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Abstract
We consider a lattice gas interacting via a Kac interaction Jγ (|x − y|) of range
γ −1, γ > 0, x, y ∈ Z

d and under the influence of an external random field
given by independent bounded random variables with a translation invariant
distribution. We study the evolution of the system through a conservative
dynamics, i.e. particles jump to nearest neighbour empty sites, with rates
satisfying a detailed balance condition with respect to the equilibrium measure.
We prove that rescaling space as γ −1 and time as γ −2, in the limit γ → 0,
for dimension d � 3, the macroscopic density profile ρ satisfies, a.s. with
respect to the random field, a nonlinear integral differential equation, with a
diffusion matrix determined by the statistical properties of the external random
field. The result holds for all values of the density, also in the presence of phase
segregation, and the equation is in the form of the flux gradient for the energy
functional.

Mathematics Subject Classification: 60K35, 82C22

1. Introduction

We consider a d-dimensional particle system interacting via a two-body Kac potential and
an external random field given by independent bounded random variables with a translation
invariant distribution, and look for its macroscopic behaviour. Problems where a stochastic
contribution is added to the energy of the system naturally arise in condensed matter physics,
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where the presence of impurities causes the microscopic structure to vary from point to point.
Some of the vast literature on these topics may be seen by consulting [BMT, OS, FGK].
Equilibrium statistical properties of spin systems with random magnetic field have been
intensively investigated (e.g. [AW, BK, FFS, I]). A review of some developments in the theory
of the Ising model in random field is given in [N].

Kac potentials Jγ are two-body interactions with range γ −1 and strength γ d , where γ

is a dimensionless scaling parameter. When γ → 0, i.e. very long range compared with
the interparticle distance, the strength of the interaction becomes very weak, but in such a
way that the total interaction between one particle and all the others is finite. Kac potentials
were introduced in [KUH], and then generalized in [LP], to present a rigorous derivation of
the van der Waals theory of a gas–liquid phase transition. Since then several papers have
appeared on the subject, and recent ones studied spin systems with Kac potential for γ small
but finite. We mention only [COP, Bo, CP, LMP]; [COP1, COPV] are devoted to random field
Kac models, in dimension d = 1. Time evolution of the macroscopic profile in particle systems
interacting via long range Kac potentials were investigated either for conservative dynamics
[LOP, GL, GLM, MM] or for non-conservative ones [DOPT] (for reviews concerning these
models, see [Be, GLP, P]).

Given β and θ positive parameters we consider the formal Hamiltonian

Hβ,α
γ (η) = −β

2

∑
x,y∈Zd

Jγ (x − y)η(x)η(y) − θ
∑
x∈Zd

α(x)η(x), (1.1)

where η = (η(x), x ∈ Z
d), η(x) ∈ {0, 1}; η(x) = 1 if there is a particle at site x and η(x) = 0

if site x is empty. The external random field α = (α(x), x ∈ Z
d) is a collection of independent

bounded random variables with translation invariant distribution.
Given the Hamiltonian (1.1), one can construct in a standard way (see [Li, Sp]), an

evolution conserving the total number of particles, the so-called Kawasaki dynamics, which can
be described as follows. Particles attempt to jump to nearest neighbour sites at rates depending
on the energy difference before and after the exchange, provided the nearest neighbour target
sites are empty; attempted jumps to occupied sites are suppressed. The rates are chosen in such
a way that the system satisfies a detailed balance condition with respect to a family of Gibbs
measures, parametrized by the so-called chemical potential λ ∈ R, for some fixed temperature
T , with β and θ fixed, and for γ finite. We are interested in the influence of the random
field and the Kac type interaction on the transport properties of such a system, in particular on
the rate of bulk diffusion. The relevant features of the system are the absence of translation
invariance, for a given disorder configuration, and the non-validity of the gradient condition.
We will come back to this point later.

Transport properties for Kawasaki dynamics with β = 0 and θ = 1 in (1.1) have been
studied by Faggionato in her thesis [F] and by Faggionato and Martinelli in [FM]. They proved
that under diffusive scaling and in dimension d � 3, the system has a hydrodynamic limit
and gave a variational formula for the bulk diffusion. The diffusion matrix turns out to be a
nonlinear function of the density, continuous in the open interval (0, 1); it is determined by
the temperature T , always assumed constant and therefore omitted in the notation, and by the
statistical properties of the external random field. Given the presence of both the random field
and the exclusion rule, to obtain a hydrodynamic limit was not at all obvious. In the absence
of the exclusion rule the rate of bulk diffusion is the result of diffusive scaling of a single
particle moving with reversible rates in the random field. If the exclusion rules are present but
the field is constant the bulk diffusion turns out to be independent of the density of particles.
However, when the random field and the exclusion rules are present, one obtains a nonlinear
dependence of the bulk diffusion on the density. The case of a periodic field in one dimension
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had been solved exactly [W], in this case the bulk diffusion is constant, it does not depend on
the density.

The same model as in [F, FM] was considered in [Q] in which results about hydrodynamic
behaviour of the model in all dimensions were announced but not proved.

The equilibrium statistical picture of systems with Hamiltonian (1.1) with both β and θ

different from zero and Jγ positive presents an interplay between the ferromagnetic properties
of the interaction and the randomness of the external field, [AW, BK]. To understand whether
some of these aspects could be detected in studying the evolution of particles, in this paper we
look for the macroscopic behaviour of such a system. It turns out that in the diffusive scaling
regime we are analysing the system (γ → 0 with space and time scaling γ −1 and γ −2), the
equilibrium statistical properties of the full model described by the Hamiltonian (1.1) are not
relevant. There, the only relevant properties are those of the local part of the Hamiltonian, i.e.
that corresponding to β = 0 in (1.1). Namely the nonlinear partial integral differential equation
we obtain for the density profile of the particle system (see (2.24)), depends only through the
diffusion matrix on the equilibrium statistical properties of the local part of the Hamiltonian
(1.1). This has already been observed in some other special cases (see [BL, GL, GLM, MM]).
A key ingredient in our analysis is that the dynamics with β �= 0 is in fact a weak perturbation
of the one with β ≡ 0. This can be seen both at the levels of rates and current (see (3.8)
and (4.6)).

We note that if we consider a hydrodynamic space scale ε−1 much larger than γ −1, say
ε = γ δ , δ > 1, then the diffusion matrix will depend on the equilibrium statistical properties of
the full Hamiltonian (1.1). Results in this direction, for a particular system, have been shown
in [R] for all choices of initial densities and for systems under only Kac type interaction, i.e.
corresponding to θ = 0 in (1.1) and in [LOP, G] for initial densities restricted to a special
region of phase diagram, the so-called spinodal region.

To be more precise, we study the Kawasaki dynamics in a torus of diameter γ −1. We
rescale space as γ −1 and time as γ −2. In the limit γ → 0 we show that in dimension d � 3,
the empirical densities converge, a.s. with respect to the random field, to the solution of a partial
integral differential equation (see section 2). The diffusion coefficient depends on the statistical
properties but not on the realizations of the random field. To establish the hydrodynamic limit
we need to prove some version of Fick’s law, namely to replace the microscopic current (i.e.
the difference between the rate at which a particle jumps from site x to site y and the rate at
which a particle jumps from y to x, x and y being nearest neighbours), by the gradient of the
density field multiplied by the diffusion coefficient. The system turns out to be of the so-called
non-gradient type. Roughly speaking, the gradient condition says that the microscopic current
is already the gradient of a function of the density field. The method developed by Varadhan
([V], see also [Q1, VY, KL]) for non-gradient systems is to replace the microscopic current
by a gradient plus a fluctuation term. However, in the presence of the random field, such a
decomposition does not hold microscopically, because the fluctuations of the gradient of the
density field arising from the random field are large. In [F, FM] this problem has been solved
by introducing a mesoscopic scale such that the gradients could be considered over sufficiently
large mesoscopic distances to reduce stochastic fluctuations by the central limit theorem.

The limit equation they obtained for the evolution of the density field is a nonlinear
second order partial differential equation with diffusion coefficient continuous with respect to
the density field. To derive the limit equation for the model with β �= 0 and θ �= 0, we use
the results of [F, FM], and take into account that the invariant measures for the unperturbed
dynamics are not invariant for the dynamics with β �= 0. This fact induces the presence of
a new term, which is crucial in order to recognize that the limiting equation has the form of
the gradient flux for an energy functional. The limiting equation for the density profile of our
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system is the nonlinear partial integral equation

∂ρ

∂t
= ∇ ·

(
σ(ρ)∇ δG

δρ

)
, (1.2)

where the energy functional G(ρ) is of the form

G(ρ) =
∫

drg0(ρ(r)) − β

2

∫ ∫
J (r − r ′)ρ(r)ρ(r ′) dr dr ′, (1.3)

g0 being the (strictly convex) free energy density and σ(ρ) the conductivity, or mobility (see
[Sp], part II, section 2), of the system with only short range interaction, i.e. corresponding to
β ≡ 0 in (1.1). The free energy density g0 is given by

g0(ρ) = ρλ0(ρ) − p0(λ0(ρ)),

where

p0(λ) = E[log(1 + e(λ+θα(0)))],

E stands for expectation with respect to the disorder, and, for any given ρ ∈ [0, 1], λ0(ρ)

satisfies

ρ = dp0

dλ
(λ0(ρ)) = E

[
e(λ0(ρ)+θα(0))

1 + e(λ0(ρ)+θα(0))

]
. (1.4)

To simplify notation we write λ0 instead of λ0(ρ), if no confusion arises. We derive (1.2)
under some mild regularity property on J , therefore (1.2) holds even if the functional G has
minimizers having non-constant density profiles. In this case phase segregation could occur;
see [GL2, A, CCO] for results on existence, properties and qualitative behaviour of solutions
of equations of type (1.2) with functional (1.3) in the presence of phase segregation. In [GL]
solutions corresponding to interface dynamics are considered.

Since we study the evolution of the system at fixed temperature we assume that the latter
has been absorbed into (1.1). To relate (1.2) with equation (2.24), recall that, in a regime of
linear response, the diffusion matrix is linked to the mobility via the Einstein relation (see
[Sp]) D(ρ) = σ(ρ)(χ(ρ))−1, where χ(ρ) is the static compressibility

χ(ρ) = [λ′
0(ρ)]−1 = E

[
e(λ0(ρ)+θα(0))

(1 + e(λ0(ρ)+θα(0)))2

]
. (1.5)

The variational characterization derived for D(ρ) in [F, FM] is reported in (2.20).
In section 2, we introduce the model and state the main result, the macroscopic behaviour

of the system. In section 3, after explaining the strategy of proof, we obtain some basic
estimates. In section 4, we derive the hydrodynamic limit equation.

2. The model and the main results

Let the scaling parameter γ ∈ (0, 1) be such that γ −1 ∈ N. We denote by 
 the d-dimensional
torus of diameter 1, by 
γ ≡ Z

d/γ −1
Z

d the discrete torus, and by |V | the cardinality of any
finite non-empty subset V ⊂ Z

d .
For a fixed A > 0, let �D = [−A, A]Z

d

be the set of disorder configurations on Z
d .

On �D we define a product, translation invariant probability measure P . We denote by
E the expectation with respect to P , and by α ≡ (α(x), x ∈ Z

d), α(x) ∈ [−A, A], a
disorder configuration in �D . They represent external magnetic fields acting on the particles.
A configuration α ∈ �D induces in a natural way a disorder configuration αγ on 
γ , by
identifying a cube centred at the origin of side γ −1 (γ −1 odd and integer) with the torus 
γ .
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By a slight abuse of notation whenever in the following we refer to a disorder configuration
either on 
γ or on Z

d we denote it by α.
We denote by Sγ ≡ {0, +1}
γ and S ≡ {0, +1}Z

d

the configuration spaces, both equipped
with the product topology. We denote by η a configuration, either in Sγ or in S.

Given a realization α ∈ �D of the magnetic field, for β and θ positive parameters, the
Hamiltonian will be (1.1) restricted to the torus 
γ , namely a real-valued function defined on
Sγ as the sum of two terms

Hβ,α
γ (η) = βHγ (η) + θHα

s (η), (2.1)

where Hα
s is the local, one-body interaction,

Hα
s (η) = −

∑
x∈
γ

α(x)η(x) (2.2)

and Hγ is the long range Kac interaction,

Hγ (η) = −1

2

∑
(x,y)∈
γ ×
γ

Jγ (x − y)η(x)η(y). (2.3)

The pair interaction Jγ (x − y), the so-called Kac potential, is such that Jγ (x − y) ≡
γ dJ (γ (x − y)) for J ∈ C2(
, R) with J (r) = J (−r) (symmetry).

We denote by µβ,α,λ
γ the grand canonical Gibbs measure on Sγ associated with the

Hamiltonian (2.1) with chemical potential λ ∈ R

µβ,α,λ
γ (η) = 1

Z
β,α,λ
γ

exp


−Hβ,α

γ (η) + λ
∑
x∈
γ

η(x)


 , η ∈ Sγ , (2.4)

where Zβ,α,λ
γ is the normalization factor, so that µβ,α,λ

γ is a probability measure on Sγ . When
β = 0, µ0,α,λ

γ becomes a random Bernoulli product measure, that we denote by

µα,λ
γ (η) ≡ µ0,α,λ

γ (η) = 1

Z
0,α,λ
γ

exp


−θHα

s (η) + λ
∑
x∈
γ

η(x)


 , η ∈ Sγ . (2.5)

If λ = 0, we simply write µα
γ . Similarly, for α ∈ �D , λ ∈ R, µα,λ is the corresponding

random product measure on the infinite product space S, and when λ = 0, we denote it by
µα . Moreover, for a probability measure µ and a bounded function f , both defined on S or
Sγ , we denote by Eµ(f ) the expectation of f with respect to µ, and by Pµ the corresponding
probability.

The potential λ, sometimes called annealed chemical potential, can be adjusted to the
average density ρ of particles as follows. For ρ ∈ [0, 1], the function λ0(ρ) is determined by
(cf (1.4))

E

[∫
η(x) dµα,λ0(ρ)(η)

]
= E

[
eθα(x)+λ0(ρ)

1 + eθα(x)+λ0(ρ)

]
= ρ. (2.6)

The disordered Kawasaki dynamics with parameter β � 0 is the Markov process on Sγ

defined through its infinitesimal generator Lβ,α
γ , acting on functions f : Sγ → R as

(Lβ,α
γ f )(η) =

∑
e∈E

∑
x∈
γ

Cβ,α
γ (x, x + e; η)(∇x,x+ef )(η), (2.7)

where E = {e1, . . . , ed} is the canonical basis of R
d and e a generic element of E . For

x, y ∈ 
γ , η ∈ Sγ ,

(∇x,yf )(η) = f (ηx,y) − f (η),
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where ηx,y is the configuration obtained from η by interchanging the values at x and y:

ηx,y(z) =



η(x) if z = y,

η(y) if z = x,

η(z) otherwise.
(2.8)

The rate Cβ,α
γ is given by

Cβ,α
γ (x, y; η) = �{(∇x,yH

β,α
γ )(η)}. (2.9)

Here � ∈ C2(R, (0, ∞)) satisfies4 �(0) = 1 and the detailed balance condition

�(r) = exp(−r)�(−r). (2.10)

This is equivalent to the existence of a function ψ ∈ C2(R, (0, ∞)) such that

�(r) = exp
(
− r

2

)
ψ(r), ψ(r) = ψ(−r), ψ(0) = 1. (2.11)

Notice that Cβ,α
γ (x, y; η) has the following properties:

(a) detailed balance condition (see (2.10) or (2.11));
(b) positivity and boundedness: there exists a > 0 such that

a−1 � Cβ,α
γ (x, y; η) � a, (2.12)

(c) translation invariance

Cβ,α
γ (x, y; η) = Cβ,τzα

γ (x − z, y − z; τzη) = τzC
β,α
γ (x − z, y − z; η), (2.13)

where for z in Z
d , τz denotes the space shift by z units on S × �D defined for all η ∈ S,

α ∈ �D and g : S × �D → R by

(τzη)(x) = η(x + z), (τzα)(x) = α(x + z), (τzg)(η, α) = g(τzη, τzα). (2.14)

For each λ ∈ R, the generator Lβ,α
γ is self-adjoint in L2(µβ,α,λ

γ ) (cf (2.4)). We could
alternatively have fixed the number of particles, and got a density ρ ∈ [0, (|
γ |)−1, . . . , 1].
Then the generator Lβ,α

γ is self-adjoint in L2(ν
β,α

ρ,
γ
) for the canonical measure

ν
β,α

ρ,
γ
(η) = 1

Z
β,α
γ

exp{−Hβ,α(η)}1I{∑x∈
γ
η(x)=ρ|
γ |}, η ∈ Sγ (2.15)

with Zβ,α
γ the corresponding normalization factor.

We shall denote the generator of the Markov process associated with the Hamiltonian
θHα

s , i.e. with β = 0 (see (2.2)), by Lα
γ

(Lα
γ f )(η) =

∑
e∈E

∑
x∈
γ

Cα(x, x + e; η)(∇x,x+ef )(η), (2.16)

where f is a function on Sγ , and

Cα(x, y; η) = �{θ(∇x,yH
α
s )(η)}. (2.17)

The rate Cα(x, y; η) satisfies properties (2.10), (2.12) and (2.13). We call the process with
generator Lα

γ the disordered lattice gas (DLG) process or the unperturbed process, to distinguish
from the process generated by Lβ,α

γ which we refer to as the perturbed process. The DLG
process for θ = 1 is the one considered in [F, FM]. The invariant measures for the DLG

4 The case �(0) ∈ (0, ∞) can be recovered by a time change.
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process are, for λ ∈ R, the random product measures µα,λ
γ defined in (2.5), or alternatively, for

ρ ∈ [0, |
γ |−1, . . . , 1], the canonical measures obtained by setting β = 0 in (2.15),

να
ρ,
γ

(η) ≡ ν
0,α
ρ,
γ

(η), η ∈ Sγ . (2.18)

In the same way, the operator Lα
γ is self-adjoint in L2(µα,λ

γ ), or alternatively in L2(να
ρ,
γ

).
Our goal is to establish a law of large numbers for the density field, starting from a sequence

of measures on Sγ associated with some initial density profile ρ0. We show that for almost
any disorder configuration α ∈ �D , the density field converges, as γ decreases to 0, to the
unique weak solution of a nonlinear integral parabolic equation with initial condition ρ0. In
order to write this equation we introduce some notation, and define, after [F, FM], the diffusion
coefficient of the integral parabolic equation. For g ∈ G, where

G ≡ {g : S × �D → R; local and bounded}, (2.19)

�g(η) = ∑
x∈Zd (τxg)(η, α) is a formal expression, but the difference (∇0,e�g)(η) =

�g(η
0,e) − �g(η) for e ∈ E makes sense. Recall that a function g : S × �D → R is

local if the support �g of g, i.e. the smallest subset of Z
d such that g depends only on

{(η(x), α(x)); x ∈ �g}, is finite; g is bounded if supη supα |g(η, α)| < ∞. For each ρ ∈ (0, 1),
let D(ρ) = {Di,j (ρ), 1 � i, j � d} be the symmetric matrix defined, for every a ∈ R

d , by
the variational formula

(a, D(ρ)a) = 1

2χ(ρ)
inf
g∈G

d∑
i=1

E[Eµα,λ0(ρ)

(Cα(0, ei; η){ai∇0,ei
η(0) + (∇0,ei

�g)(η)}2)],

(2.20)

where λ0(ρ) is defined in (2.6) and χ(ρ) is the static compressibility (see (1.5)), given by

χ(ρ) = E

[∫
η(0)2 dµα,λ0(ρ)(η) −

(∫
η(0) dµα,λ0(ρ)(η)

)2
]

. (2.21)

In [FM], theorem 2.1, for d � 3 and ρ ∈ (0, 1), the existence of the symmetric diffusion
matrix defined in (2.20) has been proved. Moreover, the coefficients Di,j (·) are nonlinear
continuous functions of ρ ∈ (0, 1), and there exists a positive constant C, depending on the
dimension and bounds on the random field, such that

C−11I � D(ρ) � C1I, ρ ∈ (0, 1), (2.22)

where 1I is the d ×d identity matrix. The upper bound is an immediate consequence of (2.20);
the lower bound is more delicate. In the following we assume that the diffusion matrix D(·)
can be continuously extended to the closed interval [0, 1]. In [FM], section 4.8, the derivation
of the hydrodynamic limit in the case when D(ρ) does not have a continuous extension is
explained, requiring further hypotheses to be satisfied. Continuity of D(ρ) in d � 2 is not
enough to prove uniqueness of weak solutions of the hydrodynamic equation. To guarantee
this uniqueness, we shall assume below that the diffusion coefficient is Lipschitz continuous
in ρ. This assumption, together with the uniform ellipticity bounds (see (2.22)), guarantees
the existence of Lipshitz continuous solutions of (2.24) (see [VY]). The Lipshitz continuous
property for D(·) has not been proved for the DLG model. To prove regularity properties for
the diffusion matrix, duality methods have been introduced; we refer to [LOV1, LOV2] and
references therein. For a discussion of the relation between the variational formula (2.20) and
the classical Green–Kubo formula (see [Sp], part II, section 2.2).

We are now ready to state the main result. Fix a positive time T . For a measure µγ on
Sγ , denote by Pβ,α

µγ
the probability measure on the path space D([0, T ], Sγ ) corresponding
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to the Markov process (ηt )t∈[0,T ] with generator γ −2Lβ,α
γ starting from µγ , and by Eβ,α

µγ
the

expectation with respect to Pβ,α
µγ

. For t ∈ [0, T ], η ∈ Sγ , let the empirical measure π
γ
t be

defined by

π
γ
t (r) ≡ πγ (r; ηt ) = γ d

∑
x∈
γ

ηt (x) δγ x(r), r ∈ 
, (2.23)

where δu(·) is the Dirac measure on 
 concentrated on u. Since η(x) ∈ {0, 1}, relation (2.23)
induces from Pβ,α

µγ
a distribution Qβ,α

µγ
of (π

γ
t (r); r ∈ 
, t ∈ [0, T ]) on the Skorohod space

D([0, T ], M1(
)), where M1(
) is the space of non-negative measures on 
 with total
mass bounded by 1, equipped with the weak topology induced through duality by C(
), the
continuous real functions from 
 to R, according to

〈π, U〉 =
∫




G(r)π(dr).

The space M1(
) is compact under the topology of weak convergence. As γ → 0 we
expect the distributions (Qβ,α

µγ
)γ�0 of the empirical measures to converge to the Dirac measure

concentrated on the trajectories ρ(t, r).

Theorem 2.1. Let d � 3, (β, θ) ∈ R
2
+ and assume that D(ρ) defined in (2.20) can be

continuously extended to the closed interval [0, 1]. Consider a sequence of probability
measures µγ on Sγ associated with the initial profile ρ0 in the following sense:

lim
γ→0

µγ

{∣∣∣∣〈πγ

0 , G〉 −
∫

G(u)ρ0(u) du

∣∣∣∣ > δ

}
= 0

for every continuous function G : 
 → R and every δ > 0. Then, for almost any
disorder configuration α ∈ �D , the sequence of probability measures (Qβ,α

µγ
)γ�0 is tight

and all its limit points Q∗ are concentrated on absolutely continuous paths whose densities
ρ ∈ C([0, T ], M1(
)) are the weak solutions of the equation

∂tρ =
d∑

k,m=1

∂k{Dk,m(ρ){∂mρ − βχ(ρ)(∂mJ ∗ ρ)}},

ρ(0, ·) = ρ0(·)
(2.24)

with χ(ρ) given in (2.21), satisfying∫ T

0
ds

(∫



‖∇ρ(s, u)‖2 du

)
< ∞, (2.25)

where ‖ · ‖ is the Euclidean norm. Moreover, if the diffusion matrix D(·) is locally Lipschitz
continuous for ρ ∈ (0, 1), then (Qβ,α

µγ
)γ�0 converges in the limit γ → 0 to Q∗. This limit

point is concentrated on the unique weak solution of equation (2.24).

Throughout this paper J , β, θ , �, and A (the bound on α(x)) will be kept fixed. We
therefore avoid writing the dependence on these quantities explicitly. The proof of theorem 2.1
is given through several steps in the next sections.

3. Strategy of proof and basic estimates

3.1. The steps to prove theorem 2.1

Following [GPV] we divide the proof of the hydrodynamic behaviour (i.e. of theorem 2.1) into
three steps: tightness of the measures (Qβ,α

µγ
)γ�0, which enables us to work with a weak limit Q∗
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of Qβ,α
µγ

, as γ → 0, an energy estimate to provide some regularity for functions in the support
of Q∗, and identification of the support of Q∗ as a weak solution of (2.24). We then refer
to [KL], chapter IV, that presents arguments, by now standard, to deduce the hydrodynamic
behaviour of the empirical measures from the preceding results and the uniqueness of the weak
solution to equation (2.24).

Proposition 3.1 (tightness). For almost any disorder configuration α ∈ �D , the sequence
(Qβ,α

µγ
)γ�0 is tight and all its limit points Q∗ are concentrated on absolutely continuous paths

π(t, du) = ρ(t, u) du whose density ρ is positive and bounded above by 1:

Q∗{π : π(t, du) = ρ(t, u)du} = 1, Q∗{π : 0 � ρ(t, u) � 1} = 1. (3.1)

This proof is sketched in section 3.3.
We then show that Q∗ is supported on densities ρ that satisfy (2.24) in the weak sense.

For � ∈ N denote by η�(x) the average density of η in a cube of width 2�+1 centred in x ∈ 
γ ,
namely

η�(x) = 1

(2� + 1)d

∑
y:|y−x|��

η(y). (3.2)

For a function G on 
, e ∈ E , ∂
γ
e G denotes the discrete (space) derivative in the direction e

(∂γ
e G)(γ x) = γ −1[G(γ (x + e)) − G(γ x)] (3.3)

with ∂
γ

k G as short notation for ∂
γ
ek
G for 1 � k � d, and � denotes the discrete convolution

(J � η)(x) ≡ (J � πγ )(γ x; η) = γ d
∑
z∈
γ

J (γ (x − z))η(z). (3.4)

Proposition 3.2 (identification of the limit equation). Let d � 3 and assume that D(ρ)

defined in (2.20) can be continuously extended in [0, 1]. Then, for almost any disorder
configuration α ∈ �D , any function G in C1,2([0, T ] × 
) and any δ > 0, we have

lim sup
c→0

lim sup
a→0

lim sup
γ→0

Pβ,α
µγ

(|BG,γ
a,c | � δ) = 0, (3.5)

where

BG,γ
a,c = γ d

∑
x∈
γ

G(T , γ x)ηT (x) − γ d
∑
x∈
γ

G(0, γ x)η0(x) − γ d
∑
x∈
γ

∫ T

0
∂sG(s, γ x)ηs(x) ds

+
∑

1�k,m�d

∫ T

0
dsγ d−1

∑
x∈
γ

(∂
γ

k G)(s, γ x){Dk,m(η[aγ −1]
s (x))

×{(2cγ −1)
−1

[η[aγ −1]
s (x + cγ −1em) − η[aγ −1]

s (x − cγ −1em)]

−βγχ(η[aγ −1]
s (x))((∂γ

mJ ) � πγ
s )(γ x; η)}} (3.6)

χ(·) is defined in (2.21) and Pβ,α
µγ

is the probability measure on the path space D([0, T ], Sγ )

corresponding to the Markov process (ηt )t∈[0,T ] with generator γ −2Lβ,α
γ starting from µγ .

This result is proved in section 4.
The last statement is an energy estimate needed, together with the assumption that the

diffusion matrix is locally Lipschitz continuous, to prove uniqueness of the weak solutions. It
states that for almost any disorder configuration α ∈ �D , every limit point Q∗ of the sequence
(Qβ,α

µγ
)γ�0 is concentrated on paths whose densities ρ satisfy the following energy estimate.
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Proposition 3.3 (energy estimate). Let d � 3 and assume that D(ρ) defined in (2.20) can be
continuously extended in [0, 1]. For almost any disorder configuration α ∈ �D , let Q∗ be a
limit point of the sequence (Qβ,α

µγ
)γ�0. Then,

EQ∗
[∫ T

0
ds

(∫



‖∇ρ(s, u)‖2 du

)]
< ∞, (3.7)

where ‖ · ‖ is the Euclidean norm in R
d .

3.2. Basic estimates

In this section we derive some results we need later on. In the first lemma, we show that
the jump rates of Lβ,α

γ are a perturbation of the ones of Lα
γ . This will enable us to transform

non-equilibrium estimates with respect to the perturbed process into equilibrium estimates for
the unperturbed process (see remark 3.8).

Lemma 3.4. For every � as in (2.10), J as in (2.3), x ∈ 
γ , e ∈ E , η ∈ Sγ , for all α ∈ �D

Cβ,α
γ (x, x + e; η) − Cα(x, x + e; η) = γβ�′(θ [∇x,x+eH

α
s ](η))[η(x + e) − η(x)]

×((∂γ
e J ) � η)(x) + γ 2R2(x, x + e)(η) (3.8)

with

sup
e∈E

sup
x∈
γ

sup
η∈Sγ

|R2(x, x + e)(η)| � C (3.9)

for a positive constant C ≡ C(β, θ, A, J, �).

Proof. We have

[∇x,x+eH
α
s ](η) = (η(x + e) − η(x))(α(x + e) − α(x)), (3.10)

[∇x,x+eHγ ](η) = −γ (η(x + e) − η(x)){((∂γ
e J ) � η)(x) − γ d(∂γ

e J )(0)}, (3.11)

so that a Taylor expansion to the second order of the function � yields the result. We write
(cf (2.9) and (2.17))

Cβ,α
γ (x, x + e; η) − Cα(x, x + e; η) = γR1(x, x + e)(η) + γ 2R2(x, x + e)(η) (3.12)

with

|R1(x, x + e)(η)| = |β�′(θ [∇x,x+eH
α
s ](η))[η(x + e) − η(x)]((∂γ

e J ) � η)(x)| � C1. (3.13)

Similar analysis holds for the second term of (3.12) obtaining

|R2(x, x + e)(η)| � C (3.14)

for C1 and C positive constants depending on A (the bound on α(x)), β, θ, C(J ) =
2 sup1�i�d,u∈
 |∂iJ (u)|, and � (via supu∈[−2θA,2θA] |�′(u)| and supu∈[−2θA−βC(J ),2θA+βC(J )]
|�′′(u)|). �

Notice that as a consequence we recover here that the jump rates are bounded.
In the following, we avoid writing explicitly the terms of order γ 2, by replacing them

with Ou(γ
2), which should be understood in the standard sense of O(γ 2), but uniformly with

respect to the disorder α, and either to configurations η or to the history of the process.
We start by adapting to our dynamics some arguments used in non-gradient methods. We

first recall the definitions of the entropy and the Dirichlet form associated with the generator
of a Markov process. Recall from section 2 that for a realization α and a density ρ the Gibbs
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measure µα,λ0(ρ)
γ is the Bernoulli product. For a probability measure µ on Sγ , denote by

H(µ|µα,λ0(ρ)
γ ) the relative entropy of µ with respect to µα,λ0(ρ)

γ :

H(µ|µα,λ0(ρ)
γ ) = sup

f

{∫
f (η)µ(dη) − log

∫
ef (η)µα,λ0(ρ)

γ (dη)

}
.

In this formula the supremum is carried over all bounded functions on Sγ . Since µα,λ0(ρ)
γ gives

a positive probability for each configuration, µ is absolutely continuous with respect to µα,λ0(ρ)
γ

and we have an explicit formula for the entropy:

H(µ|µα,λ0(ρ)
γ ) =

∫
log
{ dµ

dµ
α,λ0(ρ)
γ

}
dµ.

Moreover, since there is at most one particle per site, there exists a constant C0 ≡ C0(θ, A)

such that

H(µ|µα,λ0(ρ)
γ ) � C0γ

−d (3.15)

for all probability measures µ on Sγ (cf comments following remark V.5.6 in [KL]).
For f ∈ L2(µα,λ

γ ) denote by Dα(f ) the Dirichlet form associated with the operator Lα
γ

Dα(f ) = −
∫

Sγ

f (η)Lα
γ f (η) dµα,λ

γ (η). (3.16)

Denote by S = [Lβ,α
γ + (Lβ,α

γ )∗]/2 the symmetric part of the operator Lβ,α
γ in L2(µα,λ

γ ). Then
(see [KL], appendix 1),

−
∫

Sγ

f (η)Sf (η) dµα,λ
γ (η) = −

∫
Sγ

f (η)Lβ,α
γ f (η) dµα,λ

γ (η) � 0.

By abuse of notation we thus denote

Dβ,α(f ) = −
∫

Sγ

f (η)Lβ,α
γ f (η) dµα,λ

γ (η).

The first application of lemma 3.4 is a bound on Dβ,α(f ) by the Dirichlet form Dα of the DLG
dynamics.

Lemma 3.5. For any β > 0 and α ∈ �D , there exists a positive constant C ′
0 ≡ C ′

0(J, β, θ, A)

such that for any f ∈ L2(µα,λ0
γ ) and for any M > 0,

−Dβ,α(f ) � − (1 − M) Dα(f ) + C ′
0
γ 2−d

M
‖f ‖2

L2(µ
α,λ
γ )

. (3.17)

Proof. By (3.12),

Dα(f ) − Dβ,α(f ) =
∑
e∈E

∑
x∈
γ

∫
f (η)(∇x,x+ef )(η)[γR1(x, x + e)(η)

+γ 2R2(x, x + e)(η)] dµα,λ0
γ (η). (3.18)

By the elementary inequality 2uv � Bu2 + B−1v2 which holds for any B > 0 and by (3.13),
we obtain∫
f (∇x,x+ef )γR1(x, x + e) dµα,λ0

γ � M

4a

∫
(∇x,x+ef )2 dµα,λ0

γ +
aγ 2

M

∫
(R1(x, x + e))2f 2 dµα,λ0

γ

� M

4

∫
Cα

γ (x, x + e; η)[f (ηx,x+e) − f (η)]2 dµα,λ0
γ (η) +

aγ 2

M
C2

1‖f ‖2
L2(µ

α,λ0
γ )

,

(3.19)
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where we choose B = M(2a)−1, for an arbitrary M > 0, and a comes from (2.12). Taking
into account (3.14) we deal similarly with the second term of the integral on the right-hand
side of (3.18). Combining the previous estimates with (3.18) we obtain

Dα(f ) − Dβ,α(f ) � M

2

∑
e∈E

∑
x∈
γ

∫
Cα(x, x + e; η)[f (ηx,x+e) − f (η)]2 dµα,λ0

γ (η)

+a
dγ 2−d

M
{C2

1 + γ 2C2}‖f ‖2
L2(µ

α,λ0
γ )

. (3.20)

Since Lα is self-adjoint in L2(µα,λ
γ )

Dα(f ) = 1

2

∑
e∈E

∑
x∈
γ

∫
Cα(x, x + e; η)

[
f (ηx,x+e) − f (η)

]2
dµα,λ0

γ (η). (3.21)

We then obtain from (3.20) that

−Dβ,α(f ) � (M − 1)Dα(f ) + a
dγ 2−d

M
{C2

1 + γ 2C2}‖f ‖2
L2(µ

α,λ0
γ )

.

Since γ < 1 we obtain (3.17) by setting C ′
0 = ad{C2

1 + C2}. �

The next lemma transforms non-equilibrium exponential estimates for the perturbed
process into eigenvalue problems for Lα

γ using lemma 3.5 and the Feynman–Kac formula.
For α ∈ �D , B > 0 and for a bounded function Xγ : R

+ × Sγ × �D → R define

�(s, Xγ + Bγ −2Lα
γ ) = sup spec

L2(µ
α,λ0
γ )

{Xγ (s, ·, α) + Bγ −2Lα
γ }

≡ sup
{‖f ‖

L1(µ
α,λ0
γ )

=1,f �0}

{∫
Xγ (s, η, α)f (η) dµα,λ0

γ (η) − Bγ −2Dα(
√

f )

}
.

(3.22)

Lemma 3.6. For any positive constants B and M < 1, for any bounded function Xγ :
R

+ × Sγ × �D → R twice continuously differentiable in its first variable, such that for
some C̃ > 0, supt,η,α(|∂tXγ (t, η, α)| + |∂2

t Xγ (t, η, α)|) < C̃, we have for any T > 0, α ∈ �D ,

log Eβ,α

µ
α,λ0
γ

[
exp

{
Bγ −d

∫ T

0
Xγ (s, ηs, α) ds

}]

�
∫ T

0
�

µ
α,λ0
γ

(s, Bγ −dXγ + γ −2(1 − M)Lα
γ ) ds + C ′

0
γ −d

M
T,

where C ′
0 is the constant introduced in lemma 3.5.

Proof. Fix T > 0. For η ∈ Sγ , let

V (η, T ) = Eβ,α
η

[
exp

{
Bγ −d

∫ T

0
Xγ (s, ηs, α) ds

}]
, (3.23)

where Eβ,α
η denotes the expectation with respect to the process generated by Lβ,α

γ starting from
the Dirac measure δη. By the Feynman–Kac formula (cf appendix 1, section 7 in [KL]), V is
the stochastic representation at time T of the solution of equation

∂su(η, s) = γ −2Lβ,α
γ u(η, s) + Bγ −dXγ (T − s, η, α)u(η, s),

u(η, 0) ≡ 1.
(3.24)
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To simplify notation we set F(T − s, η) = Bγ −dXγ (T − s, η, α). Multiplying (3.24) by u,
integrating with respect to µα,λ0

γ and applying (3.17) we obtain (cf [VY], lemma 3.7)

∂s

(
1

2

∫
u2(η, s) dµα,λ0

γ (η)

)
=
∫

u(η, s)(γ −2Lβ,α
γ u(η, s) + F(s, η)u(η, s)) dµα,λ0

γ (η)

� sup
f ∈L2(µ

α,λ0
γ )

{∫
f [F(T − s, ·) + γ −2(1 − M)Lα

γ ]f dµα,λ0
γ∫

f 2 dµ
α,λ0
γ

}

×
∫

u2(η, s) dµα,λ0
γ (η) + C ′

0
γ −d

M

∫
u2(η, s) dµα,λ0

γ (η)

=
[
�(T − s, F + γ −2(1 − M)Lα

γ ) + C ′
0
γ −d

M

] ∫
u2(η, s) dµα,λ0

γ (η).

(3.25)

This implies that

∂s

(
1

2
Log

∫
u2(η, s) dµα,λ0

γ (η)

)
� �(T − s, F + γ −2(1 − M)Lα

γ ) + C ′
0
γ −d

M

and then, since u(., 0) ≡ 1

Log
∫

u(η, T ) dµα,λ0
γ (η) � 1

2
Log

∫
u2(η, T ) dµα,λ0

γ (η)

�
∫ T

0
�(T − s, F + γ −2(1 − M)Lα

γ ) ds + C ′
0
γ −d

M
T

=
∫ T

0
�(u, F + γ −2(1 − M)Lα

γ ) du + C ′
0
γ −d

M
T .

This together with the representation (3.23) concludes the proof of the lemma. �

The next lemma is an important consequence of the previous one, and we will repeatedly
use it in the following.

Lemma 3.7. Under the hypotheses of lemma 3.6, for any positive constants B and M < 1,
we have

lim sup
γ→0

Eβ,α
µγ

[∣∣∣ ∫ T

0
Xγ (s, ηs, α)ds

∣∣∣] �
(

lim sup
γ→0

∫ T

0
�(s, Xγ + B(1 − M)γ d−2Lα

γ ) ds

)

∨
(

lim sup
γ→0

∫ T

0
�(s, −Xγ + B(1 − M)γ d−2Lα

γ ) ds

)
+ B(C0 + C ′

0M
−1T ),

(3.26)

where C0, C
′
0 are the constants introduced in (3.15) and lemma 3.5.

Proof. Using (3.15) and the entropy inequality we obtain that

Eβ,α
µγ

[∣∣∣ ∫ T

0
Xγ (s, ηs, α) ds

∣∣∣] � C0B + Bγ d log Eβ,α

µ
α,λ0
γ

[
exp

{
B−1γ −d

∣∣∣∣
∫ T

0
Xγ (s, ηs, α) ds

∣∣∣∣
}]

(3.27)
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for all B > 0. Since e|x| � ex + e−x and

lim sup
γ→0

{γ d log(aγ + bγ )} � {lim sup
γ→0

(γ d log aγ )} ∨ {lim sup
γ→0

(γ d log bγ )}

applying lemma 3.6 we obtain (3.26). �

Remark 3.8. Note that if for any K > 0

lim sup
γ→0

∫ T

0
�(s, ±Xγ + Kγ d−2Lα

γ ) ds = 0 (3.28)

then, from lemma 3.7, letting first γ → 0 then B → 0 we obtain

lim sup
γ→0

Eβ,α
µγ

[∣∣∣∣
∫ T

0
Xγ (s, ηs, α) ds

∣∣∣∣
]

= 0.

This remark allows us to state the replacement lemma for the perturbed process. For any
local function g(η, α), for η ∈ Sγ and α ∈ �D , for ρ ∈ [0, 1], λ0(ρ) chosen according to
(1.4), define

g̃(ρ) ≡ E[Eµ
α,λ0(ρ)
γ [g]]. (3.29)

Lemma 3.9 (replacement lemma for the Lβ,α process). Let g(η, α) be a local function on
Sγ × �D . For any fixed b > 0 let

Bbγ −1(η, α) =
∣∣∣∣∣∣

1

(2bγ −1 + 1)d

∑
|y|�bγ −1

[τyg(η, α) − g̃(η[bγ −1](0))]

∣∣∣∣∣∣ . (3.30)

Then, for any δ > 0, P a.s.

lim sup
b→0

lim sup
γ→0

Pβ,α
µγ


∫ T

0


γ d

∑
x∈
γ

τxBbγ −1(ηs, α)


 ds � δ


 = 0. (3.31)

Proof. It is enough to apply (3.28). This has been shown in [F], section 1.13, and [FM],
proposition A.9; the proof relies on the one and two blocks estimates. Thanks to the ergodicity
of the random field α and the subadditivity properties of sup spec, the [GPV] techniques can
be adapted to the random case (see also [K, CX]). �

We conclude this subsection with a computation used in the next section to identify
the limit equation. Recall the definition of ψ given in (2.11). Denote by κ(.) the function
κ(r) = e−r/2ψ ′(r).

Lemma 3.10. For any f : Sγ → R∫
κ(θ [∇x,yH

α
s ](η))f (η) dµα,λ0

γ (η) = −
∫

κ(θ [∇x,yH
α
s ](η))f (ηx,y) dµα,λ0

γ (η).
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Proof. By the explicit formula (2.5) for the measure µα,λ0
γ and by a change of variables we

obtain∫
κ(θ [∇x,yH

α
s ](η))f (η) dµα,λ0

γ (η)

= 1

Z
α,λ0
γ

∑
η∈Sγ

e−(θ/2)[∇x,yH
α
s ](η)ψ ′(θ [∇x,yH

α
s ](η))f (η)e−θHα

s (η)eλ0
∑

x∈
γ
η(x)

= 1

Z
α,λ0
γ

∑
η∈Sγ

e−(θ/2)[Hα
s (ηx,y )+Hα

s (η)]ψ ′(θ [∇x,yH
α
s ](η))f (η)eλ0

∑
x∈
γ

η(x)

= 1

Z
α,λ0
γ

∑
η∈Sγ

e−(θ/2)[Hα
s (ηx,y )+Hα

s (η)]ψ ′(−θ [∇x,yH
α
s ](η))f (ηx,y)eλ0

∑
x∈
γ

η(x)

= 1

Z
α,λ0
γ

∑
η∈Sγ

e−(θ/2)[∇x,yH
α
s ](η)ψ ′(−θ [∇x,yH

α
s (η)])f (ηx,y)e−θHα

s (η)eλ0
∑

x∈
γ
η(x)

= −
∫

κ(θ [∇x,yH
α
s ](η))f (ηx,y) dµα,λ0

γ (η),

where we have used that ψ is odd so that ψ ′(−r) = −ψ ′(r). �

Corollary 3.11. For any f, g : Sγ → R∫
�′(θ [∇x,yH

α
s ])(∇x,yf )(∇x,yg) dµα,λ0

γ = −1

2

∫
�(θ [∇x,yH

α
s ])(∇x,yf )(∇x,yg) dµα,λ0

γ .

Proof. By (2.11), �′(r) = −(�(r)/2) + κ(r), so that we have∫
�′(θ [∇x,yH

α
s ])(∇x,yf )(∇x,yg) dµα,λ0

γ = −1

2

∫
�(θ [∇x,yH

α
s ])(∇x,yf )(∇x,yg) dµα,λ0

γ

+
∫

κ(θ [∇x,yH
α
s ])(∇x,yf )(∇x,yg) dµα,λ0

γ . (3.32)

The second term of the right-hand side is equal to 0, because the function (∇x,yf )(∇x,yg) is
invariant under the transformation η → ηx,y , and by lemma 3.10. �

3.3. Tightness and energy estimate

Proof of proposition 3.1. Tightness can be proven either by using, as in [KL], the
Garcia–Rodemich–Rumsey inequality or by adapting to our model the exponential martingale
argument used in [VY]. Lemma 4.1 in [VY] depends only on the uniform boundedness of
the jump rates and can be easily extended to our model. Lemma 4.2 in [VY], in which the
equilibrium measure plays a role, can be adapted by first applying the following lemma, then
lemma 3.7.

Lemma 3.12. Let f : Sγ × �D → R. For any disorder configuration α, any v ∈ R and any
0 � s � t � T , we have

Eβ,α
µ [v(f (ηt , α) − f (ηs, α))]

� C0B + Bγ d log Eβ,α

µ
α,λ0
γ

[exp{B−1γ −dv(f (ηt−s , α) − f (η0, α))}]
for any initial measure µ and B > 0, where C0 is the constant introduced in (3.15).
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Proof. Denote by (Sβ,α
γ (t))t∈[0,T ] the semigroup associated with the generator γ −2Lβ,α

γ .
We have

Eβ,α
µ [v(f (ηt , α) − f (ηs, α))] = Eβ,α

S
β,α
γ (s)µ

[v(f (ηt−s , α) − f (η0, α))].

We conclude by the entropy inequality, as in (3.27). �
The limit points Q∗ are actually concentrated on functions in C([0, T ], M1(
)), since

every jump produces a discontinuity of order Ou(γ
d). Furthermore, since there is at most one

particle per site, for any continuous function G : 
 → R, the quantity |〈πγ
t , G〉| is P -a.s.

bounded by γ d
∑

x∈
γ
|G(γ x)| that converges to

∫



|G(r)| dr as γ → 0. All limit points

Q∗ of the sequence (Qβ,α
µγ

)γ�0 are thus concentrated on paths such that supt∈[0,T ] |〈πt , G〉| �∫



|G(r)| dr . The trajectories are therefore absolutely continuous with respect to the Lebesgue
measure: (3.1) is satisfied. �
Proof of proposition 3.3. It is the same as in [FM], (3.2), lemma 3.1, section 4.7. However,
the first step of the latter proof requires an application of the Feynman–Kac formula, for which
we have to replace our dynamics (4.49) by lemma 3.7, remark 3.8. �

4. Identification of the limit

We prove in this section proposition 3.2. Let Q∗ be a limit point of the sequence (Qβ,α
µγ

)γ�0

and assume, without loss of generality, that Qβ,α
µγ

converges to Q∗.

Fix a function G in C1,2([0, T ] × 
). For any α ∈ �D consider the Pβ,α
µγ

martingales with

respect to the natural filtration associated with (ηt )t∈[0,T ], MG
t ≡ M

G,γ,β,α
t and NG

t ≡ N
G,γ,β,α
t ,

t ∈ [0, T ], defined by

MG
t = 〈πγ

t , Gt 〉 − 〈πγ

0 , G0〉 −
∫ t

0
(〈πγ

s , ∂sGs〉 + γ −2Lβ,α
γ 〈πγ

s , Gs〉) ds,

NG
t = (MG

t )2 −
∫ t

0
{γ −2Lβ,α

γ (〈πγ
s , Gs〉)2 − 2〈πγ

s , Gs〉γ −2Lβ,α
γ 〈πγ

s , Gs〉} ds,

where π
γ
s is the empirical measure at time s (see (2.23)). A computation of the integral term of

NG
t shows that the expectation of the quadratic variation of MG

t vanishes as γ ↓ 0. Therefore,
by Doob’s inequality, for every δ > 0,

lim
γ→0

Pβ,α
µγ

[ sup
0�t�T

|MG
t | > δ] = 0. (4.1)

Thanks to (2.13), a summation by parts permits us to rewrite the integral term of MG
t as∫ t

0
〈πγ

s , ∂sGs〉 ds +
∫ t

0


γ d−1

d∑
k=1

∑
x∈
γ

(∂
γ

k Gs)(γ x)Jγ,β,α
x,x+ek

(ηs)


 ds, (4.2)

where Jγ,β,α
x,x+ek

(η) is the current over the bond (x, x + ek):

Jγ,β,α
x,x+ek

(η) ≡ Jβ,α
x,x+ek

= Cβ,α
γ (x, x + ek; η)[η(x) − η(x + ek)]. (4.3)

We will often omit writing the dependence of Jγ,β,α
x,x+ek

(η) on γ and η. We split the current as

Jβ,α
x,x+ek

= Jα
x,x+ek

+ [Jβ,α
x,x+ek

− Jα
x,x+ek

], (4.4)

where

Jα
x,x+ek

= Cα(x, x + ek; η)[η(x) − η(x + ek)] (4.5)
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is the current of the DLG process, i.e. the one generated by Lα
γ . By lemma 3.4,

Jβ,α
x,x+ek

− Jα
x,x+ek

= −βγ�′(θ(∇x,x+ek
Hα

s )(η))(η(x) − η(x + ek))
2((∂γ

e J ) � η)(x) + Ou(γ
2).

(4.6)

In the decomposition (4.4) the non-gradient difficulties come from the first term Jα
x,x+ek

,
for which we will follow the techniques developed in [F, FM]. For the remaining term,
considerations in the spirit of [GLM, MM] apply. Having in mind (3.6), set, for 0 < a < 1,
0 < c < 1, k = 1, . . . , d,

V
γ,c,a

k (η, α) = Jβ,α

0,ek
+

d∑
m=1

Dk,m(η[aγ −1](0)){(2cγ −1)
−1

[η[aγ −1](cγ −1em) − η[aγ −1](−cγ −1em)]

−βγχ(η[aγ −1](0))((∂γ
mJ ) � πγ )(0; η)}. (4.7)

The next theorem is the main step in the proof of proposition 3.2.

Theorem 4.1. Let d � 3 and assume that D(ρ) defined in (2.20) can be continuously extended
in [0, 1]. Then, for almost any disorder configuration α ∈ �D , for any G ∈ C1,2([0, T ] × 
),

lim sup
c→0

lim sup
a→0

lim sup
γ→0

Eβ,α
µγ



∣∣∣∣∣γ d−1

∫ T

0

∑
x∈
γ

Gs(γ x)τxV
γ,c,a

k (ηs, α) ds

∣∣∣∣∣

 = 0 (4.8)

for k = 1, . . . , d.

By a summation by parts, theorem 4.1 allows us to conclude the proof of proposition 3.2.
Details can be found in [KL], section VII.1.

Before proving theorem 4.1 we introduce some notation and recall some tools of non-
gradient methods. We refer mainly to [F, FM], see also [V, VY] and [KL], section VII. Given
α ∈ �D , denote by Lα ≡ L0,α the pregenerator of the DLG process in infinite volume
(cf (2.16)),

(Lαf ) (η) =
∑
e∈E

∑
x∈Zd

Cα(x, x + e; η)(∇x,x+ef )(η), (4.9)

where f is a local function on S. We refer to [Li] for the construction of the process in the
infinite volume setting, and we recall that for every λ ∈ R, Lα can be extended to a self-
adjoint operator on L2(µα,λ). For a finite non-empty subset V of Z

d , ρ ∈ [0, |V |−1, . . . , 1]
and α ∈ �D , the canonical measure να

ρ,V is defined as in (2.18), with 
γ replaced by V . We
denote by Mα(V ) the set of all canonical measures as ρ varies in [0, |V |−1, . . . , 1], and by
να a generic element of Mα(V ). Let G ⊂ G (see (2.19)) be the space of bounded cylinder
functions h for which there exists a finite non-empty set V ⊂ Z

d such that the support of h(·, α)

is contained in V and, for any given disorder configuration α ∈ �D , all canonical expectations
on V are null:

G = {h ∈ G; support of {h(·, α)} ⊂ V and ∀α ∈ �D, ∀να ∈ Mα(V ), Eνα

[h(·, α)] = 0}.
(4.10)

Given a positive density 0 < ρ < 1, f and g in G, define

Vρ(h, g) = lim
�→∞

(2�)−dE


Eµα,λ0(ρ)


 ∑

|x|��−√
�

τxh,
(−Lα

0,�

)−1 ∑
|x|��−√

�

τxg




 , (4.11)

where Lα
0,� is obtained from Lα by restricting jumps to the cube 
0,�. In the extreme density

cases ρ = 0 or 1, i.e. when the measure is concentrated on configurations η = 0 or 1 in 
0,�,
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for any � ∈ Z, set Vρ(h, g) = 0. It has been shown in [F, FM], theorem 7.2, that the above
limit exists and is finite. Moreover Vρ(·, ·) defines a semi-inner product on G. When h = g

we write Vρ(h) in place of Vρ(h, h).
We consider the orthogonal decomposition of G, endowed with the semi-inner product Vρ ,

along Lα
G = {Lαg : g ∈ G} and its orthogonal subspace (Lα

G)⊥. As explained briefly in the
introduction, the general strategy for non-gradient systems is to write the current, which has
zero average with respect to all canonical and grand canonical measures, as a linear combination
of the density gradient and a fluctuation term

J α
0,e � ∇0,eη(0) + Lαg.

We are neglecting the diffusion coefficient for simplicity. The fluctuation term belongs to G,
while the presence of the disorder induces ∇0,eη(0) /∈ G.

This aspect is present also in the non-disordered systems considered in [VY]. In this paper
Varadhan and Yau study the hydrodynamic behaviour of a generic lattice gas with a translation
invariant and finite range Hamiltonian satisfying some mixing conditions, with a stochastic
dynamics reversible with respect to Gibbs measures. In this case the canonical expectations
of ∇0,eη(0) in a cube of size n decay as a power of n when n ↑ ∞. Differently, in the case of
the DLG process one can check that for any n ∈ N,

sup
ρ∈[0,1]

Eνα
ρ,
0,n [∇0,eη(0)] = O(1). (4.12)

Namely for any disorder configuration α ∈ �D and any chemical potential λ ∈ R,

Eµα,λ

[∇0,eη(0)] = eλ(eθα(e) − eθα(0))

(1 + eθα(e)+λ)(1 + eθα(0)+λ)
. (4.13)

By the equivalence of ensembles (see [FM], appendix A) for a positive constant c and for any
density ρ on the cube 
0,n,

|Eµα,λ

[∇0,eη(0)] − Eνα
ρ,
0,n [∇0,eη(0)]| � c

nd
(4.14)

provided λ in (4.14) is chosen such that Eµα,λ

(|
0,n|−1∑
x∈
0,n

η(x)) = ρ. For densities ρ

such that λ is almost 0 one obtains (4.12). Here λ = λ
0,n
(α, ρ) is the empirical chemical

potential, to distinguish it from the annealed chemical potential (see (1.4)).
Exploiting that E[Eµα,λ

[∇0,eη(0)]] = 0, [F, FM] considered the gradient of the density in
two sufficiently large regions. By the ergodicity of the random field, α, the density fluctuations
in these regions are small provided the dimension d is larger or equal to 3.

To be more precise, given s = 2� + 1 with � ∈ N and e ∈ E , let 
e
1,s and 
e

2,s be a
couple of adjacent cubes of diameter s, centred, respectively, at −(� + 1)e and at �e. For any
given configuration η, denote by m1,e

s , m2,e
s and me

s the densities, respectively, in 
e
1,s , 
e

2,s

and 
e
2,s ∪ 
e

1,s . Given an integer s ′ with s � s ′, set

φe
s,s ′ = Eµα

[m2,e
s − m1,e

s |me
s ′ ] and ψe

s,s ′ = m2,e
s − m1,e

s − φe
s,s ′ . (4.15)

Note that E[φe
s,s ′ ] = 0. The main step to obtain a generalized Fick’s law (see [FM],

theorem 7.18), is to show the property

(P) for d � 3 and for any e ∈ E , ((ψe
n,n)/n)n�0 is a Cauchy sequence in the space G endowed

with the semi-inner product Vρ , and its limit points (ψe)e∈E form a basis of the subspace
(Lα

G)⊥.

Then the current Jα
0,ek

can be substituted in the limits n → ∞ after γ → 0 by some
negligible fluctuation Lαg plus

d∑
m=1

Dk,m(ρ)
[m1,ek

n − m2,ek
n ]

n
−

d∑
m=1

Dk,m(ρ)
φek

n,n

n
, (4.16)
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where ρ is the density in a particular mesoscopic region centred in 0. Then, [FM], theorem 5.3
shows that suitable spatial averages of (φe

n,n)/n are indeed negligible when d � 3, by letting
first γ → 0 then n → ∞. An important step in [F] and [FM] section 7.2, to show property
(P), is the introduction of the following auxiliary functions: for the integer s = 2� + 1, � ∈ N

and e ∈ E , let

We
s = − 1

|
e
1,s |

∑
x∈
e

1,s


 1

|
e
2,s |

∑
y∈
e

2,s

ωα
x,y


 ,

where

ωα
x,y = (1 + e−θ(α(x)−α(y))(η(x)−η(y)))(η(x) − η(y))

and 
e
1,s and 
e

2,s are the cubes defined before (4.15). When x and y are nearest neighbours,
ωα

x,y is the current associated with a particular choice of the rate Cα(x, y; η) corresponding to
�(r) = 1 + e−r in (2.17). It has the important property of having mean zero with respect to
any measure να in Mα(V ), V ⊂ Z

d being any bounded set containing x and y. Furthermore,
it yields a simple integration by parts formula∫

ωα
x,yf (η) dνα(η) =

∫
[η(x) − η(y)](∇x,yf )(η) dνα(η).

It is proven in [FM], theorem 7.10, that for any e ∈ E and 0 � ρ � 1,

lim
n↑∞

Vρ

(
2ρ(1 − ρ)λ′

0(ρ)
ψe

n,n

n
− We

n

n

)
= 0. (4.17)

Moreover, if for g ∈ G and h ∈ G we define

(h, g)ρ,0 =
∑
x∈Zd

E[Eµα,λ0(ρ)

(h, τxg)], (4.18)

we obtain by the definition of Vρ(., .) the following properties (cf lemma 7.1 of [FM]).

Vρ(h, Lαg) = −(h, g)ρ,0,

Vρ(Jα
0,ek

, Jα
0,em

) = δk,m

2
E[Eµα,λ0(ρ)

(Cα(0, ek; η)(∇0,ek
η(0))2)],

Vρ

(
Jα

0,ek
,

Wem

n

n

)
= −δk,m2ρ(1 − ρ),

(4.19)

where δk,m is the Kroenecker delta. Thanks to (4.17) and the last identity in (4.19) one obtains
(cf [FM], theorem 7.18), that

lim
n→∞ Vρ

(
Jα

0,ek
,
ψem

n,n

n

)
= Vρ(Jα

0,ek
, ψem

) = −δk,mχ(ρ). (4.20)

We now turn to the proof of theorem 4.1.

Proof of theorem 4.1. From [FM], theorem 7.22, for all 1 � k � d,

inf
g∈G

lim sup
n↑∞

sup
0�ρ�1

Vρ

(
Jα

0,ek
+

d∑
m=1

Dk,m(ρ)
ψem

n,n

n
+ Lαg(η, α)

)
= 0, (4.21)

where J α
0,ek

is the current of the DLG process (see (4.5)), D(ρ) is the diffusion matrix of (2.20),
and ψem

n,n the quantity defined in (4.15). By similar arguments as in [KL], chapter VII, p 179,
for each δ > 0, there exists gk,δ : [0, 1] × S × �D → R

d with gk,δ(ρ, ·, ·) ∈ G, gk,δ smooth
in the first variable, such that

lim sup
n↑∞

sup
0�ρ�1

Vρ

(
Jα

0,ek
+

d∑
m=1

Dk,m(ρ)
ψem

n,n

n
+ Lαgk,δ

)
� δ. (4.22)
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Notice that gk,δ depends on α, η and on the local average (�d
δ )

−1∑
|y|��δ

η(y) where �δ is the
diameter of the support in η of gk,δ . To keep notation light we denote it simply by gk,δ(η, α).

We claim that P -a.s.,

lim sup
γ→0

Eβ,α
µγ


∣∣∣∣
∫ T

0
ds

(
γ d−1

∑
x∈
γ

Gs(γ x)τxLβ,α
γ gk,δ(ηs, α)

)∣∣∣∣

 = 0, (4.23)

for all real smooth, bounded functions Gs(u) = G(s, u) defined on R+ × 
γ . Indeed∫ T

0
ds


γ d−1

∑
x∈
γ

Gs(γ x)τxLβ,α
γ gk,δ(ηs, α)




= γ d+1
∑
x∈
γ

[GT (γ x)τxg(ηT , α) − G0(γ x)τxg(α, η0)] + γM̃α,G
γ (T ) + Rα,G

γ (T ).

(4.24)

On the right-hand side of (4.24), the first term is of order γ . The Pβ,α
µγ

-martingale

(M̃α,G
γ (t))t∈[0,T ] has quadratic variation of order Ou(γ

d). The error term Rα,G
γ (T ) comes

from ignoring the action of the generator on (�d
δ )

−1∑
|y|��δ

η(y); as in [KL], chapter VII, we
can easily obtain that supt∈[0,T ] |Rα,G

γ (t)| tends to zero in probability and P -a.s., as γ → 0 and
δ → 0. This yields (4.23).

We will therefore through the rest of the proof ignore the action of the generator on the
non-local variable of gk,δ , and consider effectively gk,δ as a function only of η and α. Then it
is equivalent to proving (4.8) or

lim sup
δ→0

lim sup
c→0

lim sup
a→0

lim sup
γ→0

Eβ,α
µγ

[∣∣∣ ∫ T

0
γ d−1

∑
x∈
γ

Gs(γ x)[τxV
γ,c,a

k (ηs, α)

+τxLβ,α
γ gk,δ(ηs, α)] ds

∣∣∣] = 0. (4.25)

Next, split

V
γ,c,a

k (η, α) + Lβ,α
γ gk,δ(η, α) = Y

γ,c,a,δ

k (η, α) + Z
γ,c,a,δ

k (η, α), (4.26)

where

Y
γ,c,a,δ

k (η, α) = Jα
0,ek

+ Lα
γ gk,δ(η, α)

+
d∑

m=1

Dk,m(η[aγ −1](0))(2cγ −1)
−1

[η[aγ −1](cγ −1em) − η[aγ −1](−cγ −1em)],

Z
γ,c,a,δ

k (η, α) = (Jβ,α

0,ek
− Jα

0,ek
) + (Lβ,α

γ − Lα
γ )gk,δ(η, α)

−βγ

d∑
m=1

Dk,m(η[aγ −1](0))χ(η[aγ −1](0))((∂γ
mJ ) � πγ )(0; η).

(4.27)

To conclude the proof of the theorem, taking into account (4.25), it is enough to show the
two lemmas.

Lemma 4.2. For almost any disorder configuration α, for any function G ∈ C1,2([0, T ] ×
),

lim sup
δ→0

lim sup
c→0

lim sup
a→0

lim sup
γ→0

Eβ,α
µγ


∣∣∣∣
∫ T

0
γ d−1

∑
x∈
γ

Gs(γ x)τxY
γ,c,a,δ

k (ηs, α) ds

∣∣∣∣

 = 0

for k = 1, . . . , d.
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Lemma 4.3. For almost any disorder configuration α, for any function G ∈ C1,2([0, T ] ×
),

lim sup
δ→0

lim sup
c→0

lim sup
a→0

lim sup
γ→0

Eβ,α
µγ


∣∣∣∣
∫ T

0
γ d−1

∑
x∈
γ

Gs(γ x)τxZ
γ,c,a,δ

k (ηs, α) ds

∣∣∣∣

 = 0

for k = 1, . . . , d.

Proof of lemma 4.2. Set

Pγ,c,a,δ

k (G, s, η, α) = γ d−1
∑
x∈
γ

Gs(γ x)τxY
γ,c,a,δ

k (η, α). (4.28)

By corollary 3.7, it is enough to show that for any C > 0, for any function G, for almost any
α ∈ �D ,

lim sup
δ→0

lim sup
c→0

lim sup
a→0

lim sup
γ→0

∫ T

0
(sup specL2(µα,λ0 ){Pγ,c,a,δ

k (G, s, ·, α) + Cγ d−2Lα
γ }) ds = 0.

This is the main content of [F] and [FM], theorem 3.2, with the only observation that there
the term Lαgk,δ does not appear: in their case by stochastic calculus it is possible to show (see
[FM], formula (4.4)) that this term is irrelevant. �

Proof of lemma 4.3. We start by analysing the first addendum of Z
γ,c,a,δ

k , the difference
Jβ,α

0,ek
− Jα

0,ek
. Set

Fk
1 (η, α) = −β�′(θ(∇0,ek

Hα
s )(η))(η(ek) − η(0))2. (4.29)

By (4.6) we obtain

γ d−1
∑
x∈
γ

G(γ x)[Jβ,α
x,x+ek

− Jα
x,x+ek

] = γ d
∑
x∈
γ

G(γ x)((∂
γ

k J ) � η)(x)τxF
k
1 (η, α) + Ou(γ ).

Denote

Aa,γ ((ηs)s∈[0,T ]) =
∫ T

0
γ d−1



∑
x∈
γ

Gs(γ x)[Jβ,α
x,x+ek

(ηs) − Jα
x,x+ek

(ηs)]


 ds

−
∫ T

0
γ d

∑
x∈
γ

Gs(γ x)((∂
γ

k J ) � ηs)(x)

×

 1

(2aγ −1 + 1)d

∑
|y|�aγ −1

τx+yF
k
1 (ηs, α)


 ds.

The smoothness of G and J induce that, for any α ∈ �D ,

lim
a→0

lim sup
γ→0

sup
(ηs )s∈[0,T ]

|Aa,γ ((ηs)s∈[0,T ])| = 0. (4.30)

Recalling (3.29), write

F̃ k
1 (ρ) = E[Eµα,λ0(ρ)

(F k
1 )]. (4.31)

By applying (4.30) together with lemma 3.9 to the local function Fk
1 (η, α), we have P -a.s.

lim
a→0

lim
γ→0

Eβ,α
µγ


∣∣∣∣γ d

∑
x∈
γ

∫ T

0
G(γ x)τxBβ,1

k,γ,a(ηs, α) ds

∣∣∣∣

 = 0, (4.32)
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where

Bβ,1
k,γ,a(η, α) = γ −1(Jβ,α

0,ek
(η) − Jα

0,ek
(η)) − β((∂

γ

k J ) � πγ )(0; η)F̃ k
1 (η[aγ −1]).

Next we consider the second term of Z
γ,c,a,δ

k , the difference (Lβ,α − Lα)gk,δ , and repeat
the same steps as for the first term. Recalling that gk,δ is a local and bounded function, by
lemma 3.4 we have

(Lβ,α − Lα)gk,δ(η, α) =
d∑

m=1

∑
y∈
γ

γβ�′(θ(∇y,y+em
Hα

s )(η))(η(y + em) − η(y))((∂γ
mJ ) � η)(y)

×[∇y,y+em
gk,δ](η, α) + Ou(γ

2)Ou(�
−d),

where � is the diameter of the support of gk,δ . By the smoothness of J , a Taylor expansion
yields

γ d−1
∑
x∈
γ

G(γ x)τx(Lβ,α − Lα)gk,δ(η, α)

= γ d

d∑
m=1

∑
x∈
γ

G(γ x)((∂γ
mJ ) � πγ )(γ x; η)τxF

k,m,δ
2 (η, α) + Ou(γ )Ou(�

−d)

for the local and bounded functions F
k,m,δ
2 given by

F
k,m,δ
2 (η, α) = β

∑
y∈
γ

�′(θ(∇y,y+em
Hα

s )(η))(∇y,y+em
η(y))[∇y,y+em

gk,δ](η, α). (4.33)

Denote

Bβ,δ,2
k,γ,a(η, α) = γ −1(Lβ,α − Lα)gk,δ(η, α) −

d∑
m=1

((∂γ
mJ ) � πγ )(0; η)F̃

k,m,δ
2 (η[aγ −1](0))

+Ou(γ )Ou(�
−d).

By lemma 3.9, for any fixed δ > 0,

lim
a→0

lim
γ→0

Eβ,α
µγ


∣∣∣∣γ d

∑
x∈
γ

∫ T

0
G(γ x)τxBβ,δ,2

k,γ,a(ηs, α) ds

∣∣∣∣

 = 0. (4.34)

We conclude the proof by collecting the estimates (4.32) and (4.34) and using lemma 4.4
below. �

Lemma 4.4. For 1 � k, m � d ,

lim
δ→0

sup
0�ρ�1

|δk,mF̃ k
1 (ρ) + F̃

k,m,δ
2 (ρ) − βχ(ρ)Dk,m(ρ)| = 0. (4.35)

Proof. Applying corollary 3.11 with f (η) = g(η) = η(0) to (4.29), we have

F̃ k
1 (ρ) = E[Eµα,λ0(ρ)

(F k
1 )] = β

2
E

[∫
�(θ(∇0,ek

Hα
s )(η))(η(ek) − η(0))2 dµα,λ0(ρ)(η)

]
.

(4.36)
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Corollary 3.11 applied to (4.33), with f (η) = η(y) and g(η, α) = gk,δ(η, α), reversibility
and summation by parts imply that, for 1 � m � d and 1 � k � d,

F̃
k,m,δ
2 (ρ) ≡ E[Eµα,λ0(ρ)

(F2
k,m,δ)]

= − β

2

∑
y∈
γ

E[Eµα,λ0(ρ)

(�(θ(∇y,y+em
Hα

s )(η))(∇y,y+em
η(y))(∇y,y+em

gk,δ(η, α)))]

= β
∑
y∈
γ

E[Eµα,λ0(ρ)

(�(θ(∇y,y+em
Hα

s )(η))(η(y + em) − η(y))gk,δ(η, α))]

= − β(Jα
0,em

, gk,δ)ρ,0, (4.37)

where (., .)ρ,0 was defined in (4.18).
By (4.19) the terms F̃ k

1 (ρ) in (4.36) and F̃
k,m,δ
2 (ρ) in (4.37) can be written as

δk,mF̃ k
1 (ρ) = βVρ(Jα

0,ek
, Jα

0,em
), (4.38)

F̃
k,m,δ
2 (ρ) = βVρ(Jα

0,em
, Lαgk,δ). (4.39)

We obtain that

sup
0�ρ�1

β−1|δk,mF̃ k
1 (ρ) + F̃

k,m,δ
2 (ρ) − βχ(ρ)Dk,m(ρ)|

= lim sup
n↑∞

sup
0�ρ�1

∣∣∣∣∣Vρ

(
Jα

0,em
, Jα

0,ek
+

d∑
�=1

Dk,�(ρ)
ψe�

n,n

n
+ Lαgk,δ

)∣∣∣∣∣ .
By Schwartz inequality the right-hand side of this equality is bounded by

lim sup
n↑∞

sup
0�ρ�1

{
V 1/2

ρ (Jα
0,em

)V 1/2
ρ

(
Jα

0,ek
+

d∑
�=1

Dk,�(ρ)
ψe�

n,n

n
+ Lαgk,δ

)}
,

which is bounded (see (4.22)) by C
√

δ for some positive constant C. To conclude the proof
of the lemma it remains to let δ ↓ 0. �
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