(ξ,Γ
(1)
t )dξ . (3.43)
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where the φ1 is given in (3.19). (This is somewhat different from the expression for
〈V1〉 given in Theorem 1.2, but as we shall see, the difference is O(λ)).

The part V (0)
1 will be orthogonal to the constants. It will be determined by a

compatibility condition that arises when we solve for h2. The pattern is the same
in all higher orders: The constant part of the kth order velocity field, 〈Vk〉Γ will be
determined by the compatibility condition needed to solve Laplace’s equation for µk.

The non-constant part V (0)
k will be determined by the compatibility condition needed

to solve for hk.

Since 〈V1〉Γ is not zero, the area enclosed by Γ(1)
t as it evolves under (3.37) will not

be constant. This should not be surprising. Only at the sharp interface limit does
the conservation of

∫
Ω
m(ξ, t)dξ coincide with the conservation of the area enclosed

by Γt. At higher order, the interactions between the shape of the curve and shape of
the interface matter. With this choice of 〈V1〉Γ, the compatibility condition (3.41) is
satisfied and we can now solve (3.40) for µ0 + λµ1. First, we use the full evolution,
under (3.37), to differentiate the first term in (3.40). Then we apply the Green’s
function to each of the pieces. Taking in account (3.14) we obtain that

µ1(ξ, t) =
1
λ

∫
Ω

G(ξ, η)m′
0

(
d(ξ,Γ(1)

t )
λ

)
V1(s(η))dη + p(ξ, t) + c1(t) (3.44)

where we set

p(ξ, t) =
∫

Ω

G(ξ, η)
[
DV0φ1(ξ,Γ

(1)
t )
]
dη , (3.45)

and c1(t) is a constant (in ξ) to be determined. (Again, this is somewhat different
from the expression for p(ξ, t) given in Theorem 1.2, but as we shall see, the difference
is O(λ)). In the next section, we shall derive a more explicit formula, at least in terms
of potential theory, for p(ξ, t). For the time being, it is convenient to work with this
compact form. The first term on the right is an approximate single layer potential

and it is still to be fully determined, since we do not know V
(0)
1 yet.

Toward this end, we first determine φ2. As before, consider ξ far from Γ(1)
t where

m2
0 − 1 and h2 are negligible. We then have

µ0 + λµ1 ≈
1
λ
f
(
1± λφ1 + λ2φ2

)
≈ f ′(1) (φ1 + λφ2) +

f ′′(1)
2

λφ2
1 .

Since µ0 = f ′(1)φ1, we define φ2 by φ2 =
1

f ′(1)

[
µ1 −

f ′′(1)
2(f ′(1))2

µ2
0

]
=

1
2
µ1 +

3
8
µ2

0.

As before, we use this definition globally in Ω, and φ2 is Lipschitz with a norm
bounded independently of λ. We now return to (3.2), and replace µλ by µ0 + λµ1
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and mλ by (3.36). From (3.22), and the potential theoretic definition of φ1,

− λ∆(m0 + λφ1 + λ2h2 + λ2φ2) =

− 1
λ

[m′′
0 ] +Km′

0 + λ

[
−h′′2 +

1
f ′(1)

m′
0V0 +K2zm′

0

]
+O(λ2) .

Clearly,
1
λ
f(m0 + λφ1 + λ2h2 + λ2φ2) =

1
λ
f(m0) + f ′(m0)φ1 + λf ′(m0)[h2 + φ2] + λ

f ′′(m0)
2

φ2
1 .

Hence from (3.2), since m̄ solves (3.7), and since m0 = m̄ up to exponentially small
corrections,

µ0 + λµ1 = [Km′
0 + f ′(m0)φ1]

+ λ

[
Lh2 +K2zm′

0 +
1

f ′(1)
m′

0V0 + f ′(m0)φ2 +
1
2
f ′′(m0)φ2

1

]
+O(λ2) .

Therefore, since φ1 = (1/f ′(1))µ0 = (1/2)µ0, we can use the identity (1 −
f ′(m0)/f ′(1)) = (3/

√
2)m′

0, and have

µ1 =
1
λ

(
K − 3√

2
µ0

)
m′

0

+
[
Lh2 +K2zm′

0 +
1

f ′(1)
m′

0V0 + f ′(m0)φ2 +
1
2
f ′′(m0)φ2

1

]
+O(λ) .

(3.46)

Notice that the first term on the right is bounded uniformly in λ because µ0 is
Lipschitz, µ0 = µ0,0 +O(λ), and m′

0 decays rapidly. From (3.46) we obtain

Lh2 = µ1 −
1
λ

(
K − 3√

2
µ0

)
m′

0

−
[
K2zm′

0 +
1

f ′(1)
m′

0V0 + f ′(m0)φ2 +
1
2
f ′′(m0)φ2

1

]
+O(λ).

(3.47)

To solve (3.47), the compatibility condition (3.30) need to be satisfied. This condition

will determine V (0)
1 and therefore µ1 will be fully determined. Denote

g1(s) =
∫

IR

[
K2zm′

0 +
1

f ′(1)
m′

0V0 + f ′(m0)φ2 +
1
2
f ′′(m0)φ2

1

]
m′

0dz.
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Since m′
0(z) is even, f ′′(m0) = 6m0, φ1 and φ2 have a Lipschitz bound independently

on λ we obtain

g1(s) =
∫

IR

[
1

f ′(1)
m′

0V0 + f ′(m0)φ2(0, s) +
1
2
f ′′(m0)φ2

1(0, s)
]
m′

0dz +O(λ)

= 2SV0(s) +O(λ).

(3.48)

where S is the surface tension defined in (3.31). We next investigate

g2(s) =
1
λ

∫
IR

(
K − 3√

2
µ0

)
(m′

0)
2(z)dz.

Then

g2(s) =
1
λ

∫
IR

(
K − 3√

2
µ0,0

)
(m′

0)
2(z)dz − 3√

2λ

∫
IR

(µ0 − µ0,0) (m′
0(z))

2 dz .

The second term, involving the difference between the “smeared” and exact single
layer potentials is easily seen to be O(λ2). As for the first one, note that we have
µ0,0(z, s) = SK + aλz + O(λ2) for z > 0 and µ0,0(z, s) = SK + bλz + O(λ2) for
z > 0. The quantity b− a is just the jump in the normal derivative of µ0,0 across the
interface at s, which is V0(s). Hence with C defined by

C =
∫

IR

|z|(m′
0)

2dz =
4 ln(2)− 1

6
, (3.49)

we have
g2(s) = CV0(s) +O(λ) . (3.50)

The compatibility condition that we must have in order to solve for h2 is that∫
µ1(λz, s)m′

0(z)dz = g1(s) + g2(s) , (3.51)

where µ1 is given in (3.44). It is convenient to single out from µ1 the part still
unknown which will be determined so that (3.51) holds. We denote

µ1,0(ξ,Γ) =
1
λ

∫
Ω

G(ξ, η)m′
0

(
d(ξ,Γ)
λ

)
V

(0)
1 (s(η))dη + c1(t) (3.52)

and

µ̃1(ξ,Γ) =< V1 >
1
λ

∫
Ω

G(ξ, η)m′
0

(
d(η,Γ
λ

)
dη + p(ξ,Γ) . (3.53)
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Taking in account (3.48) and (3.50) we then write (3.51) as∫
µ1,0(λz, s)m′

0(z)dz = (2S+C)V0−
∫
µ̃1(λz, s)m′

0(z)dz = (2S+C)V0−2µ̃1(0, s)+O(λ)

having µ̃1 a Lipschitz bound independent on λ. As in the previous section, we may
substitute µ1,0 by the corresponding single layer potential

µ1,0,0(ξ,Γ) = 2
∫

Γ

G(ξ, η)V (0)
1 (η)dSη + c1(t) (3.54)

and further restrict to z = 0, obtaining∫
µ1,0,0(0, s)m′

0(z)dz = 2µ1,0,0(0, s) = (2S + C)V0 − 2µ̃1(0, s)

= (2S + C)V0 + 4〈V1〉Γ
∫

Γ

G(s, η)dSη + 2p(s) +O(λ).
(3.55)

Inserting (3.54) into (3.55) and integrating over Γ we obtain that

2c1(t) = − 4
|Γ|

{∫
Γ

∫
Γ

G(ξ, η)V (0)
1 (η)dSηdSξ +

∫
Γ

dSξ

∫
Γ

G(ξ, η)dSη

}
− 2
|Γ|

∫
Γ

p(η)dSη .

(3.56)

In this way c1(t) is written in term of V (0)
1 , still to be determined. Taking in account

(3.56) we obtain from (3.55) an equation for V (0)
1

SΓV
(0)
1 (ξ) =

1
4
(2S + C)V0(ξ)− 〈V1〉Γ

[∫
Γ

G(ξ, η)dSη −
1
|Γ|

∫
Γ

dSξ

∫
Γ

G(ξ, η)dSη

]
− 1

2

[
p(ξ)− 1

|Γ|

∫
Γ

p(η)dSη

]
,

where SΓ is the operator defined in (10.9). Finally applying the Dirichlet-Neumann
operator, see (10.8) we obtain

V
(0)
1 =

1
4
(2S + C)TΓV0 − 〈V1〉ΓTΓ

[∫
Γ

G(·, η)dSη −
1
|Γ|

∫
Γ

dSξ

∫
Γ

G(ξ, η)dSη

]
− 1

2
T

Γ

[
p(·)− 1

|Γ|

∫
Γ

p(η)dSη

]
.

(3.57)
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With V1 = V
(0)
1 + 〈V1〉Γ determined, we can solve (3.46) for h2 and we have our

approximation.
At this stage it is a simple matter to prove Theorem 1.2:

Proof of Theorem 1.2 We have seen that up to an adjustment of size O(λ), we
must have that 〈V1〉Γ is given by (3.43). To see that this agrees, up to an adjustment
of size O(λ), with the expression (1.15) given in Theorem 1.2, note first that by
(3.19), and the fact that f ′(1) = 2, φ1 = µ0/2. It then remains to show that

DV0µ0(ξ,Γ) = DV0µ0,0(ξ,Γ) +O(λ) . (3.58)

For this purpose, let s 7→ η(s) be any arclength parameterization of Γ, and let Γz

denote the curve parametrized by s 7→ η(s) + λzn(s), using the notation of Section
2. Then, by the definition of µ0, (3.14), and from (3.12), we have

2µ0(ξ,Γ) =
∫

IR

µ0,0(ξ,Γz)m′
0(z)dz +O(λ) ,

and

2DV0µ0(ξ,Γ) =
∫

IR

DV0µ0,0(ξ,Γz)m′
0(z)dz +O(λ) .

To draw the desired conclusion, we must know that Γ 7→ DV0µ0(ξ,Γ) is continuous
from M to, say, L2(Ω). This can be seen from formula (4.12) in the next section,
and hence

DV0µ0,0(ξ,Γz) = DV0µ0,0(ξ,Γ) +O(λ) ,

in L2(Ω), which gives us (3.58).

Next, we have seen that V (0)
1 must be given by (3.57), up to an adjustment of

size O(λ). This coincides with the formula (1.16) in Theorem 1.2, except that the
formulae for p differ: The formula (1.17) in Theorem 1.2 involves DV0µ0,0(ξ,Γ), while
the formula (3.45) for the p in (3.57) involves DV0µ0(ξ,Γ). However, by (3.58) once
again, these differ by O(λ).

4. Some differentiation formulas

4.1 The general problem

In this section, we produce a potential theoretic formula for the rate of change
of V0 under its own time evolution. This permits us to give a potential theoretic

formula for the function DV0φ1(ξ,Γ
(1)
t ), and hence p(ξ, t), so that (1.16) becomes

more explicit.
From the formula (3.34) for µ0 and hence φ1, we see that the main problem to

be dealt with here is of the following type: Suppose that we are given two vector
fields V and W on M. Suppose further that the first vector field does not affect the
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enclosed area; i.e., for all Γ,
∫
Γ
V (s)ds = 0. Using V , form the Neumann harmonic

extension (see the Appendix)

ψV (ξ,Γ) =
∫

Γ

G(ξ, η)V (η,Γ)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)V (η,Γ)dSηdSξ ξ ∈ Ω (4.1)

and take
dΓt

dt
= W (Γt) , Γ0 = Γ . (4.2)

We wish to compute DWψV =
d
dt
ψV (ξ,Γt). In the particular case that V is V0, the

Mullins–Sekerka vector field, ψV0(ξ,Γ) = µ0,0, and hence if we take W = V0 as well,
the quantity we are computing is DV0

µ0,0, which figures in Theorem 1.2. We first
derive a general result. We parameterize Γt by the arc length of Γ as follows: Let
s 7→ ξ(s) be an arc length parametrization of Γ. For t sufficiently small, every point
on Γt belongs to N (λ0,Γ), for some strictly positive λ0 ≤ 1

κ(Γ) . Hence we can use

the coordinates introduced in Section 2 to write a parametrization

s 7→ ξ(s) + rΓt
(s)n(s) 0 ≤ s ≤ |Γ|

of Γt. Clearly, rΓt
(s) = W (s)t+O(t2). Let V (s, t) be the coordinate representation

of a vector field V (·,Γt) on M at Γt. That is, if n(s, t) is the outward normal to Γt

at ξ(s) + rΓt
(s)n(s), then V (·,Γt) is given by the vector field

V (s, t)n(s, t)

on Γt. We seek a formula for ∂V (s, t)/∂t. In the case of the Mullins–Sekerka vector
field, and others that we shall encounter here, V is explicitly defined through the
Dirichlet–Neumann operator, or more precisely, its inverse: We are given a function
f(·,Γ) such that

∫
Γ
f(s,Γ)ds = 0, and then V (·,Γ) = TΓf(·,Γ). For the Mullins–

Sekerka vector field, as we have seen,

f(s,Γ) = SK(s,Γ)− S

|Γ|

∫
Γ

K(s,Γ)ds = S

(
K(s,Γ)− 2π

|Γ|

)
. (4.3)

It is relatively easy to compute the evolution of f(·,Γ) as Γ evolves according to (4.2).

We will use this to compute
∂

∂t
V (·, t) in terms of

∂

∂t
f(·,Γt). In the following we will

denote simply by K(s) ≡ K(s,Γ) being Γ the initial curve for the evolution (4.2).
The result is the following:

Theorem 4.1 Let V and W be two smooth vector fields on M, and suppose that
V is defined through V = TΓt

(f(·,Γt). Suppose that Γt evolves according to (4.2).
Let Q be the operator on L2(Γ) defined by

QΓ,Wh(s) =
∫ |Γ|

0

[∇ξG(ξ(s), η(r)) ·W (s)n(s) +∇ηG(ξ(s), η(r)) ·W (r)n(r)]h(r)dr .

(4.4)
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Then we have

∂

∂t
V (s, 0) +W (s)K(s)V (s, 0)

= TΓ

(
∂

∂t
f(s, 0) +

1
|Γ|

∫ |Γ|

0

f(s, 0)W (s)K(s)ds

)

− TΓ

(
QΓ,WV (s, 0)− 1

|Γ|

∫
Γ

QΓ,WV (s, 0)ds
)
.

(4.5)

Notice that the operator QΓ,W is a bounded smoothing operator, the singularities in
the two derivatives of the Green’s function cancel.

Proof: In the proof, we shall drop some subscripts. A simple computation shows
that the element of arc length along Γt in the parameterization that we employ is

ρ(s, t)ds =
(
(1 + w(s, t)K(s))2 + (∂w(s, t)/∂s)2

)1/2
ds 0 ≤ s ≤ |Γ| .

Again, it is easy to see that

ρ(s, t) = 1 + tW (s)K(s) +O(t2) .

Since, as explained around (10.10) of the appendix, f(·,Γt) = SΓtV (·,Γt) we have

f(s, t) =
∫ |Γ|

0

G(ξ(s) + w(s, t)n(s), η(r) + w(r, t)n(r))V (r, t)ρ(r, t)dr

− 1
|Γt|

∫ |Γ|

0

∫ |Γ|

0

G(ξ(s) + w(s, t)n(s), η(r) + w(r, t)n(r))V (r, t)ρ(r, t)drρ(s, t)ds.

Recalling the definition (4.4) of QΓ,W , we have that

∂

∂t
f(s, 0) = SΓ

(
∂

∂t
V (s, 0) +W (s)K(s)V (s, 0)

)

+QΓ,WV (s, 0)− 1
|Γ|

∫ |Γ|

0

QΓ,WV (s, 0)ds

+
|Γ|′

|Γ|2

∫ |Γ|

0

∫ |Γ|

0

G(ξ(s), η(r))V (r, 0)drds

− 1
|Γ|

∫ |Γ|

0

W (s)K(s)

(∫ |Γ|

0

G(ξ(s), η(r))V (r, 0)dr

)
ds .
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where
d|Γt|
dt

∣∣∣
t=0

≡ |Γ|′ =
∫ |Γ|

0

K(s)W (s)ds . (4.6)

From the definition of f(s, t) and (4.6) one easily recognizes the contribution of

the last two terms as − 1
|Γ|

∫ |Γ|

0

f(s, 0)W (s)K(s)ds. Then since, by assumption,∫ |Γ|

0

f(s, t)ρ(s, t)ds = 0 identically in t, we have that

∫ |Γ|

0

∂

∂t
f(s, 0)ds = −

∫ |Γ|

0

f(s, 0)W (s)K(s)ds .

Combining results, we have the following identity:

∂

∂t
f(s, 0) +

1
|Γ|

∫ |Γ|

0

f(s, 0)W (s)K(s)ds

= QΓ,WV (s, 0)− 1
|Γ|

∫ |Γ|

0

QΓ,WV (s, 0)ds

+ SΓ

(
∂

∂t
V (s, 0) +W (s)K(s)V (s, 0)

)
.

Applying the Dirichlet–Neumann operator, see (10.8), we have the result.

4.2 Application to DV0
µ0,0

Let Γ evolve under (4.2), from (4.3), using (4.6) again, we obtain

∂

∂t
f(s, 0) = S

∂

∂t
K(s, t)

∣∣∣
t=0

+
2πS
|Γ|2

∫
Γ

K(s)W (s)ds .

A well known computation yields the result that

∂

∂t
K(s, t)

∣∣∣
t=0

= −
(

d2

ds2
W (s) +K(s)2W (s)

)
(4.7)

Hence in this case, since from (4.3) SK(s)− f(s, 0) = S 2π
|Γ| we obtain

∂

∂t
f(s, 0) +

1
|Γ|

∫ |Γ|

0

f(s, 0)W (s)K(s)ds

= S

(
− d2

ds2
W (s)−K2(s)W (s) +

1
|Γ|

∫ |Γ|

0

K(s)2W (s)ds

)
.

(4.8)
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We now have what we need to compute the derivative in t, along the Mullins–Sekerka
flow, V0, of ψV0(·,Γt) ≡ µ0,0(·,Γt). We first compute the derivative in t under a flow
generated by W of ψV (·,Γt), see (4.1). Then we set V = V0 and W = V0. A
computation just as in the proof of Theorem 4.1 yields

∂

∂t
ψV (ξ,Γt)

∣∣∣∣
t=0

=∫
Γ

∇ηG(ξ, η) · n(η)W (η)V (η, 0)dSη

+
∫

Γ

G(ξ, η)
(
∂

∂t
V (η, 0) +K(η)W (η)V (η)

)
dSη

− 1
|Γ|

∫
Γ

QΓ,WV (η, 0)dSη +
|Γ|′

|Γ|2

∫
Γ

∫
Γ

G(ξ, η)V (η, 0)dSηdSξ

− 1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)
(
∂

∂t
V (η, 0) +K(η)W (η)V (η, 0) +K(ξ)W (ξ)V (η)

)
dSηdSξ .

This simplifies to

∂

∂t
ψV (ξ,Γt)

∣∣∣∣
t=0

=
∫

Γ

∇ηG(ξ, η) · n(η)W (η)V (η, 0)dSη

+ EΓ,N

(
∂

∂t
V (η, 0) +K(η)W (η)V (η, 0)

)
− 1
|Γ|

∫
Γ

QΓ,WV (η, 0)dSη

+
|Γ|′

|Γ|2

∫
Γ

∫
Γ

G(ξ, η)V (η, 0)dSηdSξ

− 1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)K(ξ)W (ξ)V (η, 0)dSηdSξ .

(4.9)
where EΓ,N is the operator defined in (10.12). From (4.6), arguing as before, the
contribution of the the last two terms in (4.9) is given by

− 1
|Γ|

∫ |Γ|

0

ψV (ξ, 0)W (s)K(s)ds . (4.10)

From (3.31) and (3.32) when ξ ∈ Γ and V = V0, we have that

SK(ξ)− S

|Γ|

∫
Γ

K(s)ds

=
∫

Γ

G(ξ, η)V0(η, 0)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)V0(η, 0)dSηdSξ = ψV0(ξ,Γ) .
(4.11)
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Then (4.10), when V = V0, is equal to

−S
(

1
|Γ|

∫
Γ

K2(ξ)W (ξ)dSξ −
2π
|Γ|2

∫
Γ

K(ξ)W (ξ)dSξ

)
.

Now using (4.8), Theorem 4.1 and the Dirichlet extension operator EΓ,D, (defined in
(10.13) of the appendix), we have

∂

∂t
ψV0(ξ,Γt)

∣∣∣∣
t=0

=
∫

Γ

∇ηG(ξ, η) · n(η)W (η)V0(η, 0)dSη − EΓ,D(QΓ,WV0(η))

+ EΓ,N

(
STΓ

(
− d2

ds2
W (s)−K(s)2W (s) +

1
|Γ|

∫ |Γ|

0

K(s)2W (s)ds

))

− S

(
1
|Γ|

∫
Γ

K2(ξ)W (ξ)dSξ −
2π
|Γ|2

∫
Γ

K(ξ)W (ξ)dSξ

)
=
∫

Γ

∇ηG(ξ, η) · n(η)W (η)V0(η, 0)dSη − EΓ,D (QΓ,WV0(η, 0))

+ SEΓ,D

(
− d2

ds2
W (s)−K(s)2W (s)

)
+

2Sπ
|Γ|2

∫
Γ

K(ξ)W (ξ)dSξ .

(4.12)
The first term on the right is a double layer potential. Setting W = V0 where V0 is
the Mullins Sekerka flow in (4.12) we obtain DV0

µ0,0 which appears in (1.15) and

(1.17).

5. Results for general N

We follow the scheme outlined in the previous sections. We start by ammending
our ansatz for constructing the approximate solutions by further specifying the nature
of the functions mj .

Ansatz – full version: Let any number λ0 > 0 be given. For any Γ ∈ M with
κ(Γ) < 1/(2λ0), let m(N)(·,Γ) ∈ C∞(Ω) be

m(N)(ξ,Γ) = m0

(
d(ξ,Γ)
λ

)
+

N∑
j=1

λjmj(ξ,Γ) . (5.1)

Here, the function m0 is defined in (3.9). For j ≥ 1, set

mj(ξ,Γ) = hj

(
d(ξ,Γ)
λ

, s(ξ,Γ)
)

+ φj(ξ,Γ) ξ ∈ Ω, j = 1, ..N. (5.2)

Let hj(·,Γ) be a C∞(Ω) function of the type (2.10). The φj, j = 1, ..N satisfy
Neuman boundary conditions on ∂Ω and a global Lipschitz bound λ−independent,
i.e.

‖φj‖Lip(Ω) ≤ C j = 1, .., N, (5.3)
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where C is a constant independent on λ.

Notational convention: In the following we denote by m(N)(ξ, t) ≡ m(N)(ξ,Γ(N)
t )

the function having the requirements prescribed in the ansatz and evaluated at Γ(N)
t ,

t ∈ [0, T ], the solution of (1.8), being T its lifetime, see (2.7). We will fix once for

all a small value of λ0 > 0, and define κ0 =
1

2λ0
. This is the upper bound on the

curvature that will be tolerated in our estimates, since they suppose that the local
coordinate system introduced in Section 2 is valid for all |z| < λ0/λ. Hence we use
this value of κ0 in defining the lifelime T of our solution of (2.6); see (2.7). We will
write

mj(ξ, t) = hj(
d(ξ,Γ(N)

t )
λ

, ξ, t) + φj(ξ, t) j = 1, .., N ,

whenever we need to stress that hj depends on Γ(N)
t through the fast scale d(ξ,Γ

(N)
t )

λ .

Further we drop in the following the superscript (N) in Γ(N)
t , writing Γt. Through

what follows, we write C to designate a generic positive constant independent on λ.
Its actual numerical value may change from one occurrence to the next.

Let Vj , j = 0, .., (N − 1) be the sequence of vector fields introduced in the ansatz.
We split them, according to (2.8) and (2.9), as

Vj = V
(0)
j + 〈Vj〉 j = 0, .., N − 1. (5.4)

The V (0)
j will be determined applying the Dirichlet-Neuman operator, by potential

theory, in Theorem 5.2. The 〈Vj〉, the part constant on Γ, will be determined in
Theorem 5.1, stated next.

Theorem 5.1 Fix N > 1. Let Γ(N)
t , t ∈ [0, T ], be the solution of (1.8) in M,

being T its lifetime. Let m(N)(·,Γ(N)
t ) be as in the ansatz. There is an unique way

to determine the 〈Vj〉, j = 0, .., (N − 1), such that there exists an unique (up to a
constant in ξ) expansion

µ(N−1)(ξ, t) =
N−1∑
i=0

λiµi(ξ, t) in Ω× [0, T ], (5.5)

with
∂

∂t
m(N)(ξ, t) = ∆µ(N−1)(ξ, t) +R1(ξ, t, λ) in Ω× (0, T ), (5.6)

with R1 given in (6.9). Further µ(N−1)(·, t), for t ∈ [0, T ], is a C∞(Ω) function
satisfying Neumann homogeneous boundary conditions on ∂Ω,

sup
ξ,t∈Ω×[0,T ]

|R1(ξ, t, λ)| ≤ C(T )λN−1 (5.7)
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and

sup
t∈[0,T ]

∫
Ω

|R1(ξ, t, λ)|dξ ≤ C(T )λN (5.8)

where C(T ) is a constant independent on λ. Moreover, the µi in (5.5) are specified
by (6.13), (6.17) and (6.27) below.

The proof of Theorems 5.1 is deferred to Section 6. The next theorem assures the
existence and (essential) uniqueness of the functions mj , j = 0, ..N , having the
properties required in the ansatz. Existence and unicity are obtained provided a

compatibility condition is satisfied. This determines V (0)
j , the orthogonal part of the

velocity fields.

Theorem 5.2 Let T be the lifetime of the solution of (1.8) in M. Let µ(N−1)(·, t),
t ∈ [0, T ], as in Theorem 5.1. Then it is possible to choose the vector fileds V (0)

j so
that there exist mj, j = 0, .., N having the properties prescribeded in the ansatz such
that

µ(N−1)(ξ, t) = −λ∆m(N)(ξ, t) +
1
λ
f(m(N)(ξ, t)) +R2(ξ, t, λ) in Ω× (0, T ], (5.9)

with R2 given in (8.45). Further m(N)(·, t), for t ∈ [0, T ], is a C∞(Ω) function that
satisfies homogeneous Neumann boundary conditions and

sup
ξ∈Ω

sup
t∈[0,T ]

|R2(ξ, t, λ)| ≤ CλN . (5.10)

Finally, the chooice of the V (0)
j is specified by the equations (8.18), (8.25) and (8.37)

below.

The proof of this result is given in Section 8. Theorem 5.1 and Theorem 5.2 provide
the two steps to construct the approximate solution to (1.2). From Theorem 5.1 and
5.2 one obtains easily the following comprehensive result, which amplifies Theorem
1.1. Its proof is given in Section 9.

Theorem 5.3 For all N > 1, there are uniquely defined sequences of vector fields Vj,
j = 0, .., (N − 1), on M and functions mj, j = 0, .., N , from M to C∞(Ω) as in the
ansatz such that the following holds. For any Γ0 ∈ M, choose k0 ≥ κ(Γ0), set λ0 =
1

2k0
and let T be the lifetime of the solution of (1.8) inM, according to (2.7). Then for

all t < T , for all λ ∈ (0, λ0] we can construct (m̃(N), µ̃(N−1)) ∈ C∞(Ω× [0, T ]) where
m̃(N) is a λN modification of m(N), i.e. sup(ξ,t)∈Ω×[0,T ] |m̃(N)(ξ, t) −m(N)(ξ, t)| ≤
CλN and µ̃(N−1) is a λN−1 modification of µ(N−1), i.e. sup(ξ,t)∈Ω×[0,T ] |µ̃(N−1)(ξ, t)−
µ(N−1)(ξ, t)| ≤ CλN−1 satisfying
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∂

∂t
m̃(N)(ξ, t) = ∆µ̃(N−1)(ξ, t) in Ω× (0, T )

µ̃(N−1)(ξ, t) = −λ∆m̃(N)(ξ, t) +
1
λ
f(m̃(N)(ξ, t)) +R(ξ, t, λ) in Ω× (0, T ).

(5.11)

where
sup
ξ∈Ω

sup
t∈[0,T ]

|R(ξ, t, λ)| ≤ CλN−1 .

Further, µ̃(N−1)(·, t) and m̃(N)(·, t), for t ∈ [0, T ], satisfy Neumann homogeneous
boundary conditions on the boundary of Ω. In addition

sup
t∈[0,T ]

sup
ξ∈Ω

|µ̃(N−1)(ξ, t)− µ0,0(ξ, t)| ≤ Cλ, (5.12)

where µ0,0 is the solution of (1.11), (1.12),

sup
t∈[0,T ]

sup
ξ∈N (λ0,Γ

(N)
t )

∣∣∣∣∣m̃(N)(ξ, t)− m̄

(
d(ξ,Γ(N)

t )
λ

)∣∣∣∣∣ ≤ Cλ , (5.13)

sup
t∈[0,T ]

sup
ξ∈Ω\N (

λ0
2 ,Γ

(N)
t )

∣∣∣m̃(N)(ξ, t)∓ 1
∣∣∣ ≤ Cλ . (5.14)

Once the approximate solution to (1.2) is constructed it remains to show that it
is indeed “close” to the solution of (1.2). However, as mentioned in the introduction,
the approximate solution, given here satisfies the requirements needed to apply the
spectral estimate used in [1] to show that the approximate solution is indeed close,
in the Sobolev space H−1, to the solution of Cahn-Hilliard equation.

6. Construction of the approximate chemical potential

In this section we apply classical potential theory to prove Theorem 5.1. We look
for a function µ(N−1) from M to C∞(Ω) having the form

µ(N−1)(ξ,Γ) =
N−1∑
i=0

λiµi(ξ,Γ) ξ ∈ Ω , (6.1)

where µi, i = 0, .., N − 1, are functions to be determined. We insert m(N), as

in the ansatz, and µ(N−1), as in (6.1), both evaluated at Γ(N)
t where Γ(N)

t is the
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solution of (1.8), into (3.1). We obtain (N − 1) Laplace equations for µi(·,Γ(N)
t ),

i = 1, ..(N −1). The compatibility condition needed to solve these Laplace equations

determines 〈Vj〉(Γ(N)
t ) for j = 0, .., (N − 1).

When differentiating m(N)(·,Γ(N)
t ) with respect to t we need to take into account

that m(N) depends on Γt, through a fast and slow scale. The fast scale brings a
factor λ−1.

Notation Let m be a function from M to C∞(Ω) of the type (2.10). Let V be a
vector field on M. We denote by

DV m(ξ,Γ) =
1
λ
h′(

d(ξ,Γ)
λ

, s(ξ,Γ))V (s(ξ)) , (6.2)

where we indicate with prime the derivative of h with respect to the first variable

z = d(ξ,Γ)
λ . When WN =

∑N−1
j=0 λjVj, with V0,...VN−1 a vector fields on M

DWN
m(ξ,Γ) =

N−1∑
j=0

λjDVjm(ξ,Γ) .

Note that by the orthogonality of ∇ξd with respect to the surface there is no contri-
bution in (6.2) from s(ξ,Γ). We have then

∂m(N)

∂t
(ξ, t) = DWN

(m(N)) = DV0m0 + λ [DV1m0 +DV0m1]

+ λ2 [DV1m1 +DV0m2 +DV2m0] + ...+ λN−1

[
N−1∑
i=0

DVimN−1−i

]
+RN + E

(6.3)

where

RN ≡ λN

[
N−1∑
i=0

DVi
mN−i

]
+O(λN ). (6.4)

The term E ≡ E(ξ, t, λ) is obtained by diferentiating r(
d(ξ,Γt)
λ0

) with respect to

the velocity field the function

E(ξ, t, λ) =
1
λ0
r′(
d(ξ,Γt)
λ0

)

[
N−1∑
i=0

λiVi(σ(ξ), t)

]{
m̄−

[
1I{d(ξ,Γt)>0} − 1I{d(ξ,Γt)<0}

]}
(6.5)
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It is exponentially small, namely r′ is different from zero only for λ0
2λ ≤ |z| ≤ λ0

λ and
m̄ goes exponentially to ±1. Taking into account (6.3) and (3.1) we obtain a set of
N equations for the µi, i = 0, ..N − 1.

Zero order term in λ

DV0m0 ≡
1
λ
V0m

′ = ∆µ0 for ξ ∈ Ω , (6.6)

First order term in λ

[DV1m0 +DV0m1] = ∆µ1 for ξ ∈ Ω (6.7)

n-th order term in λ (n ≤ N − 1)[
n∑

i=0

DVimn−i

]
= ∆µn for ξ ∈ Ω . (6.8)

Remainder term
The remainder term, see (6.4) and (6.5) is given by

R1(ξ, t, λ) = RN (ξ, t) + E(ξ, t, λ) (6.9)

It can be easily estimated

sup
(ξ,t)∈Ω×[0,T ]

|R1(ξ, t)| ≤ C(T )λN−1 . (6.10)

Further, one gains an extra power of λ when integrating R1, since the terms of order
λN−1 have support in N (λ0),

sup
t∈[0,T ]

∫
Ω

|R1(ξ, t)|dξ ≤ C(T )λN . (6.11)

Next we show existence and uniqueness (up to constant) of the solutions of the
equations obtained at different order. In Lemma 6.1 and in Lemma 6.2 we consider
respectively the first and second order equation, since for d = 2 the first order term,
does not require the extra device we need for higher order terms. These equations
were already discussed in Section 3. We repeat here to make the presentation more
systematic. Finally in Lemma 6.3 we outline the proof for solving the equation to a
generic order.
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Lemma 6.1 There exists an unique (up to constant in ξ) solution of (6.6) provided

∫
Γt

V0(η,Γt)dSη = 0 t ∈ [0, T ] . (6.12)

It is given by

µ0(ξ,Γt) =
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

)
V0(s(η), t)

)
dη + c0(t) , (6.13)

where c0(t) is a constant (in ξ) to be determined. It is a C∞(Ω) function for t ∈
[0, T ].

Proof: The solvability of (6.6) requires that for all t ∈ [0, T ]

∫
Ω

(
1
λ
m′

0

(
d(η,Γt)

λ

)
V0(s(η), t)

)
dη = 0 (6.14)

This forces to take V0 such that (6.12) holds. Now since

dη = λ(1− λzK(s))dsdz (6.15)

and m′
0 is even we have that (6.14) is satisfied.

Remark In dimension d = 2, the velocity field V0 coincides with V (0)
0 , the constant

part being zero. If we were working in three or more dimensions, the integral (6.14)
would not have vanished identically, but would have been a term of O(λ2). This
would have caused only a slight complication, and we shall explain how to deal with
such problems in Lemma 6.2 when we discuss the first order term.

Lemma 6.2 There exists a unique (up to constant in ξ) solution of (6.7) provided

V1(Γt) ≡ V
(0)
1 (Γt)+ < V1 > (Γt)

with ∫
Γt

V
(0)
1 (η,Γt)dSη = 0 ∀t ∈ [0, T ] (6.16)

and < V1 > chosen according to (6.23). It is given by

µ1(ξ, t) = µ1,0(ξ, t) + µ̃1(ξ, t) (6.17)
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where µ̃1 is given in (6.26),

µ1,0(ξ, t) =
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

)
V

(0)
1 (s(η), t)

)
dη + c1(t), (6.18)

and c1(t) is a constant (in ξ) to be determined. The solution is a C∞(Ω) function
for t ∈ (0, T ].

Proof: The solvability of (6.7) requires∫
Ω

[DV1m0 +DV0m1] dξ = 0 (6.19)

for any t ∈ [0, T ]. Here we are assuming that m1, m0 and V0 are already determined
and so we define

b1(t) =
∫

Ω

DV0m1dξ . (6.20)

Set
V1(Γt) ≡ V

(0)
1 (Γt)+ < V1 > (Γt) (6.21)

Require (6.16). Then we obtain∫
Ω

DV1m0dξ = 2|Γt| < V1 > (Γt) . (6.22)

Hence, to satisfy (6.19) we must take

< V1(Γt) >= − 1
2|Γt|

b1(t) . (6.23)

This determines < V1(Γt) >, the projection of V1(Γt) onto the constants. It still

remains to determine the orthogonal part V (0)
1 . The solution of (6.7) exists and it is

given by

µ1(ξ, t) =
∫

Ω

G(ξ, η) [DV1m0 +DV0m1] dη + c1(t) (6.24)

Because we shall use the decomposition (6.21), it is convenient to write

µ1(ξ, t) = µ1,0(ξ, t) + µ̃1(ξ, t) (6.25)

where µ1,0(ξ, t) is given in (6.18) and

µ̃1(ξ, t) =
∫

Ω

G(ξ, η)DV0m1dη+ < V1(t) >
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

))
dη (6.26)

7/november/2004; 16:27 39



Lemma 6.3 The solution of (6.8), for 2 ≤ j ≤ N − 1 exists and is unique (up to
constant in ξ) provided

Vj(Γt) ≡ V
(0)
j (Γt)+ < Vj(Γt) >,∫

Γt

V
(0)
j (s,Γt)ds = 0 ∀t ∈ [0, T ]

and < Vj(Γt) > chosen according to (6.34). It is given by

µj(ξ, t) = µj,0(ξ, t) + µ̃j(ξ, t) (6.27)

where

µj,0(ξ, t) =
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

)
V

(0)
j (s(η), t)

)
dη + cj(t) (6.28)

and µ̃j is

µ̃j(ξ, t) =
∫

Ω

G(ξ, η)

[
j−1∑
n=0

DVn
mj−n

]
dη

+ < Vj(Γt) >
∫

Ω

G(ξ, η)
(

1
λ
m′

0

(
d(η,Γt)

λ

))
dη

(6.29)

The solution µj(·, t), for t ∈ (0, T ] is a C∞(Ω) function.

Proof: The proof goes as in Lemma 6.2. The solution exists if

∫
Ω

[
j∑

n=0

DVn
mj−n

]
dξ = 0 (6.30)

for any t ∈ [0, T ]. Here, DVnmj−n for n = 0, .., j− 1 are determined and so we define

bj(t) =
∫

Ω

[
j−1∑
n=0

DVnmj−n

]
dξ . (6.31)

Requiring

Vj(Γt) ≡ V
(0)
j (Γt)+ < Vj(Γt) >
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with ∫
Γ

V
(0)
j (s,Γt)ds = 0 . (6.32)

gives ∫
Ω

DVjm0dξ = 2|Γt| < Vj(Γt) > . (6.33)

Hence to fulfill (6.30) we must take

< Vj(Γt) >= − 1
2|Γt|

bj(t) . (6.34)

This determines < Vj(Γt) >, the projection of Vj(Γt) onto the constants. It still

remains to determine the orthogonal part V (0)
j . The solution of (6.8) exists and, as

done before, is represented by (6.27).

Proof of Theorem 5.1
From Lemma 6.1, Lemma 6.2 and Lemma 6.3 we have that µ(N−1), satisfies by
construction (1.1). The remainder R1 is defined in (6.9) and estimated in (6.10))
and (6.11). The µ(N−1)(·, t) for t ∈ [0, T ] satisfies homogeneous Neumann boundary
conditions by construction. Theorem 5.1 is then proved.

7. Proof of Theorem 5.2: Derivation of the equations

In this section we begin the proof of Theorem 5.2. We write (3.2), inserting in the

left side the function µ(N−1)(·,Γ(N)
t ) determined in Theorem 5.1, see (5.5):

λµ(N−1)(ξ, t) = −λ2∆m(ξ, t) + f(m(ξ, t)) in Ω× (0, T ) (7.1)

The µ(N−1) are written in terms of the m(N), chosen according to the ansatz. Here
we prove that there exists an unique way to find the function m(N), having indeed
the property required in the ansatz and satisfying equation (7.1) in the sense of
Theorem 5.2. The existence at any order of the mj , j = 0, .., N is obtained provided
a compatibility condition is satisfied. This compatibility condition forces us to take

V
(0)
j , j = 0, 1.., (N − 1), according to (8.9), (8.25) and (8.37). In the proof of the

Theorem 5.2 we distinguish two main steps

• step 1: Determination at any order of the equations. This is carried out in this
section.

• step 2: Analysis of the equations derived in the first step. This will be done in the
next section.
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In this and in the next section Γt is kept fixed, so to simplify notations we drop t
subscript, except where it may add some clarity.

To separate the fast and slow scale of m(N) near the surface Γ, we write the Laplacian
in the system of local coordinates introduced in Subsection 2.1. The expansion in
λ of the Laplacian written in this coordinate system is reported in the appendix.
We match the right and left terms of the equations having the same power of λ,
distinguishing the case where ξ ∈ N (λ0) from the one with ξ ∈ Ω \ N (λ0). We
therefore get at any order two sets of equations, one for ξ ∈ N (λ0) and the other for
ξ ∈ Ω \N (λ0). After simple, however lengthly conputations we obtain the following.
Taking into account a formula from the appendix, namely (10.15), and denoting by ′

the derivative with respect to z, and letting an, bn, cn denote the quantities defined
in (10.16),

λ2∆m(N)(z, s) =

{
m̄′′(z) +

N∑
n=1

λn [h′′n(z, s) + an(z, s)m̄′]

}

+

{
N∑

n=2

λn
n−1∑
i=1

an−i(z, s)h′i(z, s) +
N∑

n=3

λn

[
n−2∑
i=1

bn−i(z, s)
d2

ds2
hi(z, s)

]

+
N∑

n=4

λn
n−3∑
i=1

cn−i(z, s)
d

ds
hi(z, s)

}
+ λ2∆

[
N∑

i=1

λiφi(ξ)

]
+ E1(ξ, t, λ) + λN+1A(ξ, t, λ)

(7.2)
with

sup
(ξ,t)∈Ω×[0,T ]

|A(ξ, t, λ)| ≤ C(T ), (7.3)

sup
t∈[0,T ]

∫
Ω

dξ|A(ξ, t, λ)| ≤ λC(T ), (7.4)

E1(ξ, λ) ≡ λ2∆r(
d(ξ,Γ)
λ0

)
{
m̄(

d(ξ,Γ)
λ

)−
[
1I{d(ξ,Γ)>0} − 1I{d(ξ,Γ)<0}

]}
+ 2λ2∇r · ∇

[
m̄(

d(ξ,Γ)
λ

)
] ,

and
lim
λ→0

sup
(ξ,t)∈Ω×[0,T ]

|E1(ξ, t, λ)| = 0 (7.5)

the convergence being exponentially fast due to the decay of m̄.
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Define fi such that

f(m(N)) = f(m0) + f ′(m0)

[
N∑

i=1

λimi

]
+

N∑
i=2

λifi(m0,m1, ..,mi−1)

+ λN+1BN+1(·, λ)

(7.6)

sup
ξ∈Ω,t∈[0,T ]

|BN+1(ξ, t, λ)| ≤ C (7.7)

One easily obtains the fi, for i = 2, .., N Taylor expanding up to N− order f around
m0 and collecting terms having the same power of λ. We insert (7.2) and (7.6) into
(7.1). We equate terms having the same order (when estimated with the L∞(Ω)
norm) in λ obtaining at any order two equations one for ξ ∈ Ω \ N (λ0), the other
for ξ ∈ N (λ0). The one for ξ ∈ Ω \ N (λ0), determines the φi, the slowly varying
terms, the other for ξ ∈ N (λ0) determines the hi, the rapidly decaying terms. When
deriving the equations for ξ ∈ N (λ0) terms of the type ∆φi(λz, s) appear. As was
shown for the first term in the expansion, see Subsection 3.1, the φi are C∞ functions,
since are proportional to the µi, and have the same type of singularity in λ when
differentiated in ξ. Therefore, the terms λn+1∆φn−1(λz, s) are O(λn), and we write
them in the λn order equation.

Zero order term in λ

0 = −r(d(ξ,Γ)
λ0

)m′′
0(z) + f(m0(z)) for z ∈ [−λ0

λ
,
λ0

λ
] (7.8)

f(±1) = 0 for ξ ∈ Ω \ N (λ0) (7.9)

First order term in λ:

µ0(λz, s) = − [h′′1(z, s)−K(s)m′
0(z)]

+ f ′(m0) [h1(z, s) + φ1(λz, s)] for ξ ∈ N (λ0)
(7.10)

and
µ0(ξ) = f ′(1)φ1(ξ) for ξ ∈ Ω \ N (λ0) (7.11)

Second order term in λ:

µ1(λz, s) = −
[
h′′2(z, s)−K2(s)zm′

0(z)−K(s)h′1(z, s)
]

+ f ′(m0(z)) [h2(z, s) + φ2(λz, s)]− λ∆φ1(λz, s) + f2(m0,m1)(λz, s)
(7.12)
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for ξ ∈ N (λ0).

µ1(ξ) = f ′(1)φ2(ξ) + f2(1, φ1(ξ))− λ∆φ1(ξ) for ξ ∈ Ω \ N (λ0) (7.13)

More explicitly the f2 term is given

f2(m0,m1)(λz, s) =
1
2
f ′′(m0(z))

[
h2

1(z, s) + φ2
1(λz, s) + 2φ1(λz, s)h1(z, s)

]
for ξ ∈ N (λ0), and

f2(1, φ1(ξ)) =
1
2
f ′′(1)φ2

1(ξ)

for ξ ∈ Ω \ N (λ0).

n-th order term in λ (3 ≤ n ≤ N):

µn−1(λz, s)

= −

[
h′′n(z, s) + an(z, s)m′

0(z) +
n−1∑
i=1

[an−i(z, s)h′i(z, s)] +
n−2∑
i=1

bn−i(z, s)
d2

ds2
hi(z, s)

+1I{n≥4}

n−3∑
i=1

cn−i(z, s)
d

ds
hi(z, s)

]
− λ∆φn−1(λz, s) + f ′(m0) [hn(z, s) + φn(λz, s)]

+ fn(m0,m1,m2, ..,mn−1)(λz, s) ξ ∈ N (λ0)
(7.14)

µn−1(ξ) = −λ∆φn−1(ξ) + f ′(1)φn(ξ) + fn(±1, φ1, φ2, .., φn−1)(ξ) ξ ∈ Ω \N (λ0)
(7.15)

The Remainder:

The remainder term is given by

λR̃2(ξ, t, λ) = λN+1A(ξ, t, λ) + λN+2∆φN (ξ, t) + E1(ξ, t, λ) + λN+1BN+1(ξ, t, λ). (7.16)

¿From (7.3), (7.5), (7.7), we have

sup
(ξ,t)∈Ω×[0,T ]

|R̃2(ξ, t, λ)| ≤ CλN . (7.17)
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8. Proof of Theorem 5.2: Analysis of compatibility conditions

In this section we analyze the equations obtained in Section 7. As in Section 3, the
strategy is to find at each order in λ, first, the slowly varying part, the φi, solving the

equations for ξ ∈ Ω\N (λ0,Γ
(N)
t ). Then we extend φi globally in Ω and determine the

rapidly decaying part hi solving the equations in ξ ∈ N (λ0
2 ,Γ

(N)
t ). However here, in

order to continue to arbitrary order, it is convenient to modify the way we extract the
compatibility condition required to solve the equation for the hi. The modification
is to add and subtract to each order a term of lower order λi+1αi(s,Γ)m̄′(z), with
αi(·,Γ) ∈ C∞(Γ). Adding and subtracting terms does not change, of course, the total
quantity but it modifies the equation we obtain at each single order. We obtain at
any i ≥ 1 order in λ the corresponding mi split in one part, the function φi defined
globally in Ω, satisfying Neumann condition on the boundary of Ω, the other part,

the hi, is different from zero only in a tubular neighborhood of Γ, N (λ0
2 ,Γ

(N)
t ) and

it is exponentially decaying to 0 far from Γ. The 0 order term is different, in the
sense that m0 far from the interfaces relaxes exponentially fast to ±1. We first state
the following Lemma, taken from[1]. We use this to determine the condition for
solvability of equations of the type (8.1), where L is the operator on L2(IR) defined
in (3.24).

Lemma 8.1 [ABC] Let A(z, s, t), z ∈ IR, s ∈ Γ, t ∈ [0, T ]. Assume that there
exists A±(s, t) such that for A(z, s, t) − A±(s, t) = O(e−α|z|) as |z| → ∞ for s ∈ Γ
and t ∈ [0, T ]. Then for each s ∈ Γ and t ∈ [0, T ]

(Lw)(z, s, t) = A(z, s, t) for z ∈ IR

w(0, s, t) = 0, w(·, s, t) ∈ L∞(IR)
(8.1)

has a solution if and only if∫
IR

A(z, s, t)m̄′(z)dz = 0 for all s ∈ Γ, t ∈ [0, T ] (8.2)

In addition if the solution exists, then it is unique and satisfies

D`
z

[
w(z, s, t) +

A±(s, t)
f ′(1)

]
= O(e−α|z|) as |z| → ∞ and ` = 0, 1, 2 (8.3)

Furthermore if A(z, s, t) satisfies

Dm
s D

n
t D

`
z

[
A(z, s, t)−A±(s, t)

]
= O(e−α|z|)

then

Dm
s D

n
t D

`
z

[
w(z, s, t) +

A±(s, t)
f ′(1)

]
= O(e−α|z|)
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for all m = 0, 1...M , n = 0, 1...N , and ` = 0, 1...L+2. Further, since L is a preserving
parity operator, the solution w(z, s, t) is odd (even) with respect to z if A(z, s, t) is
odd (even) with respect to z for s ∈ Γ and t ∈ [0, T ].

Remark: In case A(·, ·, ·) ∈ C∞ (IR× Γ× [0, T ]), the solution w(·, ·, ·) of (8.1) is
C∞ (IR× Γ× [0, T ]). Whenever we apply Lemma 8.1, the right hand side of (8.7)
will be C∞ (IR× Γ× [0, T ]), then the solutions will be in C∞ (IR× Γ× [0, T ]).

The compatibility conditions must hold for every Γ in M and so in our derivation
we do must refer to Γt.

Zero order term in λ:

For ξ ∈ N (λ0
2 ) we have from (7.8)

0 = −m̄′′(z) + f(m̄(z)) for z ∈ [−λ0

2λ
,
λ0

2λ
] (8.4)

and from (7.9)
0 = f(±1) for ξ ∈ Ω \ N (λ0) (8.5)

The (8.4) and (3.8) are satisfied by m̄, see (3.7) and (3.8).

First order term in λ:

As explained at the beginning of this section, it is convenient for solving (7.10) to add
a term λα1(s,Γ)m̄′(z) , s ∈ Γ and z ∈ IR, with α1(·,Γ) to be determined. This term
will be subtracted to the second order. In the following we will short notation, writing
α1(s) ≡ α1(s,Γ). Recalling the definition of L, see (3.24), adding λα1(s)m̄′(z), we
write (7.10) as

µ0(λz, s)− f ′(m̄(z))φ1(λz, s)−K(s)m̄′(z) + λα1(s)m̄′(z) = (Lh1)(z, s) (8.6)

for ξ ∈ N (λ0
2 ). One has from (7.11) that

φ1(ξ) =
µ0(ξ)
f ′(1)

for ξ ∈ Ω \ N (λ0) . (8.7)

We extend this definition of φ1 globally in Ω. We then insert (8.7) into (8.6) obtaining
for s ∈ Γ,|z| ≤ λ0

2λ .

µ0(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
−K(s)m̄′(z) + λα1(s)m̄′(z) = (Lh1)(z, s) (8.8)
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Since the left hand side of (8.8) tends exponentially to 0 as z → ±∞ if the solution
of (8.8) exists, see Lemma 8.1, then decays exponentially fast to 0. We can therefore
extend (8.8) for z in all IR. We have the following result.

Lemma 8.2 Set

V
(0)
0 (ξ,Γ) = STΓ

[
K(·)− 1

|Γ|

∫
Γ

K(η)dSη

]
(ξ) ξ ∈ Γ , (8.9)

where

S =
1
4

∫
IR

(m̄′(z))2 dz =
√

2
3

(8.10)

and TΓ is the operator defined in (10.8). Then it is uniquely determined α1(·,Γ) ∈
C∞(Γ) and it exists an unique solution of (8.8), h1(·, s), s ∈ Γ, such that h1(0, s) = 0
and h1(·, s) ∈ L∞(IR). Moreover h1(·, s), for s ∈ Γ is even as function of z and its
derivatives with respect to z decay exponentially to 0 as z tends to ±∞.

Proof: For any fixed s ∈ Γ, the condition for the existence of h1, see (8.2), requires∫
IR

µ0(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz

= [K(s)− λα1(s)]
∫

IR

(m̄′(z))2 dz for s ∈ Γ

. (8.11)

Let

µ0,0(ξ) = 2
∫

Γ

V
(0)
0 (η)G(ξ, η)dSη + c0(t) ξ ∈ Ω (8.12)

since µ0,0(ξ)− µ0(ξ) ' λ, we first choose V (0)
0 imposing for s ∈ Γ∫

IR

µ0,0(0, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz = K(s)

∫
IR

(m̄′(z))2 dz . (8.13)

We obtain, since ∫
IR

f ′(m̄(z))m̄′(z)dz = f(1)− f(−1) = 0 (8.14)

2µ0,0(ξ) = K(ξ)
∫

IR

(m̄′(z))2 dz ξ ∈ Γ. (8.15)

Inserting (8.12) in (8.15) and integrating over Γ we obtain that

4
∫

Γ

dSξ

∫
Γ

V0(η)G(ξ, η)dSη + 2c0(t)|Γ| = 2π
∫

IR

(m̄′(z))2 dz . (8.16)
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Then from (8.16) we obtain

c0(t) =
1

2|Γ|

[
2π
∫

IR

(m̄′(z))2 dz − 4
∫

Γ

dSξ

∫
Γ

V
(0)
0 (η)G(ξ, η)dSη

]
. (8.17)

In this way the constant c0(t) of the single layer potential, see (8.12), is written in

terms of the velocity field V
(0)
0 still to be determined. We then insert c0(t) as in

(8.17) into (8.15) obtaining the equation determining V (0)
0 . We have

SΓV
(0)
0 (η,Γ) = S

[
K(η)− 2π

|Γ|

]
η ∈ Γ ,

where SΓ is the linear operator defined in (10.9). Applying the Dirichlet-Neumann
operator, see (10.10), we obtain

V
(0)
0 (ξ,Γ) = STΓ

[
K(·)− 2π

|Γ|

]
(ξ) ξ ∈ Γ . (8.18)

This determines V (0)
0 and then c0(t), see (8.17). Now that V (0)

0 and c0(t) are chosen,
we simply choose α1(s) so that (8.11) is satisfied. Then for any s ∈ Γ, Lemma 8.1
assures the existence of the unique solution of (8.8) with h1(0, s) = 0, exponentially
decaying to zero as |z| → ∞. Since the left hand side of (8.8) is even, the solution
h1(·, s) is even as function of z.

Note that for any t ∈ (0, T ), µ0,0(·,Γ(N)
t ), defined in (8.12) and (8.17) with V

(0)
0

given in (8.18), satisifies (1.11) and (1.12). It is the same already derived in Section
3, see (3.16). The function h1 determined in Lemma 8.2 is λ different from the one
of Section 3. In fact the equation determining h1 here, see (8.6), has terms of order
λ not taken in account in Section 3 when solving for h1.

Second order term in λ:

We proceed as before. Since (7.13) and ∆φ1 = 0 in Ω \ N (λ0) we obtain

µ1(ξ) = f ′(1)φ2(ξ) +
1
2
f ′′(1)φ2

1(ξ) ξ ∈ Ω \ N (λ0) . (8.19)

which gives, for ξ ∈ Ω \ N (λ0),

φ2(ξ) =
1

f ′(1)

[
µ1(ξ)−

1
2
f ′′(1)φ2

1(ξ)
]

(8.20)
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As done before, we extend the validity of (8.20) globally in Ω. We insert (8.20) into
(7.12). We add, subtracting to the next order, λα2(s)m̄′(z) obtaining

µ1(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
−A2(z, s) + λα2(s)m̄′(z) = (Lh2)(z, s) ξ ∈ N (

λ0

2
) (8.21)

where we set

A2(z, s) = λ∆φ1(λz, s)− f2(m̄,m1)(λz, s) +
f ′(m̄(z))
f ′(1)

f2(1, φ1)(λz, s)

−K2(s)zm̄′(z)−K(s)h′1(z, s) + α1(s)m̄′(z)

. (8.22)

All the quantities in (8.22) have been already determined. Further

lim
|z|→∞

A2(z, s) = 0 s ∈ Γ (8.23)

exponentially fast. Namely, since the exponential convergence of m̄(·) to ±1 and the
one of m̄′(·) and h′1(·, s), for s ∈ Γ, to 0 we need only to verify that

lim
|z|→∞

[
λ∆φ1(λz, s)− f2(m̄,m1)(λz, s) +

f ′(m̄(z))
f ′(1)

f2(1, φ1)
]

= 0 . (8.24)

From (8.7) and (3.15) we have that λ∆φ1(λz, s) = 1
f ′(1)V

(0)
0 (s)m̄′(z). Then as |z| →

∞, it converges exponentially fast to 0. Further since lim|z|→∞ f ′(m̄(z)) = f ′(1) =
f ′(−1) and lim|z|→∞ h1(z, s) = 0 exponentially fast, we have (8.24) and therefore
(8.23). As done before, we extend (8.21) in IR.

Lemma 8.3 Set

V
(0)
1 (ξ,Γ) = TΓ

[
1
4
B1(·)−

1
4|Γ|

∫
Γ

B1(s)ds
]

(ξ) ξ ∈ Γ (8.25)

where B1(s) is defined in (8.28) and TΓ is the Dirichlet–Neumann operator. Then
there are uniquely determined α2(·,Γ) ∈ C∞(Γ) and h2(·, s) ∈ Λ∞(IR), h2(0, s) = 0
with s ∈ Γ, solution of (8.21). Moreover h2(·, s) and its derivatives with respect to z
decay exponentially to 0, as z tends to ±∞.

Proof The solvability condition, see (8.2), is satisfied provided for s ∈ Γ and
t ∈ [0, T ]

∫
IR

µ1(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz =

∫
IR

A2(z, s)m̄′(z)dz − λα2(s)
∫

IR

(m̄′(z))2 dz

(8.26)
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where µ1 is defined in (6.25). The term µ̃1 of µ1 has been already completely de-
termined. Still to be determined are, as in the previous case, the constant c1(t), the

velocity V (0)
1 and α2(s). Write (8.26) as∫

IR

µ1,0(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz = B1(s)− λα2(s)

∫
IR

(m̄′(z))2 dz (8.27)

where

B1(s) =
∫

IR

{
A2(z, s)− µ̃1(λz, s)

[
1− f ′(m̄(z))

f ′(1)

]}
m̄′(z)dz. (8.28)

Let

µ1,0,0(ξ) = 2
∫

Γ

V
(0)
1 (η)G(ξ, η)dSη + c1(t)ξ ∈ Ω (8.29)

since µ1,0,0(ξ)− µ1,0(ξ) ' λ, we first choose V1 imposing∫
IR

µ1,0,0(0, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz = B1(s) (8.30)

We obtain

µ1,0,0(0, s) =
1
2
B1(s) s ∈ Γ (8.31)

Inserting (8.29) in (8.31) and integrating over Γ we obtain

c1(t) =
1
|Γt|

[
1
2

∫
Γt

B1(η)dSη − 2
∫

Γt

dSξ

∫
Γt

V
(0)
1 (η)G(ξ, η)dSη

]
(8.32)

Since
∫
Γ
V

(0)
1 (s)ds = 0, let SΓ be the linear operator defined in (10.9). Then (8.31)

can be written as

SΓV
(0)
1 (ξ) =

1
4
B1(ξ)−

1
4|Γ|

∫
Γ

B1(s)ds ξ ∈ Γ

and applying the Dirichket-Neumann operator, see (10.10) we obtain (8.25). This

determines the (constant in ξ) c1(t). Now that V (0)
1 and c1(t) are determined, we

choose α2(s) so that (8.27) is satisfied.

Notice that µ1,0,0 solves

∆µ1,0,0 = 0 for ξ ∈ Ω \ Γ

µ1,0,0(s) = B1(s) on Γ.
(8.33)
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n−th order term in λ, 3 ≤ n ≤ N .

As previously, we determine the function φn for ξ ∈ Ω \ N (λ0) from (7.15). Then,
we extend the validity in Ω obtaining

φn(ξ) =
1

f ′(1)
[µn−1(ξ) + λ∆φn−1(ξ)− fn(±1, φ1, φ2, .., φn−1)(ξ)] ξ ∈ Ω (8.34)

We then insert (8.34) into (7.14). We add and subtract (at the next order) the
quantity λαn(s)m̄′(z), to the left hand side of (7.14) and we obtain

µn−1(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
−An(z, s) + λαn(s)m̄′(z) = (Lhn)(z, s) (8.35)

where we set

An(z, s) = −an−1(z, s)m̄′ −
n−1∑
i=1

[an−i(z, s)h′i(z, s)]−
n−2∑
i=1

bn−i(z, s)
d2

ds2
hi(z, s)

− 1In≥4

n−3∑
i=1

[
cn−i(z, s)

d

ds
hi(z, s)

]
− λ∆φn−1(λz, s)[1−

f ′(m̄(z))
f ′(1)

]

+
f ′(m̄(z))
f ′(1)

fn(±1, φ1, φ2, .., φn−1)(λz, s)− fn(m0,m1,m2, ..,mn−1)(λz, s)

(8.36)

It is easy to verify that for all s ∈ Γ

lim
|z|→∞

An(z, s) = 0

exponentially fast. Namely there is no problem for those terms involving m̄′, hi(·, s)
and their derivatives, because of the exponential convergence to zero of all these
terms, for all s ∈ Γ. For the remaining terms recall that lim|z|→∞ f ′(m̄(z)) = f ′(±1),
mi = hi+φi with hi(z, s) → 0, as |z| → ∞ for all s ∈ Γ, all limits being exponentially
fast. Then one obtains immediately

lim
|z|→∞

[
f ′(m̄(z))
f ′(1)

fn(±1, φ1, φ2, .., φn−1)(λz, s)− fn(m0,m1,m2, ..,mn−1)(λz, s)] = 0

exponentially fast. We extend (8.35) to hold on all of IR, and regard it as an equation
for hn(·, s) for s ∈ Γ.

Lemma 8.4 For any positive integer n, n ≤ N , set

V
(0)
n−1(ξ,Γ) = TΓ

1
4

[
Bn−1(·)−

1
|Γ|

∫
Γ

Bn−1(s)
]

for ξ ∈ Γ (8.37)
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where Bn−1(s) is defined in (8.40). Then there are uniquely determined αn(·,Γ) ∈
C∞(Γ) and hn(·, s) ∈ L∞(IR) for s ∈ Γ, with hn(0, s) = 0 solutions of (8.35). More-
over hn(·, s), for all s ∈ Γ, and its derivatives with respect to z decay exponentially
to 0 as z → ±∞.

Proof: The solvability condition is satisfied provided∫
IR

µn−1(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz =

∫
IR

An(z, s)m̄′(z)dz − λαn(s)
∫

IR

(m̄′(z))2 dz.

(8.38)
Since, see (6.27), µn−1 = µn−1,0 + µ̃n−1 with µ̃n−1 already determined, to satisfy
(8.38) we require that

∫
IR

µn−1,0(λz, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz = Bn−1(s)− λαn(s)

∫
IR

(m̄′(z))2 dz (8.39)

where

Bn−1(s) =
∫

IR

{
An(z, s)− µ̃n−1(λz, s)

[
1− f ′(m̄(z))

f ′(1)

]}
m̄′(z)dz (8.40)

We set

µn−1,0,0(ξ) = 2
∫

Γ

Vn−1(η)G(ξ, η)dSη + cn−1(t) (8.41)

Since µn−1,0(ξ, t)− µn−1,0,0(ξ, t) ' λ we determine Vn−1 imposing

∫
IR

µn−1,0,0(0, s)
[
1− f ′(m̄(z))

f ′(1)

]
m̄′(z)dz = Bn−1(s) (8.42)

obtaining

µn−1,0,0(0, s) =
1
2
Bn−1(s) s ∈ Γ (8.43)

Inserting (8.41) in (8.43)and integrating over Γ we obtain

cn−1(t) =
1
|Γ|

[
1
2

∫
Γ

Bn−1(η)dSη − 2
∫

Γ

dSξ

∫
Γ

V
(0)
n−1(η)G(ξ, η)dSη

]
(8.44)

We insert (8.44) into (8.41) obtaining from (8.43)

SΓV
(0)
n−1(ξ) =

1
4

[
Bn−1(ξ)−

1
|Γ|

∫
Γ

Bn−1(s)ds
]

ξ ∈ Γ
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and then (8.37). This determines V (0)
n−1 and then cn−1(t). We then chose αn to satisfy

(8.39).

Proof of Theorem 5.2:

To complete the proof of Theorem 5.2 we need to estimate the remainder term,
given, see (7.16), by

λR2(ξ, t, λ) = λR̃2(ξ, t, λ)− λN+1αN (s(ξ), t)m̄′(
d(ξ,Γ)
λ

) (8.45)

Since (7.17) we obtain that

sup
ξ∈Ω

sup
t∈[0,T ]

|R2(ξ, t, λ)| ≤ CλN (8.46)

Theorem 5.2 is then proved.

9. Proof of Theorem 5.3

Set

m̃(N)(ξ, t) = m(N)(ξ, t)−
∫ t

0

R̄1(τ, λ)dτ (9.1)

where

R̄1(t, λ) =
1
|Ω|

∫
Ω

R1(ξ, t, λ)dξ

and R1(ξ, t, λ) is the remainder in Theorem 5.1, defined in (6.9) and estimated in
(6.10) and (6.11). Denote

µ̃(N−1)(ξ, t) = µ(N−1)(ξ, t) + v(ξ, t) (9.2)

where v(ξ, t) solves

∆v(ξ, t) = R1(ξ, t, λ)− R̄1(t, λ) for ξ ∈ Ω

∂

∂ν
v = 0 on ∂Ω

(9.3)

with the further requirement∫
Ω

v(ξ, t)dξ = 0 t ∈ [0, T ] .
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Since |R(ξ, t, λ)| ≤ C(T )λN−1 we have that |v(ξ, t)| ≤ CλN−1. The function m̃(N)

and µ̃(N−1) satisfy (5.11). Namely the first equation of (5.11) is satisfied by Theorem
5.1 and by construction, see (9.1) and (9.3). The second equation is obtained from
Theorem 5.2 adding and subtracting terms to obtain µ̃(N−1) and m̃(N). We obtain

µ̃(N−1) = µ(N−1) + v = −λ∆m̃(N) +
1
λ
f(m̃(N)) +R

where

R ≡ R(ξ, t, λ) =
1
λ

[
f

(
m̃(N) +

∫ t

0

R̄1(τ, λ)dτ
)
− f(m̃(N))

]
+R2 + v

and R2 is the remainder in Theorem 5.2, see (8.45). Since R̄1 = O(λN ), R2 = O(λN ),
v = O(λN−1) and

1
λ

[
f

(
m̃(N) +

∫ t

0

R̄1(τ, λ)dτ
)
− f(m̃(N))

]
≤ C

λ

∫ t

0

R̄1(τ, λ)dτ = O(λN−1) (9.4)

the second equation of (5.11) is satisfied as well. The (5.13) and (5.14) are satisfied
by construction of the m(N). Theorem 5.3 is then proved.

Appendix A

A.1: The Dirichlet–Neumann operator

Let G(ξ, η) be the Green function in Ω, with Neumann boundary condition on ∂Ω,
satisfying the equation

∆G(ξ, η) = δ(ξ − η)− 1
|Ω|

, (10.1)

so that ∫
Ω

G(ξ, η)dη =
∫

Ω

G(ξ, η)dξ = 0 . (10.2)

Under the compatibility condition
∫

Ω

f(ξ)dξ = 0, the unique solution of the equation

∆v(ξ) = f(ξ) for ξ ∈ Ω (10.3)

with Neumann boundary conditions in ∂Ω, and with
∫

Ω

v(ξ)dξ = 0, is given by

v(ξ) =
∫

Ω

G(ξ, η)f(η)dη . (10.4)
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All other solutions with Neumann boundary conditions differ from this one by a
constant. We will be particularly concerned with certain single layer potentials in
what follows. Given a smooth function h defined on Γ, consider the single layer
potential

φh(ξ) =
∫

Γ

G(ξ, η)h(η)dSη ,

where dSη denotes the arclength measure along Γ; this notation is standard in po-
tential theory. The function φh satisfies Neumann boundary boundary conditions on
∂Ω, and satisfies the equation

∆φh(ξ) = h(ξ)dSξ −
1
Ω

∫
Γ

h(η)dSη .

Clearly there is a discontinuity in the the normal derivatives of φh across Γ, and we
have that

h(ξ) =
[
∂

∂n
φh

]
Γ

(ξ) (10.5)

where the right hand side is the difference in the normal derivatives at ξ ∈ Γ:[
∂

∂n
φh

]
Γ

(ξ) =
(
∂φh

∂n

)
Ω+

Γ

(ξ)−
(
∂φh

∂n

)
Ω−

Γ

(ξ) .

This is a well known result from potential theory [9]. For ξ away from Γ,

∆φh(ξ) =
1
Ω

∫
Γ

h(η)dSη .

Thus the single layer potential is harmonic away from Γ if and only if
∫
Γ
h(ξ)dSξ = 0.

Otherwise, it is subharmonic or superharmonic, according to whether
∫
Γ
h(ξ)dSξ

is positive or negative. Every continuous function φ that satisfies the Neumann
boundary condition, and is harmonic away from Γ, and which satisfies∫

Ω

φ(ξ)dξ = 0 (10.6)

is the single layer potential of a uniquely determined function h defined on Γ satisfying∫
Γ

h(ξ)dSξ = 0 . (10.7)

Indeed, if φh is such a single layer potential, then from (10.2),
∫
Ω
φh(ξ)dξ = 0.

7/november/2004; 16:27 55



On the other hand, let φ be any continuous function that is harmonic on Ω−Γ and
Ω+

Γ , and which satisfies (10.6). Define h in Γ by

h(ξ) =
[
∂

∂n
φ

]
Γ

(ξ) ;

we refer to this as the Neumann data for φ. By the divergence theorem,∫
Γ

h(ξ)dSξ =
∫

Γ

∇φ · ndSξ +
∫

Γ

∇φ · (−n)dSξ =
∫

Ω−
Γ

∆φdξ +
∫

Ω+
Γ

∆φdξ = 0 .

Hence, h satisfies (10.7).
Notice that φ− φh satisfies Neumann boundary conditions and[

∂

∂n
(φ− φh)

]
Γ

(ξ) = 0 .

This means that φ − φh is a constant. Since the integral is zero, it is zero, and so
φ = φh.

This proves the one to one correspondence between single layer potentials of func-
tions h satisfying (10.7), and continuous functions φ that are harmonic on Ω−Γ and
Ω+

Γ , and which satisfy (10.6).
Next, given a continuous function φ that is harmonic on on Ω−Γ and Ω+

Γ , whether
or not (10.6) is satisfied, define the function g on Γ by g = φ|Γ. We naturally refer
to g as the Dirichlet data for φ.

The Neumann data is
[
∂

∂n
φ

]
Γ

. The Dirichlet–Neuman operator TΓ defined by

TΓg =
[
∂

∂n
φ

]
Γ

(10.8).

where φ is the continuous function that is Harmonic in Ω−Γ and Ω+
Γ , and with φ|Γ = g.

A simple argument shows that TΓ is a positive Hermitian operator. Indeed, let ψ
be continuous on Ω, and harmonic on Ω−Γ and Ω+

Γ , and with ψ|Γ = h. Then

∫
Γ

hTΓgds =
∫

Γ

ψ

[
∂

∂n
φ

]
Γ

ds

=
∫

Ω+
Γ

∇ · (ψ(∇φ))dξ +
∫

Ω−
Γ

∇ · (ψ(∇φ))dξ

=
∫

Ω

∇ψ · ∇φdξ .
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Taking h = 1, so that ψ = 1, we further see that the range of TΓ is orthogonal to
the constants. We let TΓ denote the Friedrichs extension of TΓ. It is easy to see, and
well known, that the form domain of TΓ is the Sobolev space H1/2(Γ), and that the
kernel consists exactly of the constants. There is an explicit formula for the inverse
of TΓ restricted to the orthogonal complement of the constants; we denote this by
SΓ. Indeed, let v be any function on Γ with

∫
Γ
v(s)ds = 0. Since the single layer

potential φv for v has Neumann data v, all we need to do is to subtract a constant
to make this function orthogonal to the constants on Γ, instead of being orthogonal
to the constant on Ω. Therefore, the inverse SΓ is given by

SΓv(ξ) =
∫

Γ

G(ξ, η)v(η)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)v(η)dSηdSξ ξ ∈ Γ . (10.9)

It is easily checked that this is self adjoint on the orthogonal complement of the
constants. Now let h be an arbitrary smooth function on Γ satisfying

∫
Γ
h(s)ds = 0.

Consider the single layer potential

φ(ξ) =
∫

Γ

G(ξ, η)h(η)dSη ξ ∈ Ω .

In general, the Dirichlet data for φ does not integrate to zero on Γ, and hence is
not directly related to the Neumann data through the Dirichlet–Neumann operator.
However, we can correct for this by subtracting a constant: Form the function

φ̃(ξ) = φ(ξ)− 1
|Γ|

∫
Γ

φ(η)dSη .

Then clearly

φ̃|Γ = SΓh

h = TΓφ̃
. (10.10)

We can now express the vector field V driving the Mullins–Sekerka flow as

V = TΓ

(
K − 1

|Γ|

∫
Γ

K(s)ds
)
. (10.11)

We close by establishing notation for the two harmonic extension operators that will
arise throughout what follows: The Neumann harmonic extension operator EΓ,N is
defined by

(EΓ,Nv) (ξ) =
∫

Γ

G(ξ, η)v(η)dSη −
1
|Γ|

∫
Γ

∫
Γ

G(ξ, η)v(η)dSηdSξ ξ ∈ Ω , (10.12)
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where v is a function on Γ satisfying∫
Γ

v(ξ)dSξ = 0 .

Notice that (EΓ,Nv) (ξ) is the unique function that is continuous on Ω, harmonic on
Ω\Γ satisfying Neumann boundary conditions on ∂Ω, with Neuman data v on Λ, and
with zero integral over Γ.

The Dirichlet harmonic extension operator EΓ,D is defined by setting EΓ,Dg(ξ) to
be the harmonic function φ on Ω\Γ with Neumann boundary conditions on ∂Γ, and
with φ|Γ = g. Here, there is no restriction on the integral of g over Γ.

Naturally, the Dirichlet extension can be expressed in terms of the Neumann ex-
tension and the Dirichlet–Neumann operator. We have from (10.9) and (10.12) that

EΓ,Dg(ξ) = EΓ,N

(
TΓ

(
g − 1

|Γ|

∫
Γ

g(η)dSη

))
(ξ) +

1
|Γ|

∫
Γ

g(η)dSη ξ ∈ Ω . (10.13)

A.2: The expansion in λ of the Laplacian in local coordinates.

Le f(z, s), z = d
λ , be a C2 function from IR× Γ to IR. Then, in dimension d = 2,

we have that

λ2∆f(z, s) =
1

1−K(s)λz

{
((1−K(s)λz)fz)z + λ2

(
fs

1−K(s)λz

)
s

}

= fzz − λK(s)fz
1

1−K(s)λz
+ λ2 fss

(1−K(s)λz)2
+ λ3fs

d
dsK(s)z

(1−K(s)λz)3

(10.14)

Recalling that, for |x| < 1

1
(1− x)

=
∞∑

n=0

xn;
1

(1− x)2
=

∞∑
n=0

nxn−1;
1

(1− x)3
=

1
2

∞∑
n=0

n(n− 1)xn−2

we rewrite (10.14) as the following

λ2∆f = fzz +
∞∑

n=0

λn+1 {an+1(z, s)fz + bn+1(z, s)fss + cn+1(z, s)fs} (10.15)

where
an+1(z, s) = −Kn+1(s)zn ,

bn+1(z, s) = nKn−1(s)zn−1 ,

cn+1(z, s) =
1
2
n(n− 1)zn−1Kn−2(s)

d

ds
K(s) .

(10.16)
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