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Abstract We consider a lattice gas interacting by the exclusion rule in the presence of a random field

given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different

densities. We show, in dimensions d ≥ 3, that the rescaled empirical density field almost surely, with respect

to the random field, converges to the unique weak solution of a quasilinear parabolic equation having the

diffusion matrix determined by the statistical properties of the external random field and boundary conditions

determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the

stationary regime, almost surely with respect to the random field, converges to the solution of the associated

stationary transport equation.

1 Introduction

In the last years there has been several papers devoted in understanding macroscopic properties of non

equilibrium systems. Typical examples are systems in contact with two thermostats at different temperature

or with two reservoirs at different densities. A mathematical model of open boundary systems is provided

by stochastic models of interacting particles systems performing a local reversible dynamics (for example

a reversible hopping dynamics) in a domain and some external mechanism of creation and annihilation of

particles on the boundary of the domain, modeling the reservoirs, which makes the full process non reversible.

There has been important classes of models, see for example [Sp], [ELS1,2] , [DFIP], [KLO] in which it has

been proved the law of large numbers for the empirical density in the stationary regime. Typical generic

feature of these systems is that they exhibit long range correlation in their steady state. More recently

breakthroughs were achieved analyzing the large deviations principle for the stationary measure. We refer

to [BSGJL1] and [BSGJL2] for a review of works on the statistical mechanics of non equilibrium processes

based on the analysis of large deviations properties of microscopic systems.

In this paper we consider a particles system evolving according to local conservative dynamics (Kawasaki)

with hard core exclusion rule and with rates depending on a quenched random field in a cylinder domain d ≥ 3

in which the basis, denoted Γ, are kept at different densities. The rates of the interaction are chosen so that

the system satisfies a detailed balance condition with respect to a family of random Bernoulli measures (the

random field Ising model at infinite temperature). To model the presence of the reservoirs, we superimpose

at the boundary, to the local-conservative dynamics, a birth and death process. The rates of this birth and

death process depend on the realizations of the random field and are chosen so that a random Bernoulli
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measure with a suitable choice of the chemical potential is reversible for it. This latter dynamic is of course

not conservative and keeps the fixed value of the density at the boundary. There is a flow of density through

the full system and the full dynamic is not reversible.

We derive for such a model the hydrodynamic limit dealing simultaneously both with the randomness

of the rates and with the open boundaries conditions. The rescaled empirical density field almost surely,

with respect to the random field, converges to the unique weak solution of the quasilinear parabolic equation

(2.15). In addition to this we prove the hydrostatics, i.e. the rescaled empirical density field almost surely,

with respect to the random field, converges under the unique stationary measure of the evolution process to

the stationary solution of (2.15). This is obtained deriving first the hydrodynamic for the empirical density

field distributed according to the stationary measure. Then we exploit that the stationary solution of (2.15)

is unique and is a global attractor for the macroscopic evolution. These two ingredients, together with the

weak compactness of the space of measures allow to conclude. Similar strategy for proving the hydrostatic

is used in the paper by Farfan Vargas, Landim and Mourragui, [FLM].

The bulk dynamic models electron transport in doped crystals. In this case the exclusion rule is given by

the Pauli principle and the presence of impurities in the crystals is the origin of the presence of quenched

random field, see [KW]. The transport properties of such systems in the case of periodic boundary condition

on Γ has been studied by Faggionato and Martinelli, [FM]. They derived in d ≥ 3, the hydrodynamic limit

and gave a variational formula for the bulk diffusion. Later, Quastel [Q] derived in all dimensions for the

same model investigated by [FM] the hydrodynamic limit for the local empirical density and proved some

regularity properties for the bulk diffusion, see for further comments Subsection 2.2.

Applying the method proposed by Quastel, we could extend our results in all dimensions. Since our aim

is to understand the role of the randomness in the non stationary and stationary regime and not the role of

dimensions in the bulk dynamics we state and prove our results in d ≥ 3. Dynamical Large deviations for

the same model and always with periodic boundary conditions have been derived in [MO] as special case of

a more general system discussed there. The bulk dynamics is of the so-called nongradient type. Roughly

speaking, the gradient condition says that the microscopic current is already the gradient of a function

of the density field. Further it is not translation invariant, for a given disorder configuration. To prove

the hydrodynamic behavior of the system, we follow the entropy method introduced by Guo, Papanicolaou

and Varadhan [GPV] toghether with the results of [FM]. The entropy method relies on an estimate of the

entropy of the states of process with respect to a reference invariant state. By the general theory of Markov

Processes the entropy of the state of a process with respect to an invariant state decreases in time. The main

problem is that in the model considered the reference invariant state is not explicitly known. To overcome

this difficulty we compute the entropy of the state of the process with respect to a product measure with

slowly varying profile. Since this measure is not invariant, the entropy does not need to decrease and we need

to estimate the rate at which it increases. This type of strategy has been used in previous papers dealing

with the same type of problems, see [KLO] and [LMS], which considered generalized exclusion process of non

gradient type. The main difference with the previous mentioned papers is the presence of the randomness

in the model considered here. This forces to consider on the boundary jump processes with rates depending

on the external random field. Important step to derive the final result is then a convenient application of

the ergodic theorem, see Proposition 3.4.
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2 The model and the main results

2.1. The model

We consider the d− dimensional lattice ZZd with sites x = (x1, . . . , xd) and canonical basis E = {e1, . . . , ed}
and we assume in all the paper that d ≥ 3. We denote by Λ := [−1, 1] × ITd−1, where ITd−1 is the (d − 1)-

dimensional torus of diameter 1 and by Γ the boundary of Λ.

Fix an integer N ≥ 1. Denote by ΛN ≡ {−N, · · · , N} × ITd−1
N the cylinder in ZZd of length 2N + 1 with

basis the (d − 1)-dimensional discrete torus ITd−1
N and by ΓN = {x ∈ ΛN |x1 = ±N} the boundary of ΛN .

The elements of ΛN will be denoted by letters x, y, . . . and the elements of Λ by u, v, . . ..

The disorder configuration is stochastically chosen by a translational invariant product measure IP on

ΣD = [−A,A]ZZ
d

, where A is a fixed positive number. We denote by IE the expectation with respect to

IP , and by α ≡ {α(x), x ∈ ZZd}, α(x) ∈ [−A,A], a disorder configuration in ΣD. A configuration α ∈ ΣD

induces in a natural way a disorder configuration αN on ΛN , by identifying a cube centered at the origin

of side 2N + 1 with ΛN . By a slight abuse of notation whenever in the following we refer to a disorder

configuration either on ΛN or on ZZd we denote it by α. We denote by SN ≡ {0, 1}ΛN and S ≡ {0, 1}ZZd

the configuration spaces, both equipped with the product topology; elements of SN or S are denoted by η,

so that η(x) = 1, resp 0, if the site x is occupied, resp empty, for the configuration η. Given α ∈ ΣD, we

consider the random Hamiltonian Hα : SN → IR,

Hα(η) = −
∑

x∈ΛN

α(x)η(x). (2.1)

We denote by µα,λ
N the grand canonical random Gibbs measure on SN associated to the Hamiltonian (2.1)

with chemical potential λ ∈ IR, i.e the random Bernoulli product measure

µα,λ
N (η) =

∏
x∈ΛN

{ e[α(x)+λ]η(x)

e[α(x)+λ] + 1

}
. (2.2)

When λ = 0, we simply write µα
N . We denote by µα,λ(·) and when λ = 0, µα(·) the measure (2.2) on the

infinite product space S. Moreover, for a probability measure µ and a bounded function f , both defined

on S or SN , we denote by Eµ(f) the expectation of f with respect to µ. We need to introduce also the

canonical measures να,N
ρ ,

να,N
ρ (·) = µα,λ

N (·|
∑

x∈ΛN

ηx = ρ|ΛN |)

for ρ ∈ [0, 1
|ΛN | , . . . , 1]. It is well known that the canonical and the grand canonical measures are closely

related if the chemical potential λ is chosen canonical conjugate to the density ρ, in the sense that the average

density with respect to µα,λ
N is equal to ρ. As in [FM] one can define the random empirical chemical potential

and the annealed chemical potential λ0(ρ). To our aim it is enough to consider λ0(ρ). For ρ ∈ [0, 1], the

function λ0(ρ) is defined as the unique λ so that

IE

[∫
η(0)dµα,λ(η)

]
= IE

[
eα(0)+λ

1 + eα(0)+λ

]
= ρ . (2.3)
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We will consider as reference measure the random Bernoulli product measure να,N
ρ(·) on SN defined for positive

profile ρ : Λ → (0, 1) by

να,N
ρ(·) (η) =

∏
x∈ΛN

{ e[α(x)+λ0(ρ(x/N))]η(x)

e[α(x)+λ0(ρ(x/N))] + 1

}
, (2.4)

if ρ(·) ≡ ρ is constant, we shall denote simply να,N
ρ(·) = να,N

ρ . We denote by ηx,y the configuration obtained

from η by interchanging the values at x and y:

ηx,y(z) =


η(x) if z = y

η(y) if z = x

η(z) otherwise,

(2.5)

and by ηx the configuration obtained from η by flipping the occupation number at site x:

ηx(z) =

{
η(z) if z 6= x

1− η(x) if z = x.
(2.6)

Further, for f : SN → IR, x, y ∈ ΛN , we denote

(∇x,yf)(η) = f(ηx,y)− f(η).

The disordered exclusion process on ΛN with random reservoirs at its boundary ΓN is the Markov process

on SN whose generator LN can be decomposed as

LN = L0
N + Lb

N , (2.7)

where the generators L0
N , Lb

N act on function f : SN → IR as

(
L0

Nf
)
(η) =

∑
e∈E

∑
x∈ΛN ,x+e∈ΛN

C(x, x + e; η) [(∇x,x+ef)(η)] , (2.8)

where e is a generic element of E , the rate

C(x, y; η) ≡ Cα(x, y; η) = exp
{
− (∇x,yHα)(η)

2

}
; (2.9)

and (
Lb

Nf
)
(η) =

∑
x∈ΓN

Cb(x/N, η)
[
f(ηx)− f(η)

]
. (2.10)

To define the rate Cb(x/N, η) we fix a function b(·) on Γ, representing the density of the reservoirs. We assume

that b(·) is the restriction on Γ of a smooth function γ(·) defined on a neighborhood V of Λ, γ : V → (0, 1),

γ ∈ C2(V ) and γ(u) = b(u) for u ∈ Γ. The rate Cb is chosen so that Lb
N is reversible with respect to να,N

γ(·)

Cb(x/N, η) = η(x) exp
{
−

α(x) + λ0(b( x
N ))

2

}
+ (1− η(x)) exp

{α(x) + λ0(b( x
N ))

2

}
. (2.11)
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The first term in (2.11) is the creation rate, the second one is the annihilation rate. Next we recall the

relevant properties of C(x, y; η):

a) detailed balance condition with respect to the measure (2.2),

b) positivity and boundedness: there exists a > 0 such that

a−1 ≤ C(x, y; η) ≤ a, (2.12)

c) translation covariant:

Cα(x, y; η) = Cτzα(x− z, y − z; τzη) = τzC
α(x− z, y − z; η) , (2.13)

where for z in ZZd, τz denotes the space shift by z units on S × ΣD defined for all η ∈ S, α ∈ ΣD and

g : S × ΣD → IR by

(τzη)(x) = η(x + z), (τzα)(x) = α(x + z), (τzg)(η, α) = g(τzη, τzα) . (2.14)

We omit to write in the notation the explicit dependence on the randomness α, unless there is an ambiguity.

The process arising from the full generator (2.7) is then a superposition of a dynamics with a conservation

law (the Kawasaki random dynamics) acting on the whole ΛN and a birth and death process acting on Γ.

Remark that if b(·) ≡ b0 for some positive constant b0, then the generator LN , see (2.7), is self-adjoint in

L2(να,N
b0

) and the measure να,N
b0

is the stationary measure for the full dynamics LN . In the general case,

when b(·) is not constant, since the Markov process on SN with generator (2.7), is irreducible for all N ≥ 1,

there exists always an unique invariant measure but in general cannot be written in an explicit form.

2.2. The macroscopic equation

The macroscopic evolution of the local particles density ρ is described by the quasi linear parabolic

equation 
∂tρ = ∇ ·

(
D(ρ)∇ρ

)
,

ρ(0, ·) = ρ0 ,

ρ(t, ·)
∣∣
Γ

= b(·) for t > 0 ,

(2.15)

where D(ρ) is the diffusion matrix given in (2.17), b(·) ∈ C2(Γ) and ρ0 : Λ → [0, 1] is the initial profile. The

diffusion matrix D(·) is the one derived in [FM]. To define it, let ∗

IG ≡ {g : S × ΛD → IR; local and bounded } , (2.16)

and for g ∈ IG, Γg(η) =
∑

x∈ZZd

(
τxg

)
(η, α). The Γg(η) is a formal expression, but the difference ∇0,eΓg(η) =

Γg(η0,e) − Γg(η) for e ∈ E is meaningful. For each ρ ∈ (0, 1), let D(ρ) = {Di,j(ρ), 1 ≤ i, j ≤ d} be the

symmetric matrix defined, for every a ∈ IRd, by the variational formula

(a ·D(ρ)a) =
1

2χ(ρ)
inf
g∈IG

d∑
i=1

IE

[
Eµα,λ0(ρ)

(
C(0, ei; η)

{
ai∇0,ei

η(0) + (∇0,ei
Γg)(η)

}2
)]

(2.17)

∗ A function g : S × ΛD → IR is local if the support of g, ∆g , i.e. the smallest subset of ZZd
such that g depends only

on {(η(x), α(x)) x ∈ ∆g}, is finite. The function g is bounded if supη supα |g(η, α)| < ∞.
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where λ0(ρ) is defined in (2.3), χ(ρ) is the static compressibility given by

χ(ρ) = IE

[∫
η(0)2dµα,λ0(ρ)(η)−

(∫
η(0)dµα,λ0(ρ)(η)

)2
]

, (2.18)

for a, b ∈ IRd, (a · b) is the scalar vector product of a and b and, recall, Eµα,λ0(ρ)
(·) is the expectation with

respect to µα,λ0(ρ), see after (2.2), the random Bernoulli product measure on S with annealed chemical

potential λ0(ρ). In Theorem 2.1 of [FM] it has been proved, for d ≥ 3 and for ρ ∈ (0, 1), the existence of

the symmetric diffusion matrix defined in (2.17). Further it has been proved that the coefficients Di,j(·) are

nonlinear continuous functions in the open interval (0, 1) and there exists a constant C > 1, depending on

dimensions and bound on the random field, such that

1I
C
≤ D(ρ) ≤ C1I ρ ∈ (0, 1) , (2.19)

where 1I is the d× d identity matrix. Quastel [Q], proved that the bulk diffusion is continuous on [0, 1] and
1
2−Holder continuous on the open interval. One expects the matrix D(·) to be a smooth function of ρ, [KW].

Methods has been developed to prove higher regularity for the bulk diffusion, see [B] and [LOV], but their

application to this model looks rather difficult.

We will assume all through the paper that D(·) is continuous in [0, 1] and Lipschitz in the open interval.

By weak solution of (2.15) we mean a function ρ(·, ·) : [0, T ]× Λ → IR satisfying

(IB1) ρ ∈ L2
(
(0, T );H1(Λ)

)
: ∫ T

0

ds
( ∫

Λ

‖ ∇ρ(s, u) ‖2du
)

< ∞ ; (2.20)

(IB2) For every function G(t, u) = Gt(u) in C1,2
c

(
[0, T ]×

◦
Λ

)
, where

◦
Λ=] − 1, 1[×ITd−1 and C1,2

c

(
[0, T ]×

◦
Λ

)
is the space of functions from [0, T ]×

◦
Λ to IR twice continuously differentiable in Λ with continuous time

derivative and having compact support in
◦
Λ we have

∫
Λ

du
{
GT (u)ρ(T, u)−G0(u)ρ(0, u)

}
−

∫ T

0

ds

∫
Λ

du (∂sGs)(u)ρ(s, u)

= −
∫ T

0

ds
{∫

Λ

du D(ρ(s, u))∇ρ(s, u) · ∇Gs(u)
}

;

(IB3) For any t ∈ (0, T ], Tr(ρ(t, ·)) = b(·), a.e., where the trace operator Tr(·) is the linear operator

from H1(Λ) to L2(Γ) defined as the continuous extension of the operator which associates to any function

G ∈ C(Λ) its boundary value: Tr(G) = G|Γ, see [EG].

(IB4) ρ(0, u) = ρ0(u). a.e.

Notice that, since the original particle model cannot have more than one particle at a lattice site any

solution ρ of (2.15) is between 0 and 1. The existence and uniqueness of the weak solution of (2.15) when
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(2.19) holds and D(·) is Lipschitz continuous for ρ ∈ (0, 1), can be done using standard analysis tools, see

[LSU]. In the appendix a proof of the existence and of uniqueness is provided as consequence of the existence

of the hydrodynamic limit and the comparison theorem proved for solutions of (2.15).

Stationary solution We denote by ρ̄ the stationary solution of (2.15), i.e. a function from Λ → [0, 1] so that

ρ̄ ∈ H1(Λ), for G ∈ C2
c (

◦
Λ

)
we have

∫
Λ

du D(ρ̄(u))∇ρ̄(u) · ∇G(u) = 0,

Tr(ρ̄(·)) = b(·), a.e.
(2.21)

Existence of the weak solution of (2.21) when (2.19) holds, D(·) Lipschitz continuous and b(·) smooth is

obtained applying standard analysis tools, see for example [GT]. We sketch it in Proposition 5.9.

2.3. The main results

For any T > 0, we denote by (ηt)t∈[0,T ] the Markov process on SN with generator N2LN starting from

η0 = η and by Pη := Pα
η its distribution when the initial configuration is η. We remind that we omit to write

explicitly the dependence on α. The Pη is a probability measure on the path space D([0, T ],SN ), which we

consider endowed with the Skorohod topology and the corresponding Borel σ−algebra. Expectation with

respect to Pη is denoted by Eη. If µN is a probability measure on SN we denote PµN (·) =
∫
SN

Pη(·)µN (dη)

and by EµN the expectation with respect to PµN . For η ∈ SN , denote by πN = πN (du; η) the empirical

measure defined by

πN =
1

Nd

∑
x∈ΛN

η(x) δx/N (du) , (2.22)

where δu(·) stands for the Dirac measure on Λ concentrated on u. Since η(x) ∈ {0, 1}, relation (2.22) induces

from PµN a distribution QµN on the Skorohod space D([0, T ],M1(Λ)), where M1(Λ) is the set of positive

Borel measures on Λ with total mass bounded by 1, endowed with the weak topology. Denote by M0
1(Λ) the

subset of M1(Λ) of all absolutely continuous measures w.r.t. the Lebesgue measure with density bounded

by 1:

M0
1(Λ) = {π ∈M1(Λ) : π(du) = ρ(u)du and 0 ≤ ρ(u) ≤ 1 a.e. } ,

M0
1(Λ) is a closed subset of M1(Λ) endowed with the weak topology and D([0, T ],M0

1(Λ)) is a closed subset

of D([0, T ],M1(Λ)) for the Skorohod topology. The space M1(Λ) is compact under the topology of weak

convergence. For a measure π ∈ M1(Λ) and a continuous function G : Λ → IR denote by < π,G > the

integral of G with respect to π

< π, G >=
∫

Λ

duG(u)π(du).

To state next theorem we need the following definition.

Definition Given ρ(u)du ∈ M0
1(Λ), a sequence of probability measures (µN )N≥0 on SN is said to

correspond to the macroscopic profile ρ if, for any smooth function G and δ > 0

lim
N→∞

µN
{∣∣∣ 1

Nd

∑
x∈ΛN

G(x/N)η(x)−
∫

Λ

G(u)ρ(u)du
∣∣∣ > δ

}
= 0. (2.23)
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Theorem 2.1 Let d ≥ 3 and assume that D(ρ) can be continuously extended to the closed interval [0, 1].

Let µN be a sequence of probability measures on SN corresponding to the initial profile ρ0. Then, IP a.s. the

sequence of probability measures (QµN )N≥0 is tight and all its limit points Q∗ are concentrated on ρ(t, u)du,

whose densities are weak solutions of the equation (2.15). Moreover if D(·) is Lipschitz continuous for

ρ ∈ (0, 1), then (QµN )N≥0 converges weakly, as N ↑ ∞, to Q∗. This limit point is concentrated on the

unique weak solution of equation (2.15).

Denote by να,N
s the unique invariant measure of the Markov process (ηt)t∈[0,T ] with generator N2LN . We

have the following:

Theorem 2.2 Let d ≥ 3, assume that D(ρ) can be continuously extended to the closed interval [0, 1] and

Lipschitz continuous for ρ ∈ (0, 1). For every continuous function G : Λ → IR and every δ > 0,

lim
N→∞

να,N
s

{∣∣∣ 1
Nd

∑
x∈ΛN

G(x/N)η(x)−
∫

Λ

G(u)ρ̄(u)du
∣∣∣ > δ

}
= 0, IP − a.e., (2.24)

where ρ̄(·) is the unique solution of (2.21).

3. Strategy of proof and basic estimates

3.1. The steps to prove Theorem 2.1

To prove the hydrodynamic behavior of the system we follow the non gradient method developed by

[FM] for this model, based on the Varadhan paper, [V], and the entropy method introduced by [GPV]. As

explained in the introduction, since the reference invariant state is not explicitly known, we compute the

entropy of the state of the process with respect to a product measure with slowly varying profile γ(·). We

prove in Lemma 3.8 that, provided γ(·) is smooth enough and takes the prescribed value b(·) at the boundary,

the rate to which the entropy increases is of the order of the volume, Nd, and for finite time T this implies

only a modification of the constant multiplying Nd.

We divide the proof of the hydrodynamic behavior in three steps: tightness of the measures (QµN )N≥1,

energy estimates and identification of the support of Q∗ as weak solution of (2.15) with fixed boundary

conditions. We then refer to [KL], Chapter IV, that presents arguments, by now standard, to deduce the

hydrodynamic behavior of the empirical measures from the preceding results and the uniqueness of the

weak solution of (2.15). We state without proving the first two steps, tightness of the measures and energy

estimates. The proof of them can be easily derived from results already in the literature, which we refer to,

see [FM] and [LMS].

Proposition 3.1 (Tightness) For almost any disorder configuration α ∈ ΣD, the sequence (QµN )N≥1 is

tight and all its limit points Q∗ are concentrated on absolutely continuous paths π(t, du) = ρ(t, u)du whose

density ρ is positive and bounded above by 1 :

Q∗
{

π : π(t, du) = ρ(t, u)du
}

= 1 , Q∗
{

π : 0 ≤ ρ(t, u) ≤ 1
}

= 1 . (3.1)
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Tightness for non gradient systems in contact with reservoirs is proven in a way similar to the one for non

gradient systems with periodic boundary conditions, see [KL], Chapter 7, Section 6. The main difference

relies on the fact that for systems in contact with reservoirs the invariant states are not product probability

measures and some additional argument is required. This can be proven as in [LMS], Section 6.

In the next step we prove that IP− a.s. every limit point Q∗ of the sequence (QµN
)N≥1 is concentrated

on paths whose densities ρ satisfy (2.20).

Proposition 3.2 IP− a.s., every limit points Q∗ of the sequence (QµN )N≥1 is concentrated on the trajec-

tories that satisfies (IB1).

The proof can be done applying arguments as in Proposition A.1.1. of [KLO]. However the latter proof

requires an application of Feynman-Kac formula, for which we have to replace our dynamic (2.7) (cf. [FM]).

We then show that IP− a.s. any limit point Q∗ is supported on densities ρ satisfying (2.15) in the weak

sense. This is proven in Proposition 3.3 and in Proposition 3.4 stated below. Proposition 3.3 takes in account

only the bulk dynamics and it is based on the [FM] results. The main step to prove it consists in replacing

the empirical current defined in (3.21) by a function of the density gradient. The proof of this important

point, following [FM], is given in Theorem 3.10. Proposition 3.4 takes in account the boundary dynamics.

For ` ∈ IN , x ∈ ΛN , with −N + ` ≤ x1 ≤ N − ` denote by η`(x) the average density of η in a cube of width

2` + 1 centered at x

η`(x) =
1

(2` + 1)d

∑
y:|y−x|≤`

η(y). (3.2)

For a function G on Λ, e ∈ E , ∂N
e G denotes the discrete (space) derivative in the direction e

(
∂N

e G
)
(x/N) = N [G((x + e)/N)−G(x/N)] with x and x + e ∈ ΛN , (3.3)

and to short notation we denote by ∂N
k G := ∂N

ek
G for 1 ≤ k ≤ d.

Proposition 3.3 Assume that D(ρ) defined in (2.17) can be continuously extended in [0, 1]. Then, IP−

a.s., for any function G in C1,2
c ([0, T ]×

◦
Λ) and any δ > 0, we have

lim sup
c→0

lim sup
a→0

lim sup
N→∞

PµN

(∣∣BG,N
a,c

∣∣ ≥ δ
)

= 0, (3.4)

where

BG,N
a,c = N−d

∑
x∈ΛN

G(T, x/N)ηT (x)−N−d
∑

x∈ΛN

G(0, x/N)η0(x)−N−d
∑

x∈ΛN

∫ T

0

∂sG(s, x/N)ηs(x)ds

+
∑

1≤k,m≤d

∫ T

0

dsN1−d
∑

x∈ΛN

(
∂N

k G
)
(s, x/N)

{
Dk,m

(
η[aN ]

s (x)
)

×
{

(2c)−1
[
η[aN ]

s (x + cNem)− η[aN ]
s (x− cNem)

]}}
.

(3.5)
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The proof is given in Subsection 3.3. Note that in the statement of Proposition 3.3 the function G has

compact support, so the boundary terms do not enter.

The last step states that IP− a.s., any limit points Q∗ of the sequence (QµN )N≥1 is concentrated on the

trajectories with fixed density at the boundary and equal to b(·):

Proposition 3.4 IP− a.s., any limit point Q∗ of the sequence (QµN )N≥1 is concentrated on the trajectories

that satisfy (IB3).

The proof is given in Subsection 3.4.

3.2. Basic estimates

Lemma 3.5 (Ergodic lemma) Let V : ΣD × Λ → IR be a bounded function, local with respect to the first

variable and continuous with respect to the second variable, that is for any α ∈ ΣD the function u → V (α, u)

is continuous and there exists an integer ` ≥ 1 such that for all u ∈ Λ the support of V (·, u) ⊂ {−`, · · · , `}d.

Then

lim
N→∞

N−d
∑

x∈ΛN

τxV (α, x/N) =
∫

Λ

IE
[
V (·, u)

]
du IP a.s.. (3.6)

Proof. We decompose the left hand side of the limit (3.6) in two parts

N−d
∑

x∈ΛN

τxV (α, x/N) = N−d
∑

x∈ΛN

(
τxV (α, x/N)− IE

[
V (·, x/N)

])
+ N−d

∑
x∈ΛN

IE
[
V (·, x/N)

]
−

∫
Λ

IE
[
V (·, u)

]
du .

By the stationary of IP and the continuity of u → IE
[
V (·, u)

]
, the second term of the the right hand side of

the last equality converges to 0 as N → ∞. The first term converges to 0, from Chebychef inequality and

the classical method of moments usually used in the proof of strong law of large numbers.

We start recalling the definition of relative entropy, which is the main tool in the [GPV] approach. Let

να,N
ρ(·) be the product measure defined in (2.4) and µ a probability measure on SN . Denote by H(µ|να,N

ρ(·) ) the

relative entropy of µ with respect to να,N
ρ(·) :

H(µ|να,N
ρ(·) ) = sup

f

{∫
f(η)µ(dη)− log

∫
ef(η)να,N

ρ(·) (dη)
}

,

where the supremum is carried over all bounded functions on SN . Since να,N
ρ(·) gives a positive probability to

each configuration, µ is absolutely continuous with respect to να,N
ρ(·) and we have an explicit formula for the

entropy:

H(µ|να,N
ρ(·) ) =

∫
log

{ dµ

dνα,N
ρ(·)

}
dµ . (3.7)

Further, since there is at most one particle per site, there exists a constant C, that depends only on ρ(·),
such that for all α ∈ ΣD

H(µ|να,N
ρ(·) ) ≤ CNd (3.8)
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for all probability measures µ on SN (cf. comments following Remark V.5.6 in [KL]). To estimate the entropy

of the states of the process with respect to the reference measure we define the following functionals from

L2(ν) to IR+:

D0
N

(
h, ν

)
=

1
2

∑
e∈E

∑
x,x+e∈ΛN

∫
C(x, x + e; η)

(
h(ηx,x+e)− h(η)

)2
dν(η) ,

Db
N

(
h, ν) =

1
2

∑
x∈ΓN

∫
Cb(x/N, η) (h(ηx)− h(η))2 dν(η) .

(3.9)

Lemma 3.6 Let γ : Λ → (0, 1) be a smooth function such that γ
∣∣
Γ

= b(·). For any α ∈ ΣD and a > 0

there exists a positive constant C0 ≡ C0(A, ‖∇γ‖∞) so that for any f ∈ L2
(
να,N

γ(·)
)
,∫

SN

f(η)L0
Nf(η)dνα,N

γ(·) (η) ≤ −
(
1− 1

2a

)
D0

N

(
f, να,N

γ(·)
)

+ C0N
d−2(a + 1)‖f‖2

L2(να,N

γ(·) )
, (3.10)

∫
SN

f(η)Lb
Nf(η)dνα,N

γ(·) (η) = −Db
N

(
f, να,N

γ(·)
)

. (3.11)

Proof. By (3.9) ,∫
SN

f(η)L0
Nf(η)dνα,N

γ(·) (η) = −D0
N (f, να,N

γ(·) )

+
1
2

∑
e∈E

∑
x,x+e∈ΛN

∫
C(x, x + e; η)

(
∇x,x+ef

)
(η)f(ηx,x+e)R1(x, x + e; η)dνα,N

γ(·) (η) ,

where

R1(x, x + e; η) =
(
∇x,x+eη(x)

)(
e(N−1∂N

e λ0(γ(x/N))) − 1
)

.

By the elementary inequality 2uv ≤ au2 + a−1v2 which holds for any a > 0, for any x, x + e ∈ ΛN∫
C(x, x + e; η)(∇x,x+ef)f(ηx,x+e)R1(x, x + e, η)dνα,N

γ(·) (η)

≤ 1
2a

∫
C(x, x + e; η)(∇x,x+ef)2dνα,N

γ(·) (η) +
a

2

∫
C(x, x + e; η)f(ηx,x+e)2(R1(x, x + e))2dνα,N

γ(·) (η) .

To conclude the proof it remains to use Taylor expansion and an integration by part in the second term of

the right hand side of the last inequality. On the other hand, since γ
∣∣
Γ

= b(·) the measure να,N
γ(·) is reversible

with respect to Lb
N . A simple computation shows that∫

SN

f(η)Lb
Nf(η)dνα,N

γ(·) (η) = −Db
N (f, να,N

γ(·) ) .

Lemma 3.7 Let ρ, ρ0 : Λ → (0, 1) be two smooth functions. There exists a positive constant C ′
0 ≡

C ′
0(A, ‖∇ρ0‖∞, ‖∇ρ‖∞) such that for any probability measure µN on SN and for any α ∈ ΣD,

D0
N

(√
dµN

dνα,N
ρ(·)

, να,N
ρ(·)

)
≤ 2 D0

N

(√
dµN

dνα,N
ρ0(·)

, να,N
ρ0(·)

)
+ C ′

0N
d−2 . (3.12)
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Proof. Denote by f(η) = dµN

dνα,N

ρ(·)
(η) and h(η) = dµN

dνα,N

ρ0(·)
(η). Since f(η) = h(η)

dνα,N

ρ0(·)(η)

dνα,N

ρ(·) (η)
we obtain for e ∈ E

and x, x + e ∈ ΛN the following∫
SN

C(x, x + e; η)
[
∇x,x+e

√
f(η)

]2

dνα,N
ρ(·) (η)

=
∫
SN

C(x, x + e; η)
[√

h(ηx,x+e)R2(x, x + e; η) +∇x,x+e

√
h(η)

]2

dνα,N
ρ0(·)(η)

≤ 2
∫
SN

C(x, x + e; η)
[
∇x,x+e

√
h(η)

]2

dνα,N
ρ0(·)(η)

+ 2
∫
SN

C(x, x + e; η)h(ηx,x+e)
[
R2(x, x + e; η)

]2
dνα,N

ρ0(·)(η) ,

where

R2(x, x + e; η) = exp
{
(1/2)N−1∂N

e [λ0(ρ(x/N))− λ0(ρ0(x/N))]∇x,x+eη(x)
}
− 1 .

We conclude the proof using Taylor expansion and integration by parts.

Denote by SN
t the semigroup associated to the generator N2LN . Given a probability measures µN on SN

denote by µN (t) the state of the process at time t : µN (t) = µNSN
t . Recall that γ: Λ → (0, 1) is a smooth

profile equal to b at the boundary of Λ. Let hN
t be the density of µN (t) with respect to να,N

γ(·) . Let L∗γ,N be

the adjoint of LN in L2(να,N
γ(·) ). It is easy to check that

∂th
N
t = N2L∗γ,NhN

t . (3.13)

Notice that L∗γ,N is not a generator because να,N
γ(·) is not an invariant measure for the Markov process with

generator LN . We denote by HN (t) the entropy of µN (t) with respect to να,N
γ(·) , see (3.7),

HN (t) := H(µN (t)|να,N
γ(·) ). (3.14)

Lemma 3.8 There exists positive constant C = C(‖∇γ‖∞) such that for any a > 0 and for any α ∈ ΣD

∂tHN (t) ≤ −2(1− a)N2D0
N (

√
hN

t , να,N
γ(·) )− 2N2Db

N (
√

hN
t , να,N

γ(·) ) +
C

a
Nd .

Proof. By (3.13) and the explicit formula for the entropy we have that

∂tHN (t) = N2

∫
SN

hN
t LN log

(
hN

t

)
dνα,N

γ(·) .

Using the basic inequality a
(
log b− log a

)
≤ −

(√
a−

√
b
)2 +

(
b− a

)
for positive a and b, we obtain

∂tHN (t) ≤ −2N2D0
N

(√
hN

t , να,N
γ(·)

)
− 2N2Db

N

(√
hN

t , να,N
γ(·)

)
+ N2

∫
SN

L0
NhN

t dνα,N
γ(·) + N2

∫
SN

Lb
NhN

t dνα,N
γ(·) .

(3.15)
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Since γ(u) = b(u) for u ∈ Γ, να,N
γ(·) is reversible with respect to Lb

N . This implies that

∫
SN

Lb
NhN

t dνα,N
γ(·) = 0.

Next we bound
∫
SN
L0

NhN
t dνα,N

γ(·) in terms of D0
N . Denote by R : IR → IR the function defined by R(u) =

eu − 1− u . A standard computation shows that

N2

∫
SN

L0
NhN

t dνα,N
γ(·)

= N2
∑
e∈E

∑
x,x+e∈ΛN

∫
C(x, x + e; η)hN

t (η)R
(
N−1∂N

e λ0(γ(x/N))∇x,x+eη(x)
)
dνα,N

γ(·) (η)

+ N
∑
e∈E

∑
x,x+e∈ΛN

(∂N
e λ0(γ(x/N))

∫
Wx,x+e(η)hN

t (η)dνα,N
γ(·) (η) ,

(3.16)

where Wx,x+e(η) is the current over the bond (x, x + e) :

Wx,x+e(η) ≡ C(x, x + e; η)
[
η(x)− η(x + e)

]
. (3.17)

We will often omit to write the dependence of Wx,x+e(η) on η. By Taylor expansion and the elementary

inequality |R(u)| ≤ u2

2 e|u|, we obtain using the fact that γ is smooth and hN
t is a probability density with

respect to να,N
γ(·) , that the first term of the right hand side of the (3.16) is bounded by C Nd for some positive

constant C. On the other hand integrating by part, applying the same computations as in Lemma 5.1 of

[LMS], we obtain that there exists a constant C0 = C(‖∇γ‖∞) so that for any a > 0

∫
Wx,x+eh

N
t dνα,N

γ(·) ≤ 1
a

∫
C(x, x + e; η)

(
∇x,x+e

√
hN

t

)2

dνα,N
γ(·) + C0

{
a + N−1

}
for x, x + e ∈ ΛN .

For z ∈ ΛN , M ∈ IN denote by ΛM (z) the intersection of a cube centered at z ∈ ΛN of edge 2M +1 with

ΛN , i.e

ΛM (z) := {z + ΛM} ∩ ΛN . (3.18)

For probability measure νN on SN , denote by D0
M,z(· , νN ) the Dirichlet form corresponding to jumps in

ΛM (z):

D0
M,z(f, νN ) =

1
2

∑
x,x+e∈ΛM (z)

∫
C(x, x + e; η)(∇x,x+ef(η))2dνN (η) . (3.19)

Similarly, for z ∈ ΓN define Db
M,z(· , νN ) the Dirichlet form corresponding to creation and destruction of

particles at sites in ΓN which are at distance less than M from z :

Db
M,z(f, νN ) =

1
2

∑
x∈ΓN∩ΛM (z)

∫
Cb(x/N, η)

(
f(ηx)− f(η)

)2
dνN (η) . (3.20)
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Fix any z ∈ ΓN denote by fz,N
t the Radon-Nikodym derivative of µN (t) with respect to να,N

b(z/N), the random

Bernoulli measure on SN with constant parameter equal to b( z
N ). Recall that we denoted by hN

t the Radon-

Nikodym derivative of µN (t) with respect to να,N
γ(·) and that b( z

N ) = γ( z
N ) for z ∈ Γ. We have the following

result.

Lemma 3.9 Take M ∈ IN , M < N . There exists a positive constant C0 = C(‖∇γ‖∞) depending only on

γ(·) such that for any z ∈ ΓN

D0
M,z

(√
fz,N

t , να,N
b(z/N)

)
≤ 2D0

M,z

(√
hN

t , να,N
γ(·)

)
+ C0

Md

N2
,

Db
M,z

(√
fz,N

t , να,N
b(z/N)

)
≤ 2Db

M,z

(√
hN

t , να,N
γ(·)

)
+ C0

Md+1

N2
.

The proof is similar to the proof of Lemma 3.7.

3.3. Proof of Proposition 3.3

We prove in this section Proposition 3.3. Let Q∗ be a limit point of the sequence (QµN )N≥1 and assume,

without loss of generality, that IP− a.s., QµN converges to Q∗. Fix a function G in C1,2
c ([0, T ]×

◦
Λ). For

α ∈ ΣD consider the PµN martingales with respect to the natural filtration associated with (ηt)t∈[0,T ],

MG
t ≡ MG,N,α

t and NG
t ≡ NG,N,α

t , t ∈ [0, T ], defined by

MG
t = < πN

t , Gt > − < πN
0 , G0 > −

∫ t

0

(
< πN

s , ∂sGs > +N2LN < πN
s , Gs >

)
ds ,

NG
t =

(
MG

t

)2 −
∫ t

0

{
N2LN

(
< πN

s , Gs >
)2 − 2 < πN

s , Gs > N2LN < πN
s , Gs >

}
ds .

(3.21)

A computation of the integral term of NG
t shows that the expectation of the quadratic variation of MG

t

vanishes as N ↑ 0. Therefore, by Doob’s inequality, for every δ > 0, IP−a.s.,

lim
N→∞

PµN

[
sup

0≤t≤T
|MG

t | > δ
]

= 0 . (3.22)

By (2.13) and since for any s ∈ [0, T ] the function Gs has compact support in
◦
Λ, a summation by parts

permits to rewrite the integral term of MG
t as

∫ t

0

< πN
s , ∂sGs > ds +

∫ t

0

{
N1−d

d∑
k=1

∑
x∈ΛN

(
∂N

k Gs

)
(x/N)Wx,x+ek

(ηs)
}

ds, (3.23)

where the current Wx,x+ek
is defined in (3.17). To localize the dynamics define for any 0 < r < 1

Λr = [−r, r]× ITd−1, ΛrN = {(x1, · · · , xd) ∈ ΛN : −rN ≤ x1 ≤ rN},

ΓrN = {x ∈ ΛrN : x1 = ±rN}.
(3.24)

Set, for 0 < a < c < 1, k = 1, . . . , d,

VVN,c,a
k (η, α) = NW0,ek

+
d∑

m=1

Dk,m

(
η[aN ](0)

) {
(2c)−1

[
η[aN ](cNem)− η[aN ](−cNem)

]}
. (3.25)
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Next theorem is the main step in the proof of Proposition 3.3.

Theorem 3.10 Assume that D(·) defined in (2.17) can be continuously extended in [0, 1]. Then, IP−a.s.,

for any G ∈ C1,2
c ([0, T ]×

◦
Λ),

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EµN

[ ∣∣∣N−d

∫ T

0

∑
x∈ΛN

Gs(x/N)τxVVN,c,a
k (ηs, α) ds

∣∣∣ ]
= 0 (3.26)

for k = 1, . . . , d.

Proof. As in in the proof of Theorem 3.2, Section 4, of [FM], by the regularity of the test function G, we

first replace the current Wx,x+ek
appearing in τxVVN,c,a

k (ηs, α) by its local mean around x. More precisely

for any ` ≥ 1 we have

lim
N→∞

EµN

[∣∣∣N−d+1

∫ T

0

∑
x∈ΛN

Gs(x/N)
[
Wx,x+ek

− W̃ `
x,x+ek

]
ds

∣∣∣] = 0,

where W̃ `
x,x+ek

is the local mean of the current

W̃ `
x,x+ek

=
1

(2`1 + 1)d

∑
|y−x|≤`1

Wy,y+ek

and `1 = `−
√

`.

The second step is to note that, since Gs(·) has compact support in
◦
Λ for all s ∈ [0, T ], we have∑

x∈ΛN

Gs(x/N)τx

(
Lb

Ng
)

= 0,

for any local function g ∈ IG, see (2.16). Then, by martingale methods IP -a.s.,

lim sup
N→∞

EµN

[ ∣∣∣ ∫ T

0

ds
(
N−d+1

∑
x∈ΛN

Gs(x/N)τxL0
Ng

)∣∣∣ ]
= 0 . (3.27)

By the regularity of Gs as done before, we can replace τxL0
Ng by its local mean.

Let 0 < θ < 1 such that for any t ∈ [0, T ], the support of the function Gt is a subset of Λ(1−2θ). Fix

a smooth function γθ: Λ → (0, 1) which coincides with b at the boundary of Λ and constant inside Λ(1−θ).

Denote by

ṼV
N,c,a

k,`,g (ηs) = NW̃ `
0,ek

+ N
1

(2`1 + 1)d

∑
|y|≤`1

τy(L0
Ng)

+
d∑

m=1

Dk,m

(
η[aN ](0)

) {
(2c)−1

[
η[aN ](cNem)− η[aN ](−cNem)

]}
,

and by ZN,c,a
k,`,g (G, η) the quantity

ZN,c,a
k,`,g

(
G, η

)
= N−d

∑
x∈ΛN

G(x/N)τxṼV
N,c,a

k,`,g (η) .
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The proof of (3.26) is achieved once we show that

inf
g∈IG

lim sup
c↓0,a↓0,`↑∞,N↑∞

EµN

[ ∣∣∣ ∫ T

0

ZN,c,a
k,`,g

(
Gs, ηs,

)
ds

∣∣∣ ]
= 0

for k = 1, . . . , d. Since the entropy of µN with respect to να,N
γθ(·) is bounded by Cθ|ΛN | for some finite constant

Cθ, by the entropy inequality

EµN

[ ∣∣∣ ∫ T

0

ZN,c,a
k,`,g

(
Gs, ηs

)
ds

∣∣∣ ]
≤ Cθ

B
+

1
BNd

log Eνα,N

γθ(·)

[
exp

{
BNd

∣∣∣ ∫ T

0

ZN,a,c
k,`,g

(
Gs, ηs

)
ds

∣∣∣}]
(3.28)

for any positive B. Since e|x| ≤ ex + e−x and lim supN−d log{aN + bN} ≤ max{lim sup N−d log aN ,

lim sup N−d log bN}, we may remove the absolute value in the second term of (3.28), provided our estimate

remains in force if we replace G by −G. By the Feynman-Kac formula,

1
BNd

log Eνα,N

γθ(·)

[
exp

{
BNd

∫ T

0

ZN,a,c
k,`,g

(
Gs, ηs

)
ds

}]
≤ 1

BNd

∫ T

0

λ`,g
N,c,a(Gs) ds ,

where λ`,g
N,c,a(Gs) is the largest eigenvalue of the N2{Lsym

N + BZN,c,a
k,`,g (Gs, η)} where Lsym

N := 1
2 (LN +L∗γθ,N )

and L∗γθ,N is the adjoint of LN in L2(να,N
γθ(·)). By the variational formula for the largest eigenvalue, for

s ∈ [0, T ], we have that

1
BNd

λ`,g
N,c,a(Gs) = sup

f

{∫
ZN,c,a

k,`,g

(
Gs, η

)
f(η)να,N

γθ(·)(dη) +
N2−d

B
< LN

√
f,

√
f >γθ(·)

}
.

In this formula the supremum is carried over all densities f with respect to να,N
γθ(·). Since γθ(·) coincides with

b(·) on Γ, Lb
N is reversible with respect to γθ(·), so that < Lb

N

√
f,
√

f >γθ(·) is negative. We then apply

(3.10) of Lemma 3.6 to estimate < LN

√
f,
√

f >γθ(·) by −(1/2)D0
N (
√

f, να,N
γθ(·)) + C ′

θN
d−2 for some constant

C ′
θ. To prove the theorem we need to show that

inf
g∈IG

lim sup
c↓0,a↓0,`↑∞,N↑∞

∫ T

0

ds sup
f

{∫
ZN,c,a

k,`,g

(
Gs, η

)
f(η)να,N

γθ(·)(dη)− 1
B

N2−dD0
N (

√
f, να,N

γθ
)
}

= 0

for every B > 0 and then let B ↑ ∞. Notice that for N large enough and a, c small enough, the function

ZN,c,a
k,`,g (Gs, η) depends on the configuration η only through the variables {η(x), x ∈ Λ(1−θ)N}. Since γθ(·)

is constant, say equal to γ0 in Λ(1−θ), we may replace να,N
γθ(·) in the previous formula by να,N

γ0
. The να,N

γ0
is

reversible for L0
N and therefore D0

N (· , να,N
γ0

) is the Dirichlet form associated to the generator L0
N . Since the

Dirichlet form is convex, it remains to show that

inf
g∈IG

lim sup
c↓0,a↓0,`↑∞,N↑∞

∫ T

0

ds sup
f

{∫
ZN,c,a

k,`,g

(
Gs, η

)
f(η)να,N

γ0(·)(dη)− 1
B

N2−dD0
N (

√
f, να,N

γ0
)
}

= 0

for every B > 0. This result has been proved in [FM], Proposition 4.1.

Proof of Proposition 3.3: By (3.21), (3.23) and (3.25), applying Theorem 3.10 we obtain (3.4).

3.4. Proof of Proposition 3.4
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For a > 0, u ∈ Λ denote

ιa(u) =
1

|
[
− a, a

]d ∩ Λ|
1I{[

−a,a
]d
∩Λ

}(u); (3.29)

and for A ⊂ Λ define the sets A± as

A+ = {(u1, . . . , ud) ∈ A : u1 > 0}, A− = {(u1, . . . , ud) ∈ A : u1 < 0} . (3.30)

We define similarly A+
N and A−

N when AN ⊂ ΛN . Let G(·, ·) ∈ C1,2 ([0, T ]× Λ), µ ∈ D([0, T ],M1(Λ)) and

for 0 < a < c < 1, define the following functional

F̂G
a,c

(
µ(·, ·)

)
=

∫ T

0

ds

∫
Λ(1−c)

du
{

Gs(u) (2c)−1
[(

µs ? ιa
)
(u + ce1)−

(
µs ? ιa

)
(u− ce1)

]}
+

∫ T

0

ds

∫
Λ

du∂e1Gs(u)
(
µs ? ιa

)
(u)−

∫ T

0

ds
{∫

Γ

b(u)n1(u)Gs(u)dS
}

,

(3.31)

where Gs(u) ≡ G(s, u), n=(n1, . . . ,nd) is the outward unit normal vector to the boundary surface Γ and dS

is the surface element of Γ. The proof of Proposition 3.4 follows from the next lemma.

Lemma 3.11 For G(·, ·) ∈ C1,2 ([0, T ]× Λ), IP a.s. we have

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EQµN

[∣∣∣F̂G
a,c

(
µN (·, ·)

)∣∣∣] = 0.

Proof. To short notation, denote fs(u) := (µs ? ιa
)
(u). Taylor expanding we have that∫

Λ(1−c)

du
{

Gs(u) (2c)−1
[
fs(u + ce1)− fs(u− ce1)

]}
=

1
2c

∫
(Λ\Λ(1−2c))+

Gs(u− ce1)fs(u)du− 1
2c

∫
(Λ\Λ(1−2c))−

Gs(u + ce1)fs(u)du

−
∫

Λ(1−2c)

∂e1Gs(u)fs(u)du + c

∫
Λ(1−2c)

R(G, c, s, u)fs(u)du,

(3.32)

where |R(G, c, s, u)| ≤ supu∈Λ sups∈[0,T ] |∂2
e1

Gs(·)|. Since fs(u) ≤ 1 uniformly in s and u∣∣∣∣∣
∫

Λ(1−c)

R(G, c, s, u)fs(u)du

∣∣∣∣∣ ≤ 2 sup
u∈Λ

sup
s∈[0,T ]

|∂2
e1

Gs(u)|, (3.33)

and ∣∣∣∣∣
∫

Λ(1−2c)

∂e1Gs(u)fs(u)du−
∫

Λ

∂e1Gs(u)fs(u)du

∣∣∣∣∣ ≤ 2c sup
u∈Λ

sup
s∈[0,T ]

|∂e1Gs(u)|.

Taking in account (3.32), (3.29) and (3.33) the lemma is then proven once we show that IP− a.s. the

following holds

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EµN

[∣∣∣ ∫ T

0

ds
{ 1

2cNd

∑
x∈(Λ(1−a)N\Λ(1−a−2c)N )±

Gs(
x

N
)ηaN

s (x)

− 1
Nd−1

∑
x∈Γ±

N

b(
x

N
)Gs(

x

N
)
}∣∣∣] = 0 ,

(3.34)
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where for 0 < ε < 1, ΛεN and (ΛεN )+ are defined in (3.24) and below (3.30). By adding and subtracting

the same quantity in the expectation of (3.34), it is easy to see that the limit (3.34) follows once the next

two lemmas are proven.

Lemma 3.12 For G(·, ·) ∈ C1,2 ([0, T ]× Λ), IP a.s. we have

lim
`→∞

lim sup
c→0

lim sup
a→0

lim sup
N→∞

EµN

[∣∣∣ ∫ T

0

ds
{ 1

2cNd

∑
x∈(Λ(1−a)N\Λ(1−a−2c)N )±

Gs(x/N)ηaN
s (x)

− 1
Nd−1

∑
x∈Γ±

(1− `
N

)N

Gs(x/N)η`
s(x)

}∣∣∣] = 0 .

(3.35)

Lemma 3.13 For G(·, ·) ∈ C1,2 ([0, T ]× Λ), IP a.s. we have

lim
`→∞

lim sup
N→∞

EµN

[∣∣∣ ∫ T

0

ds
{ 1

Nd−1

∑
x∈Γ±

(1− `
N

)N

Gs(x/N)η`
s(x)

− 1
Nd−1

∑
x∈Γ±

N

b(x/N)Gs(x/N)
}∣∣∣] = 0 .

(3.36)

Proof of Lemma 3.12. The summation in (3.35) contains two similar terms. We consider the one

corresponding to the summation of the right hand side of ΛN (i.e. the one with signe +). By Taylor

expansion applied to the function G, the expectation in the statement of the lemma is bounded above by

EµN

[∣∣∣ ∫ T

0

ds
1

Nd−1

∑
x̌∈ITd−1

N

Gs(1,
x̌

N
)
{ 1

2cN

N(1−a)∑
x1=N(1−a−2c)+1

(
ηaN

s (x1, x̌)− η`
s(N − `, x̌)

)}∣∣∣] + R(N, a, c,G) ,

where for x1 ∈ [−N,N ], x̌ = (x2, · · · , xd) ∈ ITd−1
N the vector (x1, x̌) stands for the element (x1, x2, · · · , xd) ∈

ΛN . We denoted by R(N, a, c,G) a quantity so that for G ∈ C1,2 ([0, T ]× Λ),

lim sup
c→0

lim sup
a→0

lim sup
N→∞

|R(N, a, c, G)| = 0. (3.37)

The next step consists in replacing the density average over a small macroscopic box of length aN by a large

microscopic box. More precisely, for N large enough, the expectation of the last quantity is bounded above

by

C‖G‖∞ sup
2`<|y|≤2Nc

EµN

[ ∫ T

0

ds
1

Nd−1

∑
x̌∈ITd−1

N

∣∣∣η`
s

(
(N − `, x̌) + y

)
− η`

s(N − `, x̌)
∣∣∣] + R(N, a, c, `) , (3.38)

where for all `, R(N, a, c, `) satisfy (3.37) and C is a positive constant. Observe that the first term of the

previous formula is not depending on a but only on c,N and `.
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In view of the estimate (3.12) and Lemma 3.8 on the Dirichlet form D0
N and the entropy, by the usual

two blocks estimate, the first term of (3.38) converges to 0 an N ↑ ∞, c ↓ 0 and ` ↑ ∞. This concludes the

proof of Lemma 3.12.

Proof of Lemma 3.13. The summation in (3.36) contains two similar terms, we consider the one

corresponding to the summation of the right hand side of ΛN . Taylor expanding Gs(·) we bound above the

expectation in (3.36) by

‖G‖∞
1

Nd−1

∑
y∈Γ+

N

EµN

[ ∫ T

0

ds
∣∣∣η`

s(y − `e1)− b(y/N)
∣∣∣] + C

`

N
, (3.39)

where C is a positive constant depending on T and ‖∇G‖∞. For any fixed positive integer ` denote by

Γ`
0 = {(0, x̂) : x̂ ∈ ITd−1

N , |x̂| ≤ `} = ({0} × ITd−1
N ) ∩ Λ`(0), for notation see (3.18). For u ∈ Γ, denote

D̃b,u
`,0

(
f, ν

)
=

1
2

∑
x∈Γ`

0

∫
C̃b

0(u, x, η)
(
f(ηx)− f(η)

)2
dν(η) ,

where

C̃b
0(u, x, η) = η(x) exp

{
− α(x) + λ0(b(u))

2

}
+ (1− η(x)) exp

{α(x) + λ0(b(u))
2

}
. (3.40)

The difference with the rate in (2.11) is that here u is fixed.

Let να,N
b(u) be the product measure with constant profile b(u). Let f : SN → IR, denote by f ` the conditional

expectation of f with respect to the σ-algebra generated by {η(z) : z ∈ Λ`(0)} :

f `(ξ) =
1

να,`
b(u)(ξ)

∫
1I{η; η(z)=ξ(z), z∈Λ`(0)}f(η)dνα,N

b(u) (η) for all ξ ∈ {0, 1}Λ`(0) ;

where να,`
b(u) is the restriction of να,N

b(u) to {0, 1}Λ`(0).

Note that
∣∣∣η`(0)− b(u)

∣∣∣ depends only on coordinates on the box Λ`(0), then by Fubini’s Theorem,

EµN

[ ∫ T

0

ds
∣∣∣η`

s(y − `e1)− b(y/N)
∣∣∣] = T

∫ ∣∣∣η`(0)− b(y/N)
∣∣∣(τ−(y−`e1)f̄

y,N
T

)`(η)dνα,`
b( y

N )
(η) (3.41)

where f̄y,N
T = 1

T

∫ T

0
fy,N

s ds and for all 0 ≤ s ≤ T , fy,N
s is the density of µN

s with respect to the product mea-

sure να,N
b( y

N )
with constant profile b( y

N ). The density
(
τ−(y−`e1)f̄

y,N
T

)` stands for the conditional expectation

of τ−(y−`e1)f̄
y,N
T with respect to the σ-algebra generated by {η(z) : z ∈ Λ`(0)}.

Remark that, since the Dirichlet form is convex and since the conditional expectation is an average,

D̃
b, y

N

`,0

(√(
τ−(y−`e1)f̄

y,N
T

)`
, να,`

b(y/N)

)
≤ D̃

b, y
N

`,0

(√
τ−(y−`e1)f̄

y,N
T , να,N

b(y/N)

)
= Db

`,y−`e1

(√
f̄y,N

T , να,N
b(y/N)

)
≤ 1

T

∫ T

0

Db
`,y−`e1

(√
fy,N

s , να,N
b(y/N)

)
ds .

(3.42)
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Applying Lemma 3.9 we obtain from (3.42)

N1−d
∑

y∈ΓN

D̃
b, y

N

`,0

(√(
τ−(y−`e1)f̄

y,N
T

)`
, να,`

b(y/N)

)

≤ 1
T

∫ T

0

{
N1−d

∑
y∈ΓN

Db
`,y−`e1

(√
fy,N

s , να,N
b(y/N)

)}
ds

≤ 2
1
T

∫ T

0

{
N1−d

∑
y∈ΓN

Db
`,y−`e1

(√
hN

s , να,N
γ(·)

)}
ds + C0

`d+1

N2

≤ CT

N
+ C0

`d+1

N2
,

(3.43)

for some constant CT that depends on T . By the same argument we obtain the bound on the Dirichlet form

D0
`,0,

N1−d
∑

y∈ΓN

D0
`,0

(√(
τ−(y−`e1)f̄

y,N
T

)`
, να,`

b(y/N)

)
≤ CT

N
+ C0

`d

N2
. (3.44)

Therefore, for N large enough, for all positive integer k ≥ 1 we can bound the expectation in (3.39) as

following

1
Nd−1

∑
y∈Γ+

N

EµN

[ ∫ T

0

ds
∣∣∣η`

s(y − `e1)− b(y/N)
∣∣∣]

≤ 1
Nd−1

∑
y∈Γ+

N

{∫ ∣∣∣η`(0)− b(y/N)
∣∣∣(τ−(y−`e1)f̄

y,N
T

)`
dνα,`

b(y/N)(η)− k D0
`,0

(√(
τ−(y−`e1)f̄

y,N
T

)`
, να,`

b(y/N)

)

− k D̃
b, y

N

`,0

(√(
τ−(y−`e1)f̄

y,N
T

)`
, να,`

b(y/N)

)}
+ 2

k

N

(
CT + C0

`d(` + 1)
N

)
.

This last expression is bounded above by

1
Nd−1

∑
y∈Γ+

N

sup
f∈A

y
N
`

{∫ ∣∣∣η`(0)− b(y/N)
∣∣∣f(η)dνα,`

b(y/N)(η)− k D0
`,0

(√
f, να,`

b(y/N)

)

− k D̃
b, y

N

`,0

(√
f, να,`

b(y/N)

)}
+ 2

k

N

(
CT + C0

`d(` + 1)
N

)
,

(3.45)

where, for u ∈ Γ,

Au
` =

{
f : f ≥ 0,

∫
f(ξ)dνα,`

b(u)(ξ) = 1
}

.

Further, since the function

u → sup
f∈Au

`

{∫ ∣∣∣η`(0)− b(u)
∣∣∣f(η)dνα,`

b(u)(η)− k D0
`,0

(√
f, να,`

b(u)

)
− k D̃b,u

`,0

(√
f, να,`

b(u)

)}
is continuous on Γ, from Lemma 3.5, for all positive integers ` and k, the limit when N ↑ ∞ of the expression

(3.45) is equal to∫
Γ+

du IE
[

sup
f∈Au

`

{∫ ∣∣∣η`(0)− b(u)
∣∣∣fdνα,`

b(u)(η)− k D0
`,0

(√
f, να,`

b(u)

)
− k D̃b,u

`,0

(√
f, να,`

b(u)

)}]
.
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Since
∫ ∣∣∣η`(0) − b(u)

∣∣∣fdνα,`
b(u)(η) ≤ Cb for some positive constant Cb that depends on ‖b‖∞, the integral on

Γ+ in the last expression is bounded by∫ +

Γ

du IE
[

sup
f∈Au

`,k,Cb

{∫ ∣∣∣η`(0)− b(u)
∣∣∣f(η)dνα,`

b(u)(η)
}]

,

where for a positive constant C, Au
`,k,C is the following set of densities,

Au
`,k,C =

{
f ∈ Au

` , D̃b,u
`,0

(√
f, να,`

b(u)

)
≤ C

k
, D0

`,0

(√
f, να,`

b(u)

)
≤ C

k

}
.

We first consider the limit when k ↑ ∞ and use the usual technics in the replacement lemma. Since for any

` > 1, any constant C > 0 and any u ∈ Γ the sets Au
`,k,C are compacts for the weak topology, for all ` > 1

lim sup
k→∞

sup
f∈Au

`,k,C

{∫ ∣∣∣η`(0)− b(u)
∣∣∣f(η)dνα,`

b(u)(η)
}

= sup
f∈Au

`,0

{∫ ∣∣∣η`(0)− b(u)
∣∣∣f(η)dνα,`

b(u)(η)
}

,

where

Au
`,0 =

{
f ∈ Au

` , D̃b,u
`,0

(√
f, να,`

b(u)

)
= 0 , D0

`,0

(√
f, να,`

b(u)

)
= 0

}
.

By dominated convergence theorem, it is then enough to show that,

lim sup
`→∞

IE
[

sup
f∈Au

`,0

{∫ ∣∣∣η`(0)− b(u)
∣∣∣f(η)dνα,`

b(u)(η)
} ]

= 0 .

Now, it is easy to see that, due to the presence of the jumps of particles in the Dirichlet form D0
`,0 and the

presence of the creation and destruction of particles in D̃b,u
`,0 the set Au

`,0 = {1}. Thus, to conclude the proof

of the lemma, it remains to apply the usual law of large numbers.

Proof of Proposition 3.4 Let Q∗ be a limit point of the sequence (QµN )N≥1 and let (QµNk )k≥1 be

a sub-sequence converging to Q∗. By Lemma 3.2, Q∗ is concentrated on the trajectories that are in

L2([0, T ];H1(Λ)). For 0 < c < 1 and for µ(·, ·) ∈ D([0, T ],M0
1(Λ)), such that µ(t, du) = ρ(t, u)du with

ρ(·, ·) ∈ L2([0, T ];H1(Λ)), denote by FG
c (µ) the functional

FG
c

(
µ(·, ·)

)
=

∫ T

0

ds

∫
Λ(1−c)

du
{

Gs(u) (2c)−1
[
ρ(s, u + ce1)− ρ(s, u− ce1)

]}
+

∫ T

0

ds

∫
Λ

du∂e1Gs(u)ρ(s, u)−
∫ T

0

ds
{∫

Γ

b(u)n1(u)Gs(u)dS
}

.

From Lemma 3.11 and the continuity of the function µ → F̂G
a,c(µ), we have

lim sup
c→0

EQ∗
[∣∣∣FG

c (µ)
∣∣∣] = 0 . (3.46)

On the other hand, an integration by parts and Taylor expansion up to the second order of the function

Gs(·) permit to rewrite FG
c as

FG
c

(
µ(·, ·)

)
=

∫ T

0

1
2c

∫
(Λ\Λ(1−2c))+

Gs(u)ρ(s, u)duds−
∫ T

0

1
2c

∫
(Λ\Λ(1−2c))−

Gs(u)ρ(s, u)duds

−
∫ T

0

ds

∫
Γ

b(u)n1(u)Gs(u)dS + R(c) ,
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where R(c) ≡ R(G, c) is a function vanishing as c ↓ 0. Further one has, see Theorem 5.3.2. of [EG], that

lim
r→0

1
|B(u, r) ∩ Λ|

∫
B(u,r)∩Λ

ρ(s, y)dy = Tr(ρ(s, u)) a.e u ∈ Γ,∀s ∈ [0, T ], (3.47)

and then by dominated convergence theorem

lim
c→0

FG
c

(
µ(·, ·)

)
=

∫ T

0

ds

∫
Γ

(
Tr(ρ(s, u))− b(u)

)
n1(u)Gs(u)dS .

This together with (3.46) implies

EQ∗
[∣∣∣ ∫ T

0

ds

∫
Γ

(
Tr(ρ(s, u))− b(u)

)
n1(u)Gs(u)dS

∣∣∣] = 0 ,

which concludes the proof.

4 Proof of Theorem 2.2

Denote by Qs
N := QN,α

νs
α,N the probability measure on the Skorohod space D

(
[0, T ],M

)
induced by the

Markov process (πN
t ) ≡ (πN (ηt)), when the initial measure is νs

α,N . The main problem in proving Theorem

2.2 is that we do not know that the empirical initial measure at time zero converges to a macroscopic profile

according to definition (2.23). If this would be the case the result would be a corollary of Theorem 2.1. Taking

this in account we first prove that Qs
N is a tight sequence and that all its limit points are concentrated

on weak solution of the hydrodynamic equation for some unknown initial profile. This is in contrast with

the usual hydrodynamic limit, in which one associates the initial empirical measure to a profile. Then we

show the uniqueness and the global actractivity of the stationary solution of (2.21) for the evolution (2.15)

to conclude.

Denote by AT ⊂ D
(
[0, T ],M

)
the class of profiles ρ(·, ·) that satisfies conditions (IB1), (IB2) and (IB3).

The first step to show Theorem 2.2 consists in proving that all limit points of the sequence (Qs
N ) are

concentrated on AT :

Proposition 4.1 The sequence of probability measures (Qs
N ) is weakly relatively compact and all its

converging subsequences converge to the some limit Qs
∗ that is concentrated on the absolutely continuous

measures π(t, du) = ρ(t, u)du whose density ρ satisfying (IB1), (IB2) and (IB3).

The proof of Proposition 4.1 follows the same steps needed to show Theorem 2.1. We just have to show

the analogous of Lemmas 3.6, 3.7, 3.8 and 3.9 when the measure µN in the statements of these lemmas is

replaced by νs
α,N . The only lemma to be slightly modified is Lemma 3.8, see Lemma 4.2 given next. Recall

that γ: Λ → (0, 1) is a smooth profile equal to b at the boundary of Λ. Let hN be the density of νs
α,N with

respect to the measure να,N
γ(·) .

Lemma 4.2 There exists positive constant C = C(‖∇γ‖∞) depending only on γ(·) such that for any a > 0

(1− a)D0
N (
√

hN , να,N
γ(·) ) +Db

N (
√

hN , να,N
γ(·) ) ≤ C

a
Nd−2 .
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Proof. By the stationary of νs
α,N ,

∂tHN (t) =
∫
SN

hNLN log
(
hN

)
dνα,N

γ(·) = 0 .

Recalling that the generator LN has two pieces and applying the inequality a
(
log b− log a

)
≤ −

(√
a−

√
b
)2+(

b− a
)

for positive a and b, we obtain

0 =
∫
SN

hNLN log
(
hN

)
dνα,N

γ(·) ≤ −2N2D0
N

(√
hN , να,N

γ(·)
)
− 2N2Db

N

(√
hN , να,N

γ(·)
)

+ N2

∫
SN

L0
NhNdνα,N

γ(·) + N2

∫
SN

Lb
NhNdνα,N

γ(·) .

We then apply the same computation as in the proof of Lemma 3.8, ((3.15) and (3.16)).

Proof of Theorem 2.2

Let Qs
∗ be a limit point of (Qs

N ) and (Qs
Nk) be a sub-sequence converging to Qs

∗. Let ρ̄ be the stationary

solution of (2.15), see (2.21). We have by Proposition 4.1 the following:

lim
k→∞

Qs
Nk

{∣∣∣〈πN
T , G

〉
−

〈
ρ(u)du,G

〉∣∣∣}
= Qs

∗
{∣∣∣〈ρ(T, ·), G

〉
−

〈
ρ(u)du,G

〉∣∣∣1I{AT }
(
ρ
)}

≤ ‖G‖∞Qs
∗
{∥∥ρ(T, ·)− ρ(·)

∥∥
1
1I{AT }

(
ρ
)
}
}

,

where ‖v‖1 denotes the L1(Λ) norm of v. By the stationary of νs
α,N

Qs
Nk

{∣∣∣〈πN
T , G

〉
−

〈
ρ(u)du,G

〉∣∣∣} = Qs
Nk

{∣∣∣〈πN , G
〉
−

〈
ρ(u)du,G

〉∣∣∣}.

Denote by ρ0(·, ·) (resp. ρ1(·, ·)) the element of AT with initial condition ρ0(0, ·) ≡ 0 (resp. ρ1(0, ·) ≡ 1).

From Lemma 5.7, each profile ρ(·, ·) ∈ AT is such that for all t ≥ 0, λ
{

u ∈ Λ : 0 ≤ ρ0(t, u) ≤ ρ(t, u) ≤

ρ1(t, u) ≤ 1
}

= 1 and λ
{

u ∈ Λ : ρ0(t, u) ≤ ρ(u) ≤ ρ1(t, u)
}

= 1, where λ is the Lebesgue measure on Λ.

Therefore

lim
k→∞

Qs
Nk

{∣∣∣〈πN , G
〉
−

〈
ρ(u)du,G

〉∣∣∣} ≤ ‖G‖∞
∥∥ρ0(T, ·)− ρ1(T, ·)

∥∥
1

, IP − a.s..

Note that the left hand side does not depend on T . To conclude the proof, it is enough to let T ↑ ∞ and to

apply Theorem 5.10.
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5 Appendix

In this section we prove the existence and uniqueness of the weak solution of (2.15) and (2.21). Further

we show, in Theorem 5.10 the global stability of the stationary solution of (2.15). The proof of these results

is based on an extensive use of monotone methods, see [S]. We were not able to find the precise reference in

the literature, so we briefly sketch them for completeness.

We need to introduce some extra notation. Let C1,2
(
[0, T ]× Λ

)
be the space of functions from [0, T ]× Λ

to IR twice continuously differentiable in Λ with continuous time derivative. Denote by

G :=
{
G ∈ C1,2

(
[0, T ]× Λ

)
, G(t, u) = Gt(u) pointwise positive, G(t, u) = 0,∀u ∈ Γ,∀t ∈ [0, T ]

}
.

It is convenient to reformulate the notion of weak solution of (2.15) as following. A function ρ(·, ·) : [0, T ]×
Λ → [0, 1] is a weak solution of the initial-boundary value problem (2.15) if ρ ∈ L2

(
0, T ;H1(Λ)

)
and for

every G ∈ G

∫
Λ

du
{
GT (u)ρ(T, u)−G0(u)ρ0(u)

}
−

∫ T

0

ds

∫
Λ

du (∂sGs)(u)ρ(s, u)

=
∑
i,j

∫ T

0

ds
{∫

Λ

du Ai,j(ρ(s, u))
∂2

∂i,j
Gs(u)−

∫
Γ

Ai,j(b(u))∂n1G(s, u)dS
} (5.1)

where Ai,j(ρ) =
∫ ρ

0
Di,j(ρ′)dρ′. A function ρ+(·, ·) : [0, T ] × Λ → IR is a weak upper solution of the

initial-boundary value problem (2.15) if ρ+ ∈ L2
(
0, T ;H1(Λ)

)
and for all G ∈ G we have



∑
i,j

∫ T

0

ds
{∫

Λ

du Ai,j(ρ+(s, u))
∂2

∂i,j
Gs(u)−

∫
Γ

Ai,j(ρ+(s, u))∂n1G(s, u)dS
}

−
∫

Λ

du
{
GT (u)ρ+(T, u)−G0(u)ρ+

0 (u)
}
−

∫ T

0

ds

∫
Λ

du (∂sGs)(u)ρ+(s, u) ≤ 0,

Tr(ρ+(t, ·)) ≥ b(·) on Γ

ρ+(0, u) ≥ ρ0(u) u ∈ Λ

(5.2)

A weak lower solution ρ−(·, ·) : [0, T ]× Λ → IR is defined reversing the inequalities in (5.2).

By a solution of the stationary problem (2.15) we mean a function ρ̄ ∈ H1(Λ) so that for all G ∈ C2
(
Λ

)
,

pointwise positive vanishing on Γ

∑
i,j

{∫
Λ

du Ai,j(ρ̄(u)))
∂2

∂i,j
G(u)−

∫
Γ

Ai,j(b(u))∂n1G(u)dS
}

= 0 (5.3)

As before we define upper and lower solutions of the stationary problem (5.3). A function ρ̄+ is an upper

solution for the stationary problem (5.3) if ρ̄+ ∈ H1(Λ) and for all G ∈ C2
(
Λ

)
, pointwise positive vanishing

on Γ, 
∑
i,j

{∫
Λ

du Ai,j(ρ̄+(u)))
∂2

∂i,j
G(u)−

∫
Γ

Ai,j(ρ̄+(u))∂n1G(u)dS
}
≤ 0 ,

Tr(ρ̄+) ≥ b on Γ,

(5.4)
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A lower solution of the stationary problem (5.3) is defined reversing the inequality in (5.4).

Denote by H−1(Λ) the dual of H1
0 (Λ), i.e. the Banach space equipped with the norm

‖v‖−1 = sup
f

{〈
v, f

〉
: ‖f‖H1

0 (Λ) ≤ 1
}

. (5.5)

To apply the monotone method we first show the following comparison principle.

Lemma 5.1 Let ρ1 (resp. ρ2) be a lower solution (resp. upper solution) of (2.15), ∂tρ
i ∈ L2

(
0, T ;H−1(Λ)

)
,

for i = 1, 2. If there exists s ≥ 0 such that

λ
{
u ∈ Λ : ρ1(s, u) ≤ ρ2(s, u)

}
= 1 ,

where λ is the Lebesgue measure on Λ, then for all t ≥ s

λ
{
u ∈ Λ : ρ1(t, u) ≤ ρ2(t, u)

}
= 1.

Proof Take s < t < T and δ > 0. Denote by Fδ the function defined by

Fδ(a) :=
a2

2δ
1I{0≤a≤δ} +

(
a− δ/2

)
1I{a>δ}, a ∈ IR.

Let Aδ := Aδ(T ) be the set

Aδ =
{

(t, u) ∈ [0, T ]× Λ : 0 ≤ ρ1(t, u)− ρ2(t, u) ≤ δ
}

.

By definition Tr(ρ1−ρ2) ≤ 0 a.e. and therefore Tr
(
F ′

δ(ρ
1−ρ2)

)
= 0. Since ρ1 ( ρ2 )is lower (upper) solution

of (2.15), we have that∫ t

s

dτ
∂

∂τ

∫
Λ

Fδ

(
ρ1(τ, u)− ρ2(τ, u)

)
=

∫
Λ

du Fδ

(
ρ1(t, u)− ρ2(t, u)

)
−

∫
Λ

du Fδ

(
ρ1(s, u)− ρ2(s, u)

)
≤ −δ−1

∫ t

s

dτ

∫
Aδ

du∇(ρ1 − ρ2) ·
{

D(ρ1)∇ρ1 −D(ρ2)∇ρ2
}

= −δ−1

∫ t

s

dτ

∫
Aδ

du∇(ρ1 − ρ2) ·D(ρ1)∇(ρ1 − ρ2)

− δ−1

∫ t

s

dτ

∫
Aδ

du∇(ρ1 − ρ2) ·
{
D(ρ1)−D(ρ2)

}
∇ρ2 .

(5.6)

Since D(·) is strictly positive, see (2.19), the third line of (5.6) can be estimated by above

−1
δ

∫ t

s

dτ

∫
Aδ

du∇(ρ1 − ρ2) ·D(ρ1)∇(ρ1 − ρ2) ≤ − 1
δC

∫ t

s

dτ

∫
Aδ

du ‖∇(ρ1 − ρ2)‖2. (5.7)

Further, by the Lipschitz property of D(·) we have on the set Aδ, sup1≤i,j≤d |Di,j(ρ1)−Di,j(ρ2)| ≤ M |ρ1 −
ρ2| ≤ Mδ for some positive constant M . By Schartz inequality, the last line of (5.6) is bounded by

δ−1MA

∫ t

s

dτ

∫
Aδ

du ‖∇(ρ1 − ρ2)‖2 + δMA−1

∫ t

s

dτ

∫
Aδ

du ‖∇ρ2‖2 (5.8)
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for every A > 0. By (5.6), (5.7), (5.8) and choosing A = M−1C−1 to cancel the term in (5.7) and the first

term of (5.8) we have ∫
Λ

du Fδ

(
ρ1(t, u)− ρ2(t, u)

)
−

∫
Λ

du Fδ

(
ρ1(s, u)− ρ2(s, u)

)
≤ δC−1M2

∫ T

0

dτ

∫
du ‖∇ρ2‖2 .

Letting δ ↓ 0, we conclude the proof of the lemma because Fδ(·) converges to the function F (a) = a1Ia≥0 as

δ ↓ 0.

We immediately obtain the following.

Proposition 5.2 Let m0 : Λ → [0, 1] be a measurable function. There is a unique weak solution ρ(t, m0) of

the equation (2.15) with initial datum m0.

Proof: Existence of weak solution of (2.15) can be deduced by the tightness of the sequence QN
µN

where µN is

the probability measure associated to the initial profile m0 according to (2.23). Uniqueness is a consequence

of Lemma 5.1.

Corollary 5.3 Let m0 be a lower stationary solution of (5.3). Let ρ(t, m0) be the solution of (5.1) with

initial datum m0 then ρ(t, u) ≥ m0(u) a.e in (u, t).

The proof is an immediate consequence of Lemma 5.1 with ρ1 := m0 and ρ2 := ρ. When the initial datum

of solution of (5.9) is an upper stationary solution we have:

Corollary 5.4 Let m1 be a upper stationary solution of (5.3). Let ρ(t, m1) be the solution of (5.1) with

initial datum m1 then ρ(t, u) ≤ m1(u) for t ∈ [0, T ] and u ∈ Λ.

Next we show that when a lower (upper) stationary solution m0 (m1) is taken as initial datum, the

corresponding solution ρ(t, m0) (ρ(t, m1)) is monotone nondecreasing (nonincreasing) in time.

Lemma 5.5 Under the assumptions of Corollary 5.3 ρ(t, m0) is a nondecreasing solution of (2.15) on

[0, T ].

Proof: Corollary 5.3 implies that ρ(s,m0) ≥ m0 for all s ≥ 0, since m0 lower solution. Let ρ(t; ρ(s,m0))

be the solution of (5.1) starting at time t = 0 from ρ(s,m0). Then ρ(t; ρ(s,m0)) ≥ ρ(t, m0) since the initial

datum ρ(s,m0) ≥ m0. But ρ(t; ρ(s,m0)) = ρ(t + s,m0) by uniqueness of weak solution then ρ(t + s,m0) ≥
ρ(t, m0) ≥ m0.

Lemma 5.6 Under the assumptions of Corollary 5.4 ρ(t, m1) is a nonincreasing solution of (2.15) for

t ∈ [0, T ].

The proof is similar to the one of Lemma 5.5.

Lemma 5.7 Let m0 be a lower solution and m1 be an upper solution of (5.3), m0(·) ≤ m1(·) a.e in Λ, we

have

m0 ≤ ρ(t;m0) ≤ ρ(t;m1) ≤ m1 ∀t ∈ (0,∞).

The proof is an immediate consequence of the previous results.
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Lemma 5.8 Under the assumption of Lemma 5.7 the solutions ρ(t;m0) and ρ(t;m1) exist for all t ∈ [0,∞)

and they converge in Lp(Λ) for p ∈ [1,∞) to limits ρ?(·) and ρ?(·), both solutions of (5.3). Further

ρ?(u) ≤ ρ?(u) a.e.

Proof: Since ρ(t;m0) is nondecreasing in t and ρ(t;m0) ≤ m1 for any t ≥ 0, ρ(t;m0) converges almost

everywhere in Λ as t →∞ and ρ?(·) ∈ L∞(Λ). By the monotone convergence theorem ρ(t;m0) → ρ?(·) for

p ∈ [1,∞). Next we show that ρ?(·) solves (5.3). Take as test function in (5.1) the following function

β(t)F (u); F (u) > 0; C ≥ β(t) > δ > 0; β′(t) ≥ 0, (u, t) ∈ Λ× IR+

β ∈ C2(R+), F ∈ C2(Λ) vanishing at the boundary. Then for all t > 0, see (5.1), we have

∫
Λ

du
{
β(t)F (u)ρ(t, u)− β(0)F (u)ρ0(u)

}
−

∫ t

0

dsβ′(s)
∫

Λ

duF (u)ρ(s, u)

=
∑
i,j

∫ t

0

dsβ(s)
{∫

Λ

du Ai,j(ρ(s, u))
∂2

∂i,j
F (u)−

∫
Γ

Ai,j(b(u))∂n1F (u)dS
}

.

(5.10)

Divide by t the left and right side of (5.10) and then let t →∞. For the left side we have

1
t

{∫
Λ

du
{
β(t)F (u)ρ(t, u)− β(0)F (u)ρ0(u)

}
−

∫ t

0

dsβ′(s)
∫

Λ

duF (u)ρ(s, u)
}
→ 0. (5.11)

By continuity of A(·) and since by assumption lims→∞ β(s) = β(∞) > 0

lim
t→∞

1
t

∑
i,j

∫ t

0

dsβ(s)
{∫

Λ

du Ai,j(ρ(s, u))
∂2

∂i,j
F (u)−

∫
Γ

Ai,j(b(u))∂n1F (u)dS
}

= β(∞)
∑
i,j

{∫
Λ

du Ai,j(ρ?(u))
∂2

∂i,j
F (u)−

∫
Γ

Ai,j(b(u))∂n1F (u)dS
}

.

(5.12)

By (5.11) we then obtain

β(∞)
∑
i,j

{∫
Λ

du Ai,j(ρ?(u))
∂2

∂i,j
F (u)−

∫
Γ

Ai,j(b(u))∂n1F (u)dS
}

= 0.

Therefore ρ? is a solution of (5.3). The same can be argued for ρ∗.

Proposition 5.9 There exists an unique weak solution of (2.21).

Proof: Existence of weak solution of (2.21) is warranted by the tightness of the sequence Qs
N , see Proposi-

tion 4.1. Arguing as in Theorem 5.2 page 277 of [LU] and comments pag 276 before Theorem 5.1 we deduce

that maxu∈Λ|∇ρ(u)| ≤ M and ρ ∈ H2(Λ). Further one can show, as in Theorem 6.1 pag 281 of [LU], that

ρui
, i = 1, . . . d are Holder continuous on Λ. The uniqueness is then a consequence of a comparison principle,

see for example Lemma 10.7, pag 268 of [GT].
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Theorem 5.10 Global stability. Let D(·) in (2.15) be Lipschitz. Let ρ(t, ρ0) be the solution of (2.15)

with initial datum ρ0, 0 ≤ ρ0(u) ≤ 1, u ∈ Λ, and ρ̄ the stationary solution of (2.15). We have for all p ≥ 1

lim
t→∞

∫
Λ

|ρ(t, u)− ρ̄(u)|pdu = 0.

Proof: Apply Lemma 5.8 taking m0(u) = 0 and m1(u) = 1 for u ∈ Λ. By the uniqueness of the stationary

solution of (2.15), see Proposition 5.9, we deduce that ρ∗ = ρ? and the theorem is proved.
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