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Abstract. We add a random bulk term, modelling the interaction with the impurities of the medium,

to a standard functional in the gradient theory of phase transitions consisting of a gradient term with
a double well potential. We show that in d ≤ 2 there exists, for almost all the realizations of the

random bulk term, a unique random macroscopic minimizer. This result is in sharp contrast to the

case when the random bulk term is absent. In the latter case there are two minimizers which are (in
law) invariant under translations in space.

1. Introduction

Models where a stochastic contribution is added to the energy of the system naturally arise in
condensed matter physics where the presence of the impurities causes the microscopic structure to vary
from point to point.

We are interested in functionals which - without random perturbation- model the free energy of a
material with two (or several) phases on a so called mesoscopic scale, i.e a scale which is much larger
than the atomistic scale so that the adequate description of the state of the material is by a continuous
scalar order parameter m : D ⊆ Rd → R. The minimizers of these functionals are functions m∗

representing the states or phases of the materials.
The natural question that we pose is the following: What happens to these minimizers when an

external, even very weak, random force is added to the deterministic functional? Are there still the
same number of minimizers, i.e will the material always have the same number of states (or phases)?
Is there some significant difference in the qualitative properties of the material when the randomness
is added? These are standard questions in a calculus of variations framework. However, standard
techniques applicable for deterministic calculus of variation problems might not give a satisfactory
answer when randomness is involved. In the case under consideration in this paper one needs to deal
with a family of nonlinear functionals which are not convex and not bounded uniformly from below.
So one needs to find, depending on the functionals, a way to answer these questions. It turns out that
methods used in statistical mechanics, suitably modified, might give an answer to these problems in
certain cases. In the last years there has been a quite intensive flux in both directions to built a bridge
between techniques and methods used in analysis and calculus of variations and those used in statistical
mechanics, see for a surveys on these issues [19]. This paper is in this context.

The analysis of the asymptotic behaviour of random functionals has received considerable attention
within a homogenization framework, we mention for example the work by G. Dal Maso and L. Modica,
[10],[11]. The techniques there are based on Γ-convergence from the analysis side and the sub-additive
ergodic theorem from the probabilistic side.

More recently, A. Braides and A. Piatnitski, [6], studied a random optimization problem motivated
by problems in mechanics, which requires techniques from percolation theory.
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Problems from solid mechanics lead naturally to the mathematical analysis of the asymptotic be-
haviour of random functionals, see e.g. [3], [4], [5].

The limit under consideration here, which requires techniques from statistical mechanics, is different
from the problems mentioned previously due to two averaging effects taking places simultaneously: The
singular limit of a functional with several ground states (minimizers), and the averaging over a random
perturbation. The functional we will study here consists of three competing parts: An ”interaction
term” penalizing spatial changes in m, a double-well potential W (m), i.e. a nonconvex function which
has exactly two minimizers, for simplicity +1 and −1, modelling a two-phase material, and a term which
couples m to a random field θg(·, ω) with mean zero, variance θ2 and unit correlation length; i.e a term
which prefers at each point in space one of the two minimizers of W (·) and breaks the translational
invariance, but is ”neutral” in the mean. A standard choice with the aforementioned properties is

Ĝ(m,ω) :=

∫
D

(
|∇m(y)|2 +W (m(y))− θg(y, ω)m(y)

)
dy.

We are, however, interested in a so-called macroscopic scale, which is coarser than the mesoscopic
scale. Therefore we rescale space with a small parameter ε. If Λ = εD and u(x) = m(ε−1x), we obtain

Ĝ(m,ω) = ε1−dGε(u, ω), where

Gε(u, ω,Λ) :=

∫
Λ

(
ε|∇u(x)|2 +

1

ε
W (m(x))− θ

ε
gε(x, ω)m(x)

)
dx (1.1)

where gε has now correlation length ε. We are interested in determining the minimizers of this functional,
the asymptotic behavior (as ε→ 0) of them and their qualitative properties.

Due to the non-convexity of the double-well potential, the Euler-Lagrange equation does not have
an unique solution.

The g-dependent bulk term, can, because of the scaling with ε−1, force a sequence uε to “follow”
the oscillations of g. This always happens in the form of bounded oscillations around the two wells of
the double well potential. In such a situation there are still two distinct minimizers. But in principle
the g-dependent term could be strong enough to enforce large oscillations, so that the minimizers will
“change well.” In the periodic case it is possible to check on a deterministic volume with a diameter of
the order of the period whether the minimizer “changes well,” i.e. creates a “bubble” of the other phase.
The random case is quite different, because there is no deterministic subset of Λ such that the integral
of the random field over this subset equals zero for almost all realizations of the random field - there
are always fluctuations around the zero mean. A set A becomes the support of a bubble of the other
phase if the cost of switching to the other well, which can be estimated by the Modica-Mortola result,
see [17] and [18], as proportional to the boundary of A, is smaller than the integral of the random
field part over A. As the correlation length is ε, a set A ⊆ Λ contains roughly |A|ε−d independent
random variables, where | · | denotes the d− dimensional Lebesgue measure of a set. By the central limit

theorem, fluctuations of order θ
√
|A|εd/2 are highly likely, but the probability of larger fluctuations

vanishes exponentially fast. Therefore, using the isoperimetric inequality, the probability of A being
the support of a bubble is exponentially small if

cd|A|(d−1)/d � |A|1/2ε(d−2)/2θ, (1.2)

where cd is the isoperimetric constant. In d ≥ 3 this is asymptotically always the case for sets of diameter
of order larger ε, or for sets of any size, provided θ → 0. Dimension d = 2 and θ small is a critical
case. In d ≥ 3, although (4.2) holds for one single bubble to determine the properties of the minimizers
one needs to ask if there exist “bubbles” of the other phase. These kind of problems were discussed by
the physics community in the 1980’s for the random-field Ising model. The question was to determine
the dimension at which the Random Field Ising model would show spontaneous magnetization at low
temperature and weak disorder. This is closely related to the question whether there are at least two
distinct minimizers, one predominantly + and one predominantly − for functional (1.1).
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This program has been successfully carried out in a previous paper by Dirr and Orlandi, [12], in
d ≥ 3 and θ ' 1

| log ε| . They show that, P- a.s with respect to the random field, for any ε > 0 there

were still two minimizers, which, unlike in the case θ = 0, were not constant functions u(x) ≡ 1 and
u(x) ≡ −1, but functions varying in x and ω and the minimal energy was strictly negative. Further using
Γ−convergence technique they determined the cost of forming a bubble of one phase in the other one.
These results were obtained under the strong assumption that θ ' 1

| log ε| . We expect by analogy with

the Ising models with random field, that for θ small but fixed, in d ≥ 3 there are still two minimizers
but they do not stay in one single well. But so far there are no results in this case.

Here we address the case when d ≤ 2, the strength of the random field θ is fixed. We show that when
d = 1, 2 there exists for almost all the realizations of the random field an unique macroscopic minimizer
u∗(·, ω) so that denoting Q(0) the unit cube centered at the origin and Q(z) = z +Q(0), the unit cube
centered in z ∈ Zd,

E

[∫
Q(z)

u∗(x, ·)dx

]
= 0, ∀z ∈ Zd, d ≤ 2.

Note that for θ = 0 and for sufficiently small periodic forcing there exist two minimizers (see e.g[9]), so
the uniqueness of the minimizer is due to the random nature of the perturbation.

The proof of this is based on the following steps. We prove first that there exists two macroscopic
extremal minimizers v±(·, ω) so that any other macroscopic minimizer satisfies v−(·, ω) ≤ u∗(·, ω) ≤
v+(·, ω). By a standard argument then we show that for any Λ ⊂ Rd and for a positive constant C[

G1(v+, ω,Λ)−G1(v−, ω,Λ)
]
≤ C|Λ|

d−1
d , ∀ω ∈ Ω. (1.3)

Then we show that
Fn(ω) := E

[
G1(v+, ω,Λn)−G1(v−, ω,Λn)|BΛn

]
has significant fluctuations, with variance of the order of the volume. Namely we show that

E [Fn(·)] = 0,

and

lim inf
n→∞

E
[
e
t Fn√

Λn

]
≥ e t2D2

2 . (1.4)

This holds in all dimensions. But in d ≤ 2 this generates a contradiction with the bound (1.3), unless
D2 = 0. When D2 = 0 we show that M = E[

∫
Q(0)

v+] − E[
∫
Q(0)

v−] = 0. Further, we show that

E[
∫
Q(0)

v+] ≥ E[
∫
Q(0)

v−], therefore E[
∫
Q(0)

v+] = E[
∫
Q(0)

v−] = 0. The probabilistic argument has been

already applied by Aizenman and Wehr, [1], in the context of Ising spin systems with random external
field, see also the book by Bovier, [2], for a survey on this subject.

2. Notations and Results

2.1. The functional. The “macroscopic” space is given by Λ := [− 1
2 ,

1
2 ]d, the d− dimensional unit cube

centered at the origin. The ratio between the macroscopic and the “mesoscopic” scale is given by the
small parameter ε. The disorder or random field is constructed with the help of a family {g(z, ω)}z∈Zd ,
ω ∈ Ω of independent, identically distributed random variables which are absolutely continuous with
respect to the Lebesgue measure. The law of this family of random variables will be denoted by P and
by E[·] the mean with respect to P. We assume that

− 1 ≤ g(z, ω) ≤ 1, ∀ω ∈ Ω, E[g(z)] = 0, E[g2(z)] = 1, ∀z ∈ Zd. (2.1)

We denote by ‖g‖∞ = supz |g(z, ω)|. By assumption ‖g‖∞ = 1, but to trace the dependence on it we
write the explicitly dependence. The boundedness assumption is not essential. Different choices of g
could be handled by minor modifications provided g is still a random field with finite correlation length,
invariant under (integer) translations and such that g(z, ·) has a symmetric distribution, absolutely
continuous w.r.t the Lebesgue measure and E[g(z)2+η] < ∞, z ∈ Zd for η > 0. The method does
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not apply when g has atoms. In Ising spin systems, the uniqueness of the minimizer may fail if the
distribution of g has atoms, see [1].

We denote by B the product σ−algebra and by BΛ, Λ ⊂ Zd, the σ− algebra generated by {g(z, ω) :
z ∈ Λ}. In the following we often identify the random field {g(z, ·) : z ∈ Zd} with the coordinate maps
{g(z, ω) = ω(z) : z ∈ Zd}. To use ergodicity properties of the random field it is convenient to equip the
probability space (Ω,B,P) with some extra structure. First, we define the action T of the translation
group Zd on Ω. We will assume that P is invariant under this action and that the dynamical system
(Ω,B,P, T ) is stationary and ergodic. In our model the action of T is for y ∈ Zd

(g(z1, [Tyω]), ..., g(zn, [Tyω])) = (g(z1 + y, ω), ..., g(zn + y, ω)). (2.2)

The disorder or random field in the functional will be obtained by a rescaling of g such that the
correlation length is order ε and the amplitude grows as ε→ 0. To this end define for x ∈ Λ a function
gε(·, ω) ∈ L∞(Λ) by

gε(x, ω) :=
∑
z∈Zd

g(z, ω)1Iε(z+[− 1
2 ,

1
2 ]d)∩Λ(x), (2.3)

where for any Borel-measurable set A

1IA(x) :=

{
1, if x ∈ A
0 if x 6∈ A.

The potential W is a so-called “double-well potential:”
Assumption (H1) W ∈ C2(R), W ≥ 0, W (s) = 0 iff s ∈ {−1, 1}, W (s) = W (−s) and W (s) is
strictly decreasing in [0, 1]. Moreover there exists δ0 and C0 > 0 so that

W (s) =
1

2C0
(s− 1)2 ∀s ∈ (1− δ0,∞). (2.4)

Note that W is slightly different from the standard choice W (u) = (1 − u2)2. Our choice simplifies
some proofs because it makes the Euler-Lagrange equation linear provided solutions stay in one “well.”
These assumptions could be relaxed. For u ∈ H1(Λ) and any open set A ⊆ Λ consider the following
random functional

Gε(u, ω,A) :=

∫
A

(
ε|∇u(x)|2 +

1

ε
W (u(x))

)
dx− 1

ε
θ

∫
A

gε(x, ω)u(x)dx (2.5)

where θ > 0.
Set ε = 1

n , n ∈ N, hence for any n ≥ 1 the mesoscopic space is defined as Λn := [−n2 ,
n
2 ]d. Consider

v ∈ H1(Λn) and denote in mesoscopic coordinates

G1(v, ω,Λn) :=

∫
Λn

(
|∇v(x)|2 +W (v(x))

)
dx− θ

∫
Λn

g1(x, ω)v(x)dx. (2.6)

The relation between (2.5) and (2.6) is

Gn(u, ω,Λ) = n−(d−1)G1(v, ω,Λn), (2.7)

where v(x) = u( 1
nx) for x ∈ Λn.

For n > 1 fixed and ω ∈ Ω it follows in the same way as in the case without random perturbation
that the functional G1(·, ω) is coercive and weakly lower semicontinuous in H1(Λn), so there exists at
least one minimizer, see [13], which is a random function in H1(Λn), i.e. different realizations of ω will
give different minimizers.

Definition 2.1. Translational covariant states We say that the function v : Rd × Ω → R is
translational covariant if

v(x+ y, ω) = v(x, [T−yω]) ∀y ∈ Zd, x ∈ Rd. (2.8)
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2.2. Minimizers. Our main result is the following.

Theorem 2.2. Take d ≤ 2, θ strictly positive and u∗n(·, ω) ∈ argminw∈H1(Λn)G1(w,ω,Λn). Then, P
a.s. there exists an unique u∗(·, ω) defined as

lim
n→∞

u∗n(x, ω) = u∗(·, ω)

so that

• u∗(·, ω) is translation covariant, see (2.8),
• Lipschitz continuous in Rd,
• |u∗(·, ω)| ≤ 1 + C0θ‖g1‖∞ where C0 is the constant in (2.4).
•

limn−dG1(u∗n(·, ω), ω,Λn) = limn−d
(

inf
H1(Λn)

G1(·, ω,Λn)

)
= e (2.9)

where e is a deterministic value given in (4.13).
•

E

[∫
z+[− 1

2 ,
1
2 ]d

u∗(x, ω)dx

]
= 0, ∀z ∈ Zd.

Remark 2.3. When θ = 0 in (2.6), i.e the random field is absent, the minimum value is zero and there
are two minimizers, the constant functions identical equal to 1 or to −1.

Remark 2.4. In the case analyzed in [12], d ≥ 3, θ ' θ̃
logn , θ̃ ∈ (0, 1), there exists two minimizers

u±(·, ω) = ±1 + v∗(·, ω), E[v∗(x, ·)] = 0, sup
x
|v∗(x, ω)| ≤ C0θ̃‖g‖∞.

3. Finite volume Minimizers

In this section we state properties for minimizers of the following problem

min
w∈H1(Λn)

G1(w,ω,Λn).

These properties hold in all dimension d and for any ω ∈ Ω. The volume Λn is kept fixed in all the
section. Thus to short notation we denote Λ := Λn, state the results for any d and ω plays the role of
a parameter. We first show that to determine the minimizers of the functional G1, it is sufficient to
consider functions in H1(Λ) which satisfy a uniform L∞-bound:

Lemma 3.1. Assume (H1). For all ω ∈ Ω, for all v ∈ H1(Λ) and all t > 1 + C0θ‖g‖∞,

G1(t ∧ (v ∨ (−t)), ω,Λ)−G1(v, ω,Λ) ≥
∫

Λt

(
C−1

0 (t− 1)− θ‖g‖∞
)

(|v(y)| − t), (3.1)

where C0 is the constant in (2.4) and Λt = {y ∈ Λ : |v(y)| > t}. In particular G1(t ∧ v ∨ (−t), ω,Λ) <
G1(v, ω,Λ) unless Λt = ∅.
Proof.

G1(v, ω,Λ)−G1(t ∧ v ∨ (−t), ω,Λ) ≥
∫

Λt

(W (v(y))−W (t)) dy − θ
∫

Λt

dyg1(y, ω)[v(y)− sign(v(y))t],

and from (H1) and the L∞-bound on g we derive (3.1). �

This L∞ bound on the global minimizer implies Lipschitz-regularity. Namely a minimizer of G1(·, ω)
in H1(Λ) is a weak solution of the Euler-Lagrange equation

∆v =
1

2
[W ′(v) + θg1] in Λ, ω ∈ Ω

∂v

∂n
= 0 on ∂Λ.

(3.2)
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We have the following regularity result.

Proposition 3.2. Let

L0 = C(d)[ sup
{s:s=v(r),r∈Λ}

|W ′(s)|+ θ‖g‖∞], (3.3)

where C(d) is a positive constant dimensional depending. The solution v of the Euler-Lagrange equation
3.2 satisfies

|v(r, ω)− v(r′, ω)| < L0|r − r′|, r, r′ ∈ Λ, ∀ω ∈ Ω.

Proof. By Lemma 3.1, a global minimizer v satisfies the bound |v(r, ω)| ≤ 1 + C0θ‖g‖∞ for r ∈ Λ and
ω ∈ Ω. Since |g1(·, ω)| ≤ 1 for all ω ∈ Ω, any minimizer will be a bounded solution of Poisson’s equation
with a bounded right hand side.

By the regularity theory for the Laplacian (see [14]) the solution v is Lipschitz in Λ with a Lipschitz
constant bounded by the quantity L0 defined in (3.3). �

The following lemma proves that minimizers of G1(·, ω,Λ) corresponding to ordered boundary con-
ditions on Λ are ordered as well, i.e they do not intersect. In particular if there exists more than one
minimizer corresponding to the same boundary condition they do not intersect.

Lemma 3.3. Let w1 and w2 be functions in H1(Λ) such that (in the sense of traces) w1 ≤ w2 on ∂Λ,
and

u ∈ argminw−w1∈H1
0 (Λ)G1(w,ω,Λ) and v ∈ argminw−w2∈H1

0 (Λ)G1(w,ω,Λ).

Then u = v or |u(x) − v(x)| > 0 for all x ∈ int(Λ). If w1 < w2 in an open set in ∂Λ, then u < v
everywhere in int(Λ).

Proof: The argument works for general functionals of the type

E(w) :=

∫
Λ

(
|∇w(x)|2 + f(w, x)

)
dx

where ∂wwf(w, x) is continuous on R×Λ. (Here we treat ω as parameter, i.e. it holds for any realization
of the random field.)

Note that for any H1-functions u and v

E(u ∨ v) + E(u ∧ v) = E(u) + E(v).

If u ∈ argminw−w1∈H1
0 (Λ)E(w) and v ∈ argminw−w2∈H1

0 (Λ)E(w) we have u∨v = v, u∧v = u on ∂Λ, and

by the minimization properties of u and v we get E(u∨ v) ≥ E(v), E(u∧ v) ≥ E(u). This implies that
actually E(u∨v) = E(v), E(u∧v) = E(u), so u∨v ∈ argminw−w2∈H1

0
E(u), u∧v ∈ argminw−w1∈H1

0
E(u).

Obviously the function m := u− u∧ v ≥ 0 in Λ and in particular m = 0 on ∂Λ. We have that m in our
context solves

∆m =
1

2
[f ′(u)− f ′(u ∧ v)] = V (x)m in Λ,

m = 0 on ∂Λ
(3.4)

with potential

V (x) =
1

2

f ′(u)− f ′(u ∧ v)

u− u ∧ v
which is continuous because f is twice continuously differentiable in its first argument.

Suppose there exists x0 ∈ Λ with m(x0) = 0. By Harnack’s inequality (See [14], Thm. 8.20) for
nonnegative solutions to elliptic linear equations, supBR(x0)m ≤ C infBR(x0)m for any ball such that

B4R ⊂ Λ. The constant C > 0 depends on the radius R and the coefficients in (3.4). Hence 0 ≤ m ≤
supBR(x0)m = 0, so m ≡ 0 on such a ball. It immediately follows that m ≡ 0 on int(Λ). Therefore in
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the interior of Λ either u = u ∧ v (in which case u ≤ v) or u > u ∧ v, i.e. v < u. As minimizers are
uniformly Lipschitz continuous, the latter case is only possible if u = v on ∂Λ.

Consider the first case: m̂ := v−u ≥ 0. We get, reasoning as before, ∆m̂ = V̂ (x)m̂ with a uniformly

continuous potential V̂ . Then arguing as above m̂ = 0 everywhere or m̂ > 0 everywhere. �

4. Infinite volume covariant states

Theorem 4.1. [infinite-volume states] For almost all ω ∈ Ω, there exist two functions v+(x, ω),
v−(x, ω), x ∈ Rd, having the following properties.

• v±(·, ω) is Lipschitz continuous in Rd
•

|v±(·, ω)| ≤ 1 + C0θ‖g1‖∞, (4.1)

where C0 is the constant in (2.4).
•

v+(x, ω) = −v−(x,−ω) x ∈ Rd. (4.2)

• v±(·, ω) are translation covariant
•

limn−d
∫

Λn

v±(x, ω)dx = m±, (4.3)

where m± = E
[∫

[− 1
2 ,

1
2 ]d

v±(x, ·)dx
]
, and m+ = −m− ≥ 0.

•

limn−dG1(v+, ω,Λn) = limn−dG1(v−, ω,Λn) = limn−d inf
H1(Λn)

G1(·, ω,Λn) = e (4.4)

where e is deterministic value given in (4.13).
• Let w̄n(·, ω) ∈ argminH1(Λn)G1(v, ω,Λn) then

v−(x, ω) ≤ ¯lim infn→∞wn(x, ω) ≤ lim sup
n→∞

wn(x, ω) ≤ v+(x, ω), x ∈ Rd. (4.5)

Proof. We start proving the existence. Consider the following boundary problems. For z ∈ Zd, C =
C0‖g‖∞ where C0 defined in (2.4)

inf
(v−(1+Cθ))∈H1

0 (Λn+z)
G1(v, ω, z + Λn), (4.6)

inf
(v+1+Cθ)∈H1

0 (Λn+z)
G1(v, ω, z + Λn). (4.7)

Denote by vz,+n := vz,+n (·, ω) the maximal minimizer of (4.6) and by vz,−n := vz,−n (·, ω) the minimal
minimizer of (4.7). If z = 0 we write v±n . For each n > 0 and for each ω ∈ Ω there exists at least
one minimizer of problems (4.6) and (4.7) by lower semicontinuity and coerciveness. By Lemma 3.1,
v+
m ≤ 1+Cθ on ∂Λn for m > n. Lemma 3.3 implies that for any x and ω (and n > n0(x) ) the sequence
{v+
n (x)}n is decreasing. Moreover it is bounded from below by −1− Cθ. Hence, reasoning in a similar

manner for v−n ,

v±(x, ω) := lim
n
v±n (x, ω)

exists and is measurable as function of ω. As the v±n are bounded and minimizers, they are uniformly
bounded and uniformly Lipschitz on each fixed cube A which does not depend on n, see Proposition
3.2. This implies that subsequences converge locally uniformly to a Lipschitz function. As the entire
sequence converges pointwise, the limit of any subsequence must coincide with v±, which is therefore
Lipschitz. The same argument for general z yields monotone limits vz,±.
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To show (4.2) we note that

inf
(v−(1+Cθ))∈H1(Λn)

G1(v, ω,Λn) = inf
(v−(1+Cθ))∈H1(Λn)

G1(−v,−ω,Λn) = inf
(w+(1+Cθ))∈H1(Λn)

G1(w,−ω,Λn).

(4.8)
If v̄(·, ω) ∈ argmin(v−(1+Cθ))∈H1

0
G1(v, ω,Λn) the function

−v̄(·, ω) = w̄(·,−ω) ∈ argmin(w+(1+Cθ))∈H1
0 )G1(w,−ω,Λn)

so that v̄(·, ω) = −w̄(·,−ω). Therefore if v̄(·, ω) is the maximal minimizer of inf(v−(1+Cθ))∈H1
0
G1(v, ω,Λn)

w̄(·,−ω) is the minimal minimizer of inf(w+(1+Cθ))∈H1
0
G1(w,−ω,Λn).

To show the translation covariance, notice that, by (2.2)

v0,+
n (0, ω) = vz,+n (z, T−zω).

This implies the translation covariance if we can show that v0,+(0, ω) = vz,+(z, T−zω). As the limit
does not depend on the subsequence, we know that v+ = lim v+

2n . As for n large Λn + z ⊆ Λ2n , we get

vz,+n (0) ≤ v0,+
2n (0) and vz,+(0) ≤ v0,+(0). The opposite inequality follows in the same way.

Next we want to show (4.3). We have∫
Λn

v±(x, ω)dx =
∑

z∈Λn∩Zd

∫
{z+[− 1

2 ,
1
2 ]d}

v±(x, ω)dx

=
∑

z∈Λn∩Zd

∫
[− 1

2 ,
1
2 ]d

v±(Tzx, ω)dx =
∑

z∈Λn∩Zd

∫
[− 1

2 ,
1
2 ]d

v±(x, T−zω)dx.

(4.9)

Since |v±(x, ω)| ≤ C, by the Birkhoff’s ergodic theorem, see for example [15], we have P− a.s

lim
1

nd

∫
Λn

v±(x, ω)dx = lim
1

nd

∑
z∈Λn∩Zd

∫
[− 1

2 ,
1
2 ]d

v±(x, T−zω)dx

= E

[∫
[− 1

2 ,
1
2 ]d

v±(x, ·)dx

]
= m±.

(4.10)

Next we show (4.4). By the covariance property of v±(·, ·) and the choice of the double well potential
W (W does not depend on x) we have

G1(v+(ω), ω,Λn) =
∑

z∈Λn∩Zd

G1(v+(ω), ω, z + [−1

2
,

1

2
]d) =

∑
z∈Λn∩Zd

G1(v+(T−zω), T−zω, [−
1

2
,

1

2
]d).

(4.11)
Therefore, by Birkhoff’s ergodic theorem, P− a.s

lim
1

nd
G1(v+(ω), ω,Λn) = E[G1(v+(·), ·, [−1

2
,

1

2
]d)]. (4.12)

Since

G1(v+(ω), ω,Λn) = G1(−v+(ω),−ω,Λn) = G1(v−(−ω),−ω,Λn)

we have

E[G1(v+(·), ·, [−1

2
,

1

2
]d)] = E[G1(v−(·), ·, [−1

2
,

1

2
]d)] = e. (4.13)

To show the last equality of (4.4) note that if w̄n(·, ω) ∈ argminH1(Λn)G1(·, ω,Λn) then

G1(w̄n, ω,Λn) ≤ G1(v+
n , ω,Λn). (4.14)

Moreover, let the cut-off function ψ : R→ R be nondecreasing, 1-Lipschitz and such that ψ(x) = 0 for
x < 0, Ψ(x) = 1 for x > 2. Then

ŵn := Ψ
(
dist(x,Rd \ Λn)

)
w̄n +

(
1−Ψ

(
dist(x,Rd \ Λn)

))
v+
n ,
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satisfies the boundary conditions of vn, hence

G1(ŵn, ω,Λn) ≥ G1(v+
n , ω,Λn). (4.15)

Moreover an explicit calculation using the Lipschitz bounds of the minimizers, Ψ and the double well
potential together with the bounds on the random field shows that

G1(ŵn, ω,Λn) ≤ G1(w̄n, ω,Λn) + Cnd−1, ∀ω ∈ Ω (4.16)

where C > 0 depends only on the double well potential and on the bound on the random field. (For
details see proof of Lemma 4.2.)

Taking (4.14-4.16) together, we obtain that limn
1
ndG1(w̄n, ω,Λn) = limn

1
ndG1(v+

n , ω,Λn).
It remains to show (4.5). Let x, wn be as in the statement, and n large enough so that x ∈ Λn.

Note that by Lemma 3.1, v−n (y, ω) ≤ wn(y, ω) ≤ v+
n (y, ω) for all y ∈ ∂Λn. So by Lemma 3.3 we get that

v−n (x, ω) ≤ wn(x, ω) ≤ v+
n (x, ω). (4.5) follows by taking liminf and limsup.

�

Next we bound uniformly on ω the difference between the energy of the maximal + minimizer and
the minimal − minimizer.

Lemma 4.2. Let ω ∈ Ω, u+ ∈ argminv−(1+C0θ)∈H0(Λ)G1(v, ω,Λ) and u− ∈ argminv+(1+C0θ)∈H0(Λ)G1(v, ω,Λ).

There exist a positive constant C depending on θ and C0, see (2.4) so that∣∣G1(u+, ω,Λ)−G1(u−, ω,Λ)
∣∣ ≤ C|Λ| d−1

d . (4.17)

Proof. Set

ũ(x, ω) =

{
u+(x, ω) for x ∈ Λ \ {x ∈ Λ : d(x, ∂Λ) ≤ 1}
u(x), u(x) + (1 + C0θ) ∈ H1

0 (Λ), x ∈ Λ : d(x, ∂Λ) ≤ 1,

where u is an arbitrary Lipschitz function, so that |∇u(x)| ≤ 2(1 +C0θ) chosen to match the boundary
conditions, i.e ũ(x, ω) ∈ H1

0 (Λ). We have

G1(ũ, ω,Λ) = G1(u+, ω,Λ) +

∫
{x∈Λ:d(x,∂Λ)≤1}

[(
|∇ũ(x)|2 +W (ũ(x))

)
−
(
|∇u+(x)|2 +W (u+(x))

)]
dx

+ θ

∫
{x∈Λ:d(x,∂Λ)≤1}

g1(x, ω)
[
ũ(x)− u+(x)

]
dx

≤ G1(u+, ω) + |Λ|
d−1
d [C + 4θ‖g1‖∞] ,

(4.18)

where C = C(C0, θ) is a positive constant which might change from an occurrence to the other. Obvi-
ously

G1(u−, ω,Λ) ≤ G1(ũ, ω,Λ).

Therefore

G1(u−, ω,Λ)−G1(u+, ω,Λ) ≤ |Λ|
d−1
d [C + 4θ‖g1‖∞] .

Similarly one can show that

G1(u+, ω,Λ)−G1(u−, ω,Λ) ≤ |Λ|
d−1
d [C + 4θ‖g1‖∞] .

Therefore (4.17). �

The quantity next defined plays a fundamental role.

Definition 4.3. Let v±(ω) be the infinite volume states constructed before. Denote

Fn(ω) := E
[
G1(v+(ω), ω,Λn)−G1(v−(ω), ω,Λn)|BΛn

]
. (4.19)
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Remark 4.4. By definition Fn(·) is BΛn
measurable and by the symmetry assumption on the random

field {g(z, ·), z ∈ Zd}
E [Fn(·)] = 0. (4.20)

Namely v+(x, ω) = −v−(x,−ω) for x ∈ Rd. This implies that

G1(v+(ω), ω,Λn) = G1(v−(−ω),−ω,Λn) (4.21)

and by the symmetry of the random field we get (4.20).

Next we want to quantify how much v±(ω) changes when the random field is modified only in one
site, for example at the site i. We introduce the following notation:

ω(i) : ω(i)(z) = ω(z) z 6= i, ω = (ω(i), ω(i)) i, z ∈ Zd.

The v+(·, (ω(0), ω(0))) is then the state v+ when the random field at the origin is ω(0), and v+(·, (ω(0)−
h, ω(0))) the state v+ when the random field at the origin is ω(0) − h. Same definition for the infinite
volume state v−(·, (·, ω(0))) and for the finite volume minimizers v±n (·, (·, ω(0))).

Now we are able to state the following lemma:

Lemma 4.5. For Λ ⊂ Rd, 0 ∈ Λ, h > 0 we have

θh

∫
Q1(0)

v+(ω(0), ω(0))dx ≥ G1(v+(ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)−G1(v+(ω(0), ω(0)), (ω(0), ω(0)),Λ)

≥ θh
∫
Q1(0)

v+(ω(0)− h, ω(0))dx

(4.22)

where Q1(0) := [−1/2, 1/2]d. The same inequalities hold for v−.

Proof. Let Λn be a cube centered at the origin so that Λ ⊂ Λn. Let v+
n be the maximal minimizer of

inf
(v−(1+Cθ))∈H1

0 (Λn)
G1(v, ω,Λn). (4.23)

Remark that v+
n is measurable with respect to the random field g(z, ω), z ∈ Λn ∩ Zd. We have

G1(v+
n (ω(0), ω(0)), (ω(0), ω(0)),Λ)−G1(v+

n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)

= G1(v+
n (ω(0), ω(0)), (ω(0), ω(0)),Λ)−G1(v+

n (ω(0), ω(0)), (ω(0)− h, ω(0)),Λ)

+G1(v+
n (ω(0), ω(0)), (ω(0)− h, ω(0)),Λ)−G1(v+

n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ).

(4.24)

By explicit computation, see (2.6), we have that

G1(v+
n (ω(0), ω(0)), (ω(0), ω(0)),Λ)−G1(v+

n (ω(0), ω(0)), (ω(0)−h, ω(0)),Λ) = −hθ
∫
Q1(0)

v+
n (ω(0), ω(0))dx.

The last line in (4.24) is nonnegative, because v+
n (g(0) − h, ω(0)) is a minimizer of (4.23) when the

random field is (g(0)− h, ω(0)). Therefore

G1(v+
n (ω(0)−h, ω(0)), (ω(0)−h, ω(0)),Λ)−G1(v+

n (ω(0), ω(0)), (ω(0), ω(0)),Λ) ≤ hθ
∫
Q1(0)

v+
n (ω(0), ω(0))dx.

By splitting

G1(v+
n (ω(0), ω(0)), (ω(0), ω(0)),Λ)−G1(v+

n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)

= G1(v+
n (ω(0), ω(0)), (ω(0), ω(0)),Λ)−G1(v+

n (ω(0)− h, ω(0)), (ω(0), ω(0)),Λ)

+G1(v+
n (ω(0)− h, ω(0)), (ω(0), ω(0)),Λ)−G1(v+

n (ω(0)− h, ω(0)), (ω(0)− h, ω(0)),Λ)
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we obtain in a similar way

G1(v+
n (ω(0)−h, ω(0)), (ω(0)−h, ω(0)),Λ)−G1(v+

n (ω(0), ω(0)), (ω(0), ω(0)),Λ) ≥ hθ
∫
Q1(0)

v+
n (ω(0)−h, ω(0))dx.

To pass to the limit note that the cube Q1(0) remains fixed. Denote by M the smallest integer such
that Λ ⊆ BM (0), where BM (0) is a ball centered at the origin of radius M . Let ξ(r) for r ≥ 0 be a
smooth cut-off function s.t. ξ(r) = 1 for r < M, ξ = 0 for r > 2M. Note that for n > 2diam(Λ) the
function

v̂+
n := v+

n ξ(|x|2)

satisfies

∆v̂+
n = fn(x)

with supn ‖fn‖∞ < C, C depending on diam(Λ), θ, the double well potential, the cut-off function
and ‖g‖∞ the bound on the random field. The first derivatives of v̂+

n are, away from the boundary,
Hölder continuous with any exponent α < 1 (take α = 1/2 for definiteness) and Hölder norm bounded
uniformly in n with a bound depending only on C. (See [14], Thm. 3.9. Note that this interior estimate
is applicable, because our domain is a ball containing 2Λ, so the square Λ is contained in the interior.) So
an application of Arzela Ascoli’s Theorem gives that for a subsequence v+

n and ∇v−n converge uniformly.
By Lebesgues’s Theorem on dominated convergence, we may pass to the limit under the integral and
the claim is shown.

The corresponding statement for v− are proved in the same way. �

Remark 4.6. From Lemma 4.5 we have that

ω(0) 7→
∫
Q1(0)

v+(ω(0), ω(0))dx

is nondecreasing.

Corollary 4.7. Let ω(i) be the random field in the site i which has probability distribution absolutely
continuous w.r.t the Lebesgue measure. We have that G1(v+(ω), ω,Λ) is P-a.e. differentiable w.r.t to
ω(i) and

∂G1(v±(ω), ω,Λ)

∂ω(i)
= −θ

∫
Q1(i)

v±(x, ω)dx.

Proof. It is sufficient to consider the case i = 0. By applying Lemma 4.5 for ω(0) and ω̃(0) := ω(0) + h
we see that left and right derivatives exist and are equal if s 7→

∫
Q1(0)

v+(s, ω(0))dx is continuous at

s = ω(0). By Remark 4.6 this happens for Lebesgue almost all s, hence by the assumptions on the
random field P-a.e. �

Theorem 4.8. We have that

lim
n→∞

1√
|Λn|

[Fn(·)] D= Z, (4.25)

where Z stands for a Gaussian random variable with mean 0 and variance b2 with

4θ2(1 + C0θ‖g‖∞)2 ≥ b2 ≥ E
[
(E [Fn|B(0)])

2
]

(4.26)

where B(0) is the sigma -algebra generated by g(0, ω) and C0 is given in (2.4).

Proof. We prove the theorem invoking the general result presented in the appendix. In order to do so,
we need to establish the relevant conditions. We decompose Fn as a martingale difference sequence.
We order the points in Λn ∩Zd according to the lexicographic ordering. In the following i ≤ j refers to
the lexicographic ordering. Any other ordering will be fine but it is convenient to fix one. We introduce
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the family of increasing σ− algebra Bn,i, i ∈ Λn ∩ Zd where Bn,i is the σ− algebra generated by the
random variables {g(z), z ∈ Λn ∩ Zd, z ≤ i}. We denote by

Bn,0 = (∅,Ω), Bn,i ⊂ Bn,j i ≤ j, i ∈ Λn ∩ Zd, j ∈ Λn ∩ Zd.

We split

Fn =
∑

i∈Zd∩Λn

(E[Fn|Bn,i]− E[Fn|Bn,i−1]) :=
∑

i∈Zd∩Λn

Yn,i. (4.27)

By construction E [Yn,i] = 0 for i ∈ Zd ∩ Λn, E [Yn,i|Bn,k] = 0, for all 0 ≤ k ≤ i− 1. Denote

Vn :=
1

|Λn ∩ Zd|
∑

i∈Λn∩Zd

E
[
Y 2
n,i|Bn,i−1

]
. (4.28)

In Lemma 4.9 stated and proven below we show that Vn → b2 in probability and b2 satisfies (4.26). In
Lemma 4.10 stated and proven below we show that for any a > 0

Un(a) :=
1

|Λn ∩ Zd|
∑

i∈Λn∩Zd

E[Y 2
n,i1{|Yn,i|≥a

√
|Λn∩Zd|}|Bn,i−1] (4.29)

converges to 0 in probability. We can then invoke Theorem 5.1, stated in the appendix. The correspon-
dence to the notation used in the appendix is the following. Identify |Λn ∩Zd| with n, Fn√

|Λn∩Zd|
↔ Sn,

Yn,i√
|Λn∩Zd|

↔ Xn,i and Bn,i ↔ Fn,i. Then (4.25) is obtained. �

Lemma 4.9. Let Vn be the quantity defined in (4.28). For all δ > 0

lim
n→∞

P
[
|Vn − b2| ≥ δ

]
= 0, (4.30)

where for W0 is defined in (4.33)

b2 = E
[
W 2

0

]
. (4.31)

Further

4θ2(1 + C0θ‖g‖∞)2 ≥ b2 ≥ E
[
(E [Fn|B(0)])

2
]
, (4.32)

where C0 is given in (2.4).

Proof. The proof of (4.30) is done by applying conveniently the ergodic theorem. We introduce new

sigma-algebra B≤i generated by the random fields {g(z, ω), z ∈ Zd, z ≤ i} where ≤ refers to the lexico-
graphic ordering. Define for i ∈ Λn

Wi[ω] = E
[
G1(v+(ω), ω,Λn)−G1(v−(ω), ω,Λn)|B≤i

]
−E

[
G1(v+(ω), ω,Λn)−G1(v−(ω), ω,Λn)|B≤i−1

]
.

(4.33)
Note that Wi is a random variable depending on random fields on sites smaller or equal than i under
the lexicographic order. In particular it does not depend on the choice of the cube Λn provided i ∈
Λn. To verify this statement notice that v±(ω) does not depend on Λn. Further denote for i ∈ Λn,
ω = (ω<i , ω(i), ω>i ) where ω<i = (ω(j), j < i) and ω>i = (ω(j), j > i), ω̃ = (ω<i , ω̃(i), ω>i ) and ω(s) =
(ω<i , s, ω

>
i ), s ∈ [−1, 1]. We can write Wi[ω] as

Wi[ω] =

∫
P(dω>i )P(dω̃(i))

[
G1(v+(ω), ω,Λn)−G1(v+(ω̃), ω̃,Λn)

]
−
∫

P(dω>i )P(dω̃(i))
[
G1(v−(ω), ω,Λn)−G1(v−(ω̃), ω̃,Λn)

]
.

(4.34)
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By Corollary 4.7, G1(v+(ω), ω,Λn) is a.e. differentiable w.r.t ω(i) with derivative depending only on
the random field on Q1(i). Therefore one has

G1(v+(ω), ω,Λn)−G1(v+(ω̃), ω̃,Λn) =

∫ ω(i)

ω̃(i)

∂

∂s
G1(v+(ω(s)), ω(s),Λn)ds

= −θ
∫
Q1(i)

dx

∫ ω(i)

ω̃(i)

v+(x, ω<, s, ω>)ds.

(4.35)

Similar considerations hold for the last addend of (4.34). Hence Wi does not depend on the choice of
Λn, provided Q1(i) ⊂ Λn, 1 . Note that from the translation covariant properties of v± we have

Wi[ω] = W0[T−iω].

By construction, see (4.27), for any i provided n large enough so that i ∈ Λn, we have

Yn,i = E [Wi|BΛn
] . (4.36)

Further by Corollary 4.7

|W0(ω)| ≤ 2θ(1 + C0θ‖g‖∞), ω ∈ Ω (4.37)

where C0 is given in (2.4). Applying the ergodic theorem we have that in probability

lim
n→∞

1

|Λn ∩ Zd|
∑

i∈Λn∩Zd

E
[
W 2
i |B
≤
i−1

]
= E

[
W 2

0

]
. (4.38)

Set E
[
W 2

0

]
= b2. Recalling the definition of Vn given in (4.28) the proof of (4.30) is completed if we

show the following. For any δ > 0

lim
n→∞

P
[
|E
[
Y 2
n,i|Bn,i−1

]
− E

[
W 2
i ||B

≤
i−1

]
| ≥ δ

]
= 0. (4.39)

We show (4.39) applying Chebyshev’s inequality. We split{
E
[
Y 2
n,i|Bn,i−1

]
− E

[
W 2
i |B
≤
i−1

]}
= E

[
Y 2
n,i −W 2

i |Bn,i−1

]
+ E

[
W 2
i |Bn,i−1

]
− E

[
W 2
i ||B

≤
i−1

]
.

(4.40)

Denote fi = E
[
W 2
i |B
≤
i−1

]
, Rn = Rn(i) = dist(i, ∂Λn) and Bi+[−Rn,Rn]d the σ− algebra generated by

the random fields in the box [−Rn, Rn]d centered in i. We have

E
[(

E
[
W 2
i |Bn,i−1

]
− E

[
W 2
i ||B

≤
i−1

])2
]
≤ E

[(
f0 − E[f0|B[−Rn,Rn]d ]

)2]
:= b1(Rn). (4.41)

When limn→∞Rn =∞, we have for any square integrable function

lim
n→∞

b1(Rn) = 0.

Further by (4.36) we have

E
[∣∣E [Y 2

n,i −W 2
i |Bn,i−1

]∣∣] ≤ E
[∣∣Y 2

n,0 −W 2
0

∣∣] ≤ (E[W 2
0 ]
) 1

2
(
E[(Yn,0 −W0)2]

) 1
2 . (4.42)

Arguing as before, see (4.41), we get

lim
n→∞

E[(Yn,0 −W0)2] = 0

1When the distribution of the random field is not absolutely continuous with respect to the Lebesgue measure we are

able to prove only that the bounds of the discrete derivative
∂G1(v+(ω),ω,Λn)

∂ω(i)
are independent of Λn. But this obviously

is not enough to show that Wi does not depend on the choice of Λn.
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proving (4.39). To get (4.32) we denote B(0) the sigma -algebra generated by g(0, ω) and by Jensen’s
inequality we obtain

E
[
W 2

0

]
= E

[
E[W 2

0 |B(0)]
]
≥ E

[
(E [W0|B(0)])

2
]
.

By simple computation, taking in account that

E
[
E
[
G1(v+, ω,Λn)−G1(v−, ω,Λn)|B≤−1

]
|B(0)

]
= 0,

we have

E [W0|B(0)]

= E
[
E
[
G1(v+(·), ·,Λn)−G1(v−(·), ω,Λn)|B≤0

]
− E

[
G1(v+, ω,Λn)−G1(v−, ω,Λn)|B≤−1

]
|B(0)

]
= E

[
E
[
G1(v+(ω), ω,Λn)−G1(v−(ω), ω,Λn)||B≤0

]
|B(0)

]
= E [Fn|B(0)] .

(4.43)

The lower bound (4.32) is proven. �

Lemma 4.10. Let Un(a) defined in (4.29). For any a > 0 for any δ > 0

lim
n→∞

P [Un(a) ≥ δ] = 0.

Proof. By Chebyshev’s inequality we have that

P [Un(a) ≥ δ] ≤ 1

δ
E[Un(a)].

Next we show E[Un(a)]→ 0 for all a > 0.

E[Un(a)] =
1

|Λn ∩ Zd|

|Λn∩Zd|∑
i=1

E
[
Y 2
n,i1{|Yn,i|≥a

√
|Λn∩Zd|}

]

≤ 1

|Λn ∩ Zd|

|Λn∩Zd|∑
i=1

(
E[Y 2q

n,i]
) 1

q

(
P
[
|Yn.i| > a

√
|Λn ∩ Zd|

]) 1
p

.

(4.44)

By Jensen inequality and definition (4.36) we have

E[Y 2q
n,i] ≤ E[W 2q

0 ],

which is a bounded quantity for all q ≥ 1 since (4.37). Applying Cheybishev inequality and arguing as
before we have

P
[
|Yn,i| > a

√
|Λn ∩ Zd|

]
≤ E[W 2

0 ]

a2|Λn ∩ Zd|
,

which for all a > 0 tends to 0 when n→∞. �

Lemma 4.11. For Λ ⊂ Rd, 0 ∈ Λ, we have

∂

∂g(0)
E [Fn|B(0)] = −θE

[∫
Q1(0)

v+(x, ω)dx|B(0)

]
+ θE

[∫
Q1(0)

v−(x, ω)dx|B(0)

]
where Q1(0) := [−1/2, 1/2]d. Further

E
[

∂

∂g(0)
E [Fn|B(0)]

]
= −2θm+.
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Proof. We first give the idea by a formal computation.

∂

∂g(0)
E [Fn|B(0)] =

∂

∂g(0)
E
[
G1(v+, ω,Λ)|B(0)

]
− ∂

∂g(0)
E
[
G1(v−, ω,Λ)|B(0)

]

= E

∂G1(v, ω,Λ)

∂g(0)
|(v+(ω), ω) +

∂G1(v, ω,Λ)

∂v(0)
|(v+(ω), ω)︸ ︷︷ ︸

=0

∂v+(0, ·)
∂g(0)

|B(0)



− E

∂G1(v, ω,Λ)

∂g(0)
|(v−(ω), ω) +

∂G1(v, ω,Λ)

∂v(0)
|(v−(0), ω)︸ ︷︷ ︸

=0

∂v−(0, ·)
∂g(0)

|B(0)


= −θE

[∫
Q1(0)

v+(x, ω)dx|B(0)

]
+ θE

[∫
Q1(0)

v−(x, ω)dx|B(0)

]

(4.45)

where the terms are zero as v± are minimizers. The last equality is obtained since

∂G1(v, ω)

∂g(0)
|(v±(ω), ω) = −θv±(x, ω).

Unfortunately, v± is not differentiable in the random field everywhere. Lipschitz-continuity in the field
would be sufficient, but this is difficult to derive from the Euler-Lagrange equation because of the lack
of convexity of the associated functional. A rigorous proof follows from 4.7 after taking conditional
expectations. Further, by Theorem 4.1, we have

E
[

∂

∂g(0)
E [Fn|B(0)]

]
= −θE

[
E

[∫
Q1(0)

v+(x, ω)dx|B(0)

]]

+ θE

[
E

[∫
Q1(0)

v−(x, ω)dx|B(0)

]]
= θ[−m+ +m−] = −2θm+.

(4.46)

�

Lemma 4.12. If

E
[
(E [Fn|B(0)])

2
]

= 0 (4.47)

then m+ = m− = 0, see for the definition (4.6).

Proof. Denote f(ω(0)) := E [−Fn|B(0)]. Set s = ω(0), (4.47) can be written as
∫
f2(s)P(ds) = 0. By

Lemma 4.11 and by bound (4.1) in Theorem 4.1 we have that (1+C0θ)θ ≥ f ′(s) ≥ 0 almost everywhere.
This implies that f(s) = 0 for P almost all point of continuity of the distribution g(0). If f(s) = 0 for
P almost all point of continuity of the distribution g, then f ′(s) = 0 for P almost all point of continuity
of the distribution g(0). But if f ′(s) = 0 then from Lemma 4.11 we get m+ = m− = 0. �

Proof of Theorem 2.2
By Lemma 4.2 there exists C = C(C0, θ) > 0 so that∣∣G1(v+, ω,Λ)−G1(v−, ω,Λ)

∣∣ ≤ C|Λ| d−1
d . (4.48)

Applying Theorem 4.8 we get the following lower bound on the Laplace transform of Fn(ω) defined in
Definition 4.3:

lim inf
n→∞

E
[
e
t Fn√

Λn

]
≥ e t2D2

2 (4.49)
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where we denote, see (4.26) by

D2 = E
[
(E [Fn|B(0)])

2
]
.

It is immediate to realize that (4.48) and (4.49) contradict each other in d ≤ 2 unless D2 = 0. On the
other hand when D2 = 0, Lemma 4.12 implies

m+ = −m− = E

[∫
[− 1

2 ,
1
2 ]d

v±(x, ·)dx

]
= 0. (4.50)

Now (4.5) implies that P -a.s. v+(x, ω) ≥ v−(x, ω) for all x ∈ R2. This and (4.50) imply that v+(x, ω) =
v−(x, ω) a.s.

For each n and for each ω ∈ Ω, by lower semicontinuity and coerciveness of the functional G1, there
exists at least one minimizer wn(·, ω) in minw∈H1(Λn)G1(w,ω,Λn). By (4.5) and the fact that v+ = v−,

the functions wn converge pointwise to a limit u∗(x, ω), and for the limit we have u∗(x, ω) = v+(x, ω) =
v−(x, ω). The properties of the minimizer stated in 2.2 therefore follow from the corresponding properties
of v±, see Theorem 4.1.

�

5. Appendix

The main tool to prove Lemma 4.8 is the following general result which we reported from [16], see
Theorem 3.2 and Corollary 3.1 of [16]] . The correspondence to the previous notation is Fn√

|Λn∩Zd|
↔ Sn,

Yn,i√
|Λn∩Zd|

↔ Xn,i and Bn,i ↔ Fn,i, see (4.19), (4.27).

Theorem 5.1. Let Sn,i, i = 1, . . . kn be a double array of zero mean martingales with respect to the
filtration Fn,i, Fn,i ⊂ Fn+1,i i = 1, . . . kn with Sn,kn = Sn, so that Sn,i = E[Sn|Fn,i]. It is assumed that
kn ↑ ∞ as n ↑ ∞. Denote

Xn,i := Sn,i − Sn,i−1,

Vn =

kn∑
i=1

E[X2
n,i|Fn,i−1],

Un,a =

kn∑
i=1

E[X2
n,i1I{|[X2

n,i|>a}|Fn,i−1].

Suppose that

• for some constant b2 and for all δ > 0, limn→∞ P[|Vn − b2| ≥ δ] = 0,
• For any a > 0 for any δ > 0

lim
n→∞

P [Un(a) ≥ δ] = 0,

(Lindeberg condition)

then in distribution

lim
n→∞

Sn
D
= Z,

where Z is a random gaussian variable with mean equal to zero and variance equal to b2.
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