
Perfect simulation of infinite range Gibbs measures and

coupling with their finite range approximations
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Abstract

In this paper we address the questions of perfectly sampling a Gibbs measure with
infinite range interactions and of perfectly sampling the measure together with its finite
range approximations. We solve these questions by introducing a perfect simulation
algorithm for the measure and for the coupled measures. The algorithm works for
general Gibbsian interaction under requirements on the tails of the interaction. As a
consequence we obtain an upper bound for the error we make when sampling from a
finite range approximation instead of the true infinite range measure.
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1 Introduction

Consider a Gibbs measure with an infinite range potential and its finite range approxima-
tion obtained by truncating the interaction at a certain range. Can we construct a perfect
sampling of the Gibbs measure with an infinite range potential? Further, if we make a
local inspection of a perfect sampling of the finite range approximation, how often does it
coincide with a sample from the original infinite range measure? We address these ques-
tions by introducing a new perfect simulation algorithm for the original Gibbs measure
and a coupled perfect simulation algorithm for the original measure together with its finite
range approximation.

By a perfect simulation algorithm we mean a function mapping a family of independent
uniform random variables on the set of configurations having as law the infinite range
Gibbs measure. By a coupled perfect simulation algorithm we mean a function mapping
a family of independent uniform random variables on the set of pairs of configurations
having as first marginal the original infinite range measure and as second marginal the
finite range approximation. These functions are defined through two coupled Glauber
dynamics having as reversible measures the original Gibbs measure and its finite range
approximation, respectively. The perfect simulation algorithm produces coupled samples
of the two measures.

The main difficulty in this constructive approach is that we have to deal with infinite range
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spin flip rates. This difficulty is overcome by a decomposition of the spin flip rates of the
Glauber dynamics as a convex sum of local spin flip rates.

Our results are obtained under high temperature conditions and assuming that the inter-
action decays fast enough. We do not need any monotonicity property of the infinite range
Gibbs measure. Under these conditions, we show that the algorithm that we propose stops
almost surely, after a finite number of steps. Moreover, we give an upper bound, uniform
in space, for the probability of local discrepancy between the coupled realizations of the
two measures. This is the content of Theorem 1. As a corollary, Theorem 4 shows that
the same upper bound holds for Ornstein’s d̄-distance between the two measures.

An upper bound for the d̄-distance slightly worse than the one obtained in Theorem 4
can be obtained under less restrictive assumptions, by applying Dobrushin’s contraction
method. We refer the reader to the series of papers of Dobrushin (1968-1970) as well as
to Presutti (2009) for a recent nice self-contained presentation of the subject. However,
the contraction method is not constructive and does not provide an explicit sampling
procedure for the measures.

The approach followed in the present paper was suggested by a recent work of Galves et
al. (2008). There, the flip rates of an infinite range interacting multicolor system were
decomposed as convex combinations of local range flip rates. With respect to this work,
the novelty of what follows is that the decomposition is explicit and more suitable in view
of the intended coupling result. The idea of decomposing flip rates can be traced back
to Ferrari (1990) in which something with the same flavor was done for a finite range
interacting particle system and to Ferrari et al. (2000) in which the probability transition
of a stochastic chain of infinite order was decomposed as a convex combination of finite
order probability transitions. We refer to Galves et al. (2008) for more details and related
literature.

This paper is organized as follows. In Section 2, we present the basic notations and
the main result, Theorem 1. In Section 3, we introduce the Glauber dynamics and the
associated processes. The representation of the spin flip rates as convex combination of
local rates is given in Theorem 2. In Section 4.1 we introduce the backward sketch process
which is the basis of the perfect simulation algorithm and collect the main properties of this
process in Proposition 3. Section 4.2 presents the coupled perfect simulation algorithm for
the couple of measures. In Section 5 we prove Theorem 1. We conclude the paper in Section
6 discussing how certain features of high temperature Gibbs systems can be obtained
applying our construction. In particular we give results on Ornstein’s d̄-distance between
the infinite range and the finite range Gibbs measure, and on the decay of correlations.
These results are obtained under requirements stronger than the ones needed using the
Dobrushin contraction method, being based on our explicit coupled perfect simulation
procedure.
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2 Definitions and main results

Let A = {−1, 1} and S = AZd
be the set of spin configurations. We endow S with the

product sigma algebra. We define on Zd the L1 norm, ‖i‖ =
∑d

k=1 |ik|.
Configurations will be denoted by Greek letters σ, η, . . . . A point i ∈ Zd will be called a
site. For any i ∈ Zd, notations σ(i) and σi will be used in order to denote the value of
the configuration σ at site i. By extension, for any subset V ⊂ Zd, σ(V ) and σV ∈ AV

denote the restriction of the configuration σ to the set of positions in V. If V ⊂ Zd is a
finite subset, we denote V b Zd. In this case, we write |V | for the cardinal of V. Finally,
for any i ∈ Zd and σ ∈ S, we shall denote σi the modified configuration

σi(j) = σ(j), for all j 6= i, and σi(i) = −σ(i).

Definition 1 An interaction is a collection {JB, B b Zd} of real numbers indexed by
finite subsets B b Zd, |B| ≥ 2, which satisfies

sup
i∈Zd

∑
B:i∈B

|JB| <∞. (2.1)

For finite B ⊂ Zd and σ ∈ S let

χB(σ) =
∏
i∈B

σ(i).

Definition 2 A probability measure µ on S is said to be a Gibbs measure relative to the
interaction {JB, B b Zd} if for all i ∈ Zd and for any fixed ζ ∈ S, a version of the
conditional probability µ({σ : σ(i) = ζ(i)|σ(j) = ζ(j) for all j 6= i}) is given by

µ({σ : σ(i) = ζ(i)|σ(j) = ζ(j) for all j 6= i}) =
1

1 + exp(−2
∑

B:i∈B JBχB(ζ))
. (2.2)

To define the Gibbs measure µ[L] relative to the interaction truncated at range L we set

Bi(L) = {j ∈ Zd : ‖j − i‖ ≤ L}. (2.3)

Then µ[L] is the probability measure on S such that for all i ∈ Zd and for any fixed ζ ∈ S,
a version of the conditional probability µ[L]({σ : σ(i) = ζ(i)|σ(j) = ζ(j) for all j 6= i}) is
given by

µ[L]({σ : σ(i) = ζ(i)|σ(j) = ζ(j) for all j 6= i})

=
1

1 + exp(−2
∑

B:i∈B,B⊂Bi(L) JBχB(ζ))
.

We consider the interaction Jβ
B = β JB where β is a positive parameter. The associated

Gibbs measures will be denoted by µ and µ[L], omitting to write the explicit dependence
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on β. We denote by (X(i), i ∈ Zd), (X [L](i), i ∈ Zd) two random configurations on S
distributed according to µ and µ[L], respectively.

All processes that we consider in this paper will be constructed as functions of an inde-
pendent family of uniform random variables (Un(i), n ∈ N, i ∈ Zd). Denote (Ω,A, P ) the
probability space on which is defined the independent family of uniform random variables.

Definition 3 A perfect sampling algorithm of the measure µ is a map F from [0, 1]N×Zd

to {−1,+1}Zd
, such that

F (Un(j), n ∈ N, j ∈ Zd) has distribution µ.

A coupled perfect sampling algorithm for the pair ((X(i), X [L](i)), i ∈ Zd) is a map G from
[0, 1]N×Zd

to {−1,+1}Zd×Zd
, such that

G(Un(j), n ∈ N, j ∈ Zd) has marginals (X(i), i ∈ Zd) and (X [L](i), i ∈ Zd).

Since F produces an unbiased sample from the target distribution µ, the algorithm is
denoted “perfect”.

Definition 4 The perfect sampling algorithm F of the measure µ is said to stop almost
surely after a finite number of steps if for every site i ∈ Zd, there exists a finite subset F (i)

of Zd and a finite random variable N
(i)
STOP ≥ 1 such that if

U ′
n(j) = Un(j) for all j ∈ F (i), 1 ≤ n ≤ N

(i)
STOP , (2.4)

then
F (Un(j), n ∈ N, j ∈ Zd)(i) = F (U ′

n(j), n ∈ N, j ∈ Zd)(i). (2.5)

Note that (2.5) implies that F (Un(j), n ∈ N, j ∈ Zd)(i) depends only on Un(j) for 1 ≤ n ≤
N

(i)
STOP . The following theorem is our main result.

Theorem 1 Assume that

sup
i∈Zd

∑
k

|Bi(k)|

 ∑
B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1)

|JB|

 <∞. (2.6)

1. There exists βc > 0 such that for any β < βc there is a perfect sampling algorithm
of µ. This algorithm stops after a finite number of steps almost surely and

sup
i∈Zd

E(N (i)
STOP ) ≤ 1

γ
, (2.7)

where γ is given in (4.37).

2. Moreover, for any β < βc, there exists a coupled perfect sampling algorithm for the
pair ((X(i), X [L](i)), i ∈ Zd) satisfying

sup
i∈Zd

P (X(i) 6= X [L](i)) ≤ 1
γ

sup
i∈Zd

(
1− e

−β
P

B:i∈B,B 6⊂Bi(L) |JB |
)

. (2.8)
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Remark 1 The constant βc is the solution of equation (5.39) in Section 5.

Remark 2 In case of an interaction defined through a pairwise potential {J(i, j), (i, j) ∈
Zd × Zd} with J(i, i) = 0 for i ∈ Zd, condition (2.6) of Theorem 1 reads as

sup
i∈Zd

∑
k

|Bi(k)|

 ∑
j:‖i−j‖=k

|J(i, j)|

 <∞.

In this case,

sup
i∈Zd

P (X(i) 6= X [L](i)) ≤ 1
γ

sup
i∈Zd

(
1− e−β

P
j:‖i−j‖>L |J(i,j)|

)
.

The above perfect sampling algorithms are based on a coupled construction of two pro-
cesses having µ and µ[L] as reversible measures. These two processes will be introduced
in the next section. The definition of the algorithms can only be given in Section 4. The
proof of Theorem 1 is given in Section 5.

3 Glauber dynamics

We now introduce a Glauber dynamics having µ as reversible measure. This is an inter-
acting particle system (σt(i), i ∈ Zd, t ∈ R) taking values in S. Sometimes we will also use
the short notation (σt)t for the interacting particle system. To describe the process, we
need some extra notation.

For any i ∈ Zd, σ ∈ {−1, 1}Zd
, and β > 0, we define ci(σ), which is the rate at which the

spin i flips when the system is in the configuration σ, as

ci(σ) = exp

(
−β

∑
B:i∈B

JBχB(σ)

)
. (3.9)

The generator G of the process (σt)t is defined on cylinder functions f : S → R as follows

G f(σ) =
∑
i∈Zd

ci(σ)[f(σi)− f(σ)] . (3.10)

Observe that the condition (2.6) of Theorem 1 implies that

sup
i

∑
B:i∈B

|B| |JB| <∞,

where |B| designs the cardinal of the set B. Hence the rates ci(σ) are uniformly bounded
in i and σ, and

sup
i∈Zd

∑
j∈Zd

sup
σ
|ci(σ)− ci(σj)| <∞. (3.11)

Therefore, Theorem 3.9 of Chapter 1 of Liggett (1985) implies that G is the generator of
a Markov process (σt)t on S. By construction, the process (σt)t is reversible with respect
to the Gibbs measure µ corresponding to the interaction Jβ

B = β JB.
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For any ` ≥ 1, we now define a Glauber dynamics having µ[`] as reversible measure. More
precisely, we consider the Markov process (σ[`]

t )t on S having generator

G[`] f(σ) =
∑
i∈Zd

c
[`]
i (σ)[f(σi)− f(σ)], (3.12)

where the rates c
[`]
i are given by

c
[`]
i (σ) = r

[`]
i exp

−β
∑

B:i∈B,B⊂Bi(`)

JBχB(σ)

 (3.13)

and
r
[`]
i = e

−β
P

B:i∈B,B 6⊂Bi(`)
|JB |.

Let us stress the fact that compared to the usual definition of a Glauber dynamics, an
extra factor r

[`]
i appears in the definition of the rates c

[`]
i . This extra factor is important in

view of the intended coupling of both processes σt and σ
[`]
t (see Theorem 2 below) and does

not change the equilibrium behavior of the process as is shown in the next proposition.

Proposition 1 The process (σ[`]
t )t is reversible with respect to the Gibbs measure µ[`]

relative to the pairwise interaction Jβ truncated at range `.

Proof By construction, we have that

c
[`]
i (ζ)

c
[`]
i (ζi)

=
µ[`]({σ : σ(i) = ζ(i)|σ(j) = ζ(j) for all j 6= i})

µ[`]({σ : σ(i) = −ζ(i)|σ(j) = ζ(j) for all j 6= i})
.

Thus, by Proposition 2.7 of Chapter IV of Liggett (1985), it follows that (σ[`]
t )t is reversible

with respect to µ[`]. •

The main tool to prove Theorem 1 is a coupled construction of the processes (σt(i), i ∈
Zd, t ∈ R) and (σ[`]

t (i), i ∈ Zd, t ∈ R) for ` = L, using the basic family of uniform random
variables (Un(i), n ∈ N, i ∈ Zd). This coupling is based on a decomposition of the spin flip
rates ci(σ) as a convex combination of local range spin flip rates.

To present this decomposition we need the following notation. We define

Mi = 2eβ
P

B:i∈B |JB |,

and the sequence (λi(k))k≥0 as follows

λi(k) =


e−2β

P
B:i∈B |JB | if k = 0,

e
−β

P
B:i∈B,B 6⊂Bi(1)

|JB | − e−2β
P

B:i∈B |JB | if k = 1,

e
−β

P
B:i∈B,B 6⊂Bi(k) |JB | − e

−β
P

B:i∈B,B 6⊂Bi(k−1) |JB | if k > 1.

Finally, for all σ ∈ S and for any k ≥ 2, we define the update probabilities

p
[k]
i (−σ(i)|σ) =

1
Mi

e
−β

P
B:i∈B,B⊂Bi(k−1) JBχB(σ)

e
−β

P
B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1) JBχB(σ) − e

−β
P

B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1) |JB |

1− e
−β

P
B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1) |JB |

,
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and for k = 1,

p
[1]
i (−σ(i)|σ) =

1
Mi

e
−β

P
B:i∈B,B⊂Bi(1)

JBχB(σ) − e
−β

P
B:i∈B,B⊂Bi(1)

|JB |

1− e
−2β

P
B:i∈B,B⊂Bi(1)

|JB |e
−β

P
B:i∈B,B 6⊂Bi(1)

|JB |
.

To obtain a probability measure on A, we define for all k ≥ 1,

p
[k]
i (σ(i)|σ) = 1− p

[k]
i (−σ(i)|σ).

Finally, for k = 0, we define

p
[0]
i (1) = p

[0]
i (−1) =

1
2
. (3.14)

Since this last probability does not depend on the site i we omit the subscript i. Note
that, by construction, for any integer k ≥ 1, the probabilities p

[k]
i (a|σ) depend only on

σ(Bi(k)).

Now we state the decomposition theorem.

Theorem 2 Let us assume that the uniform summability condition (2.1) holds.

1. The sequence (λi(k))k≥0 defines a probability distribution on the set of positive inte-
gers {0, 1, ...}.

2. For any ` ≥ 1, σ ∈ S, the following decomposition holds

c
[`]
i (σ) = Mi

[
λi(0)

1
2

+
∑̀
k=1

λi(k)p[k]
i (−σ(i)|σ)

]
. (3.15)

3. For any σ ∈ S, the following decomposition holds

ci(σ) = Mi

[
λi(0)

1
2

+
∞∑

k=1

λi(k)p[k]
i (−σ(i)|σ)

]
. (3.16)

Proof Item 1 follows directly from the definition and (2.1).

To prove item 2, set

c
[0]
i (σ) =

1
2
Miλi(0)

and observe that

c
[`]
i (σ) =

∑̀
k=1

[
c
[k]
i (σ)− c

[k−1]
i (σ)

]
+ c

[0]
i (σ),

where the differences c
[k]
i (σ)− c

[k−1]
i (σ) are always positive. Since by definition

c
[k]
i (σ)− c

[k−1]
i (σ) = Miλi(k) p

[k]
i (−σ(i)|σ) ,

we obtain the decomposition stated in item 2.

To prove item 3, observe that the uniform summability condition (2.1) implies that

lim
k→∞

c
[k]
i (σ) = ci(σ) , (3.17)
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since r
[k]
i → 0 for k → ∞. Thus, taking into account item 2, we obtain the desired

decomposition.

•

To present the coupling, it is convenient to rewrite the generator of the Glauber dynamics
given in (3.10) as

G f(σ) =
∑
i∈Zd

∑
a∈A

ci(a|σ)[f(σi,a)− f(σ)] , (3.18)

where
σi,a(j) = σ(j), for all j 6= i, and σi,a(i) = a,

and where

ci(a|σ) =
{

ci(σ) if a = −σ(i),
Mi − ci(σ) if a = σ(i) .

(3.19)

In a similar way, for any integer ` ≥ 1, we define the rates

c
[`]
i (a|σ) =

{
c
[`]
i (σ) if a = −σ(i),

Mi
∑`

k=0 λi(k)− c
[`]
i (σ) if a = σ(i)

(3.20)

and the generator
G[`] f(σ) =

∑
i∈Zd

∑
a∈A

c
[`]
i (a|σ)[f(σi,a)− f(σ)] . (3.21)

This amounts to include in the generators the rates of invisible jumps in which the spin i
is updated with the same value it had before. Obviously the generator defined in (3.10)
(and in (3.12)) defines the same stochastic dynamics as the generator given in (3.18) (and
in (3.21), respectively).

With this representation, we have the following corollary of Theorem 2.

Corollary 1

G f(σ) =
∑
i∈Zd

∑
a∈A

∑
k≥0

Mi λi(k)p[k]
i (a|σ)[f(σi,a)− f(σ)] ,

and for any ` ≥ 1,

G[`] f(σ) =
∑
i∈Zd

∑
a∈A

∑̀
k=0

Mi λi(k)p[k]
i (a|σ)[f(σi,a)− f(σ)] .

¿From now on, we fix ` = L. The decomposition given in Corollary 1 suggests the fol-
lowing construction of the Glauber dynamics having G and G[L] as infinitesimal generator.
For each site i ∈ Zd consider a Poisson point process N i having rate Mi. The Poisson
processes corresponding to distinct sites are all independent. If, at time t, the Poisson
clock associated to site i rings, we choose a range k with probability λi(k) independently
of everything else. Then we update the value of the configuration at this site by choosing
a symbol a with probability p

[k]
i (a|σ(Bi(k))) depending only on the configurations inside

the set Bi(k). It is clear that using this decomposition, we can construct both processes
σt and σ

[L]
t in a coupled way, starting from any initial configuration.
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Actually we can do better than this. We can make a perfect simulation of the pair of
measures µ and µ[L] which are the invariant probability measures of the processes having
generators G and G[L] respectively.

Let us explain how we sample the configuration at a fixed site i ∈ Zd under the measure µ.
The simulation procedure has two stages. In the first stage we determine the set of sites
whose spins influence the spin at site i under equilibrium. We call this stage backward
sketch procedure. It is done by climbing up from time 0 back to the past a reverse time
Poisson point process with rate Mi until the last time the Poisson clock rung. At that
time, choose a range k with probability λi(k). If k = 0, we decide the value of the spin
with probability 1

2 independently of anything else. If k is different from zero, we restart
the above procedure from any of the sites j ∈ Bi(k). The procedure stops whenever each
site involved in this backward time evolution has chosen a range 0.

When this occurs, we can start the second stage, in which we go back to the future
assigning spins to all sites visited during the first stage. We call this procedure forward
spin assignment procedure. This is done from the past to the future by using the update
probabilities p

[k]
i starting at the sites which ended the first procedure by choosing range

0. For each one of these sites a spin is chosen by tossing a fair coin. The values obtained
in this way enter successively in the choice of the values of the spins depending on a
neighborhood of range greater or equal to 1.

In the case of the measure µ[L] we use the same procedure, but only considering the choices
of k which are smaller or equal to L. These procedures will be described formally in the
next section.

4 Perfect simulation of the measure µ and coupling

4.1 Backward sketch procedure

Before describing formally the two algorithms described at the end of the last section, let
us define the stochastic process which is behind the backward sketch procedure. Our aim
is to define, for every site i ∈ Zd, a process (C(i)

s )s≥0 taking values in the set of finite
subsets of Zd, such that C

(i)
s is the set of sites at time −s whose spins affect the spin of

site i at time t = 0. This is done as follows.

For each i ∈ Zd, denote by . . . T i
−2 < T i

−1 < T i
0 < 0 < T i

1 < T i
2 < . . . the occurrence times

of the rate Mi Poisson point process N i on the real line. The Poisson point processes
associated to different sites are independent. To each point T i

n associate an independent
mark Ki

n according to the probability distribution (λi(k))k≥0. As usual, we identify the
Poisson point processes and the counting measures through the formula

N i[s, t] =
∑
n∈Z

1{s≤T i
n≤t}.

The backward point process starting at time 0, associated to site i ∈ Zd is defined as

T (i,0)
n = −T i

−n+1, for any n ≥ 1. (4.22)

We also define the associated marks

K(i,0)
n = Ki

−n+1 (4.23)
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and for any k ≥ 0, the backward k-marked Poisson point process starting at time 0 as

N (i,k)[s, u] =
∑
n∈Z

1{s≤T
(i,0)
n ≤u}1{K(i,0)

n =k}. (4.24)

To define the backward sketch process we need to introduce a family of transformations
{π(i,k), i ∈ Zd, k ≥ 0} on F(Zd), the set of finite subsets of Zd, defined as follows. For any
unitary set {j} and k ≥ 1,

π(i,k)({j}) =
{

Bi(k), if j = i,
{j}, otherwise.

(4.25)

For k = 0, we define

π(i,0)({j}) =
{
∅, if j = i,
{j}, otherwise.

(4.26)

For any set finite set F ⊂ Zd, we define similarly

π(i,k)(F ) = ∪j∈F π(i,k)({j}). (4.27)

The backward sketch process starting at site i at time 0 will be denoted by (C(i)
s )s≥0. The

set C
(i)
s is the set of sites at time −s whose spins affect the spin of site i at time t = 0.

The evolution of this process is defined through the following equation. C
(i)
0 = {i}, and

f(C(i)
s ) = f(C(i)

0 ) +
∑
k≥0

∑
j∈Zd

∫ s

0
[f(π(j,k)(C(i)

u−))− f(C(i)
u−)]N (j,k)(du), (4.28)

where f : F(Zd)→ R is any bounded cylinder function. This family of equations charac-
terizes completely the time evolution (C(i)

s )s≥0.

In a similar way, for the truncated process, we define its associated backward sketch process
by

f(C [L],(i)
s ) = f(C [L],(i)

0 ) +
L∑

k=0

∑
j∈Zd

∫ s

0
[f(π(j,k)(C [L],(i)

u− ))− f(C [L],(i)
u− )]N (j,k)(du), (4.29)

where we use the same Poisson point processes N (j,k), 0 ≤ k ≤ L, as in (4.28).

The following proposition summarizes the properties of the family of processes defined
above.

Proposition 2 For any site i ∈ Zd, C
(i)
s and C

[L],(i)
s , s ∈ R+, are Markov jump processes

having as infinitesimal generator,

Lf(C) =
∑
i∈C

∑
k≥1

Miλi(k)[f(C ∪Bi(k))− f(C)] + Miλi(0)[f(C \ {i})− f(C)], (4.30)

with initial condition at time t = 0, C
(i)
0 = {i}, and

L[L]f(C) =
∑
i∈C

L∑
k=1

Miλi(k)[f(C ∪Bi(k))− f(C)] + Miλi(0)[f(C \ {i})− f(C)], (4.31)

with initial condition at time t = 0, C
[L],(i)
0 = {i}, respectively. Here f : F(Zd) → R is

any bounded cylindrical function.
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Let
T

(i)
STOP = inf{s : C(i)

s = ∅}

be the relaxation time. We introduce the sequence of successive jump times T̃
(i)
n , n ≥ 1,

of processes N (j,k) whose jumps occur in (4.28). Let T̃
(i)
1 = T

(i,0)
1 and define successively

for n ≥ 2
T̃ (i)

n = inf{t > T̃
(i)
n−1 : ∃j ∈ C

(i)

T̃
(i)
n−1

,∃k : N (j,k)(]T̃ (i)
n−1, t]) = 1}. (4.32)

Now we put
C(i)

n = C
(i)

T̃
(i)
n

. (4.33)

Finally, notice that N
(i)
STOP of Definition 4 is equal to

N
(i)
STOP = inf{n : C(i)

n = ∅}.

This is the number of steps of the backward sketch process. For the algorithm to be
successful, it is crucial to show that both relaxation time T

(i)
STOP and the number of steps

N
(i)
STOP are finite. This is the content of next theorem.

Proposition 3 Under the requirement

sup
i∈Zd

∑
k≥1

|Bi(k)|λi(k) < 1, (4.34)

we have uniformly for any i ∈ Zd,

P (T (i)
STOP > t) ≤ e−γt (4.35)

and
E(N (i)

STOP ) ≤ 1
γ

, (4.36)

where
γ = 1− sup

i∈Zd

∑
k≥1

|Bi(k)|λi(k). (4.37)

The proof of Proposition 3 will be given at the end of Section 5 below.

4.2 Algorithms

We now go to the crucial point of precisely defining the maps F and G whose existence
is claimed in Theorem 1. These maps are implicitly defined by the backward sketch
procedure and the forward spin assignment procedure. Let us give the algorithmic like
description of these procedures. The following variables will be used.

• N is an auxiliary variables taking values in the set of non-negative integers {0, 1, 2, . . .}

• N
(i)
STOP is a counter taking values in the set of non-negative integers {0, 1, 2, . . .}

• N
[L],(i)
STOP is a counter taking values in the set of non-negative integers {0, 1, 2, . . .}

11



• I is a variable taking values in Zd

• I [L] is a variable taking values in Zd

• K is a variable taking values in {0, 1, . . .}

• K [L] is a variable taking values in {0, 1, . . .}

• B is an array of elements of Zd × {0, 1, . . .}

• B[L] is an array of elements of Zd × {0, 1, . . .}

• C is a variable taking values in the set of finite subsets of Zd

• C [L] is a variable taking values in the set of finite subsets of Zd

• W is an auxiliary variable taking values in A

• X is a function from Zd to A ∪ {∆}, where ∆ is some extra symbol that does not
belong to A

• X [L] is a function from Zd to A∪ {∆}, where ∆ is some extra symbol that does not
belong to A

We will present the backward sketch procedure only for G, the coupled perfect simulation
algorithm. The backward sketch procedure for F can be immediately deduced ignoring
the steps from 11. to 18. concerning the variables with superscript L.

Algorithm 1 Backward sketch procedure

1. Input: {i}; Output: N
(i)
STOP , N

[L],(i)
STOP , B, B[L]

2. N ← 0, N
(i)
STOP ← 0, N

[L],(i)
STOP ← 0, B ← ∅, B[L] ← ∅, C ← {i}, C [L] ← {i}

3. WHILE C 6= ∅

4. N ← N + 1

5. Choose randomly a position I ∈ C and an integer K ≥ 0 according to the probability
distribution

P (I = i, K = k) =
Miλi(k)∑

j∈C

∑
l≥0 Mjλj(l)

6. IF K = 0, C ← C \ {I}

7. ELSE C ← C ∪BI(K)

8. ENDIF

9. B(N)← (I, K)

10. IF C [L] 6= ∅

11. N
[L],(i)
STOP ← N

12



12. IF I ∈ C [L],K ∈ {0, . . . , L}, I [L] ← I, K [L] ← K

13. ELSE choose randomly a position I [L] ∈ C [L] and an integer K [L] ∈ {0, . . . , L}
according to the probability distribution

P (I [L] = i, K [L] = k) =
Miλi(k)∑

j∈C[L]

∑L
l=0 Mjλj(l)

14. IF K [L] = 0, C [L] ← C [L] \ {I [L]}

15. ELSE C [L] ← C [L] ∪BI[L](K [L])

16. ENDIF

17. B[L](N)← (I [L],K [L])

18. ENDIF

19. ENDWHILE

20. N
(i)
STOP ← N

21. RETURN N
(i)
STOP , N

[L],(i)
STOP , B, B[L]

If B = B[L], then we use the following Forward spin assignment procedure to sample
X(i) = X [L](i). This is the algorithmic translation of the ideas presented in the last para-
graph of Section 4. If B 6= B[L], then we use the Forward spin assignment procedure twice
independently, starting with input N

(i)
STOP , B in order to sample X(i) and starting with

input N
[L],(i)
STOP , B[L] in order to sample X [L](i).

Algorithm 2 Forward spin assignment procedure

1. Input: N
(i)
STOP , B; Output: {X(i)}

2. N ← N
(i)
STOP

3. X(j)← ∆ for all j ∈ Zd

4. WHILE N ≥ 1

5. (I, K)← B(N).

6. IF K = 0 choose W randomly in A according to the probability distribution

P (W = v) = p
[0]
I (v) =

1
2

7. ELSE choose W randomly in A according to the probability distribution

P (W = v) = p
[K]
I (v|X)

8. ENDIF

13



9. X(I)←W

10. N ← N − 1

11. ENDWHILE

12. RETURN {X(i)}

5 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. For the convenience of the reader, we
start by recalling the following theorem of Galves et al. (2008).

Theorem 3 Under the requirement (4.34),

sup
i∈Zd

∑
k≥1

|Bi(k)|λi(k) < 1,

the Gibbs measure µ is the unique invariant probability measure of the process (σt)t. The
output X(i) obtained using successively Algorithms 1 and 2 given in Section 4 is a perfect
sampling of the Gibbs measure µ. Finally, the estimate (4.35) holds :

P (T (i)
STOP > t) ≤ e−γt.

The same result holds true also for X [L] obtained using successively Algorithms 1 and 2
but now with restriction that only ranges k ≤ L are considered.

Remark 3 In Galves et al. (2008) the above result was proved for the minimal decom-
position of the spin flip rates. The same proof works for the decomposition of the spin
flip rates ci(σ) considered in Section 4. Note that in contrary to the decomposition con-
sidered in Galves et al. (2008), the decomposition in Section 4 is explicit in terms of the
interaction.

We first check that the assumption (2.6) of Theorem 1 implies condition (4.34) of Theorem
3.

Lemma 1 Under the conditions of Theorem 1, condition (4.34) is satisfied.

Proof For any k ≥ 0, write for short

S>k
i =

∑
B:i∈B,B 6⊂Bi(k)

|JB|.
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For each i ∈ Zd we have that

∞∑
k=1

λi(k)|Bi(k)| ≤ 2dλi(1) +
∞∑

k=2

|Bi(k)|
[
e−βS>k

i − e−βS>k−1
i

]
= 2de−βS>1

i

(
1− e−βS>0

i e
−β

P
B:i∈B,B⊂Bi(1)

|JB |
)

+
∞∑

k=2

|Bi(k)|e−βS>k
i

[
1− e

−β
P

B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1) |JB |
]

≤ 2de−βS>1
i

(
1− e−βS>0

i e
−β

P
B:i∈B,B⊂Bi(1)

|JB |
)

+ β sup
i

 ∞∑
k=2

|Bi(k)|
∑

B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1)

|JB|

 .

(5.38)

Under the conditions of Theorem 1, this last expression is finite. Therefore condition
(4.34) reads as

2d sup
i

(
e−βS>1

i

(
1− e−βS>0

i e
−β

P
B:i∈B,B⊂Bi(1)

|JB |
))

+ β sup
i

 ∞∑
k=2

|Bi(k)|
∑

B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1)

|JB|

 < 1.

Finally, let βc be the solution of

2d sup
i

(
e−βS>1

i

(
1− e−βS>0

i e
−β

P
B:i∈B,B⊂Bi(1)

|JB |
))

+ β sup
i

 ∞∑
k=2

|Bi(k)|
∑

B:i∈B,B⊂Bi(k),B 6⊂Bi(k−1)

|JB|

 = 1. (5.39)

This concludes the proof. •

Proof of Theorem 1.

Proof of item 1. Theorem 3 combined with Lemma 1 proves that the output of the
perfect sampling algorithm is indeed a sampling of µ. Next we prove (2.7). Define

L(i)
n = |C(i)

n |,

the cardinal of the set C(i)
n after n steps of the algorithm. Let (D(i)

n )n≥0,i∈Zd be i.i.d.
random variables, independent of the process, taking values in {−1, 0, 1, 2, . . .} such that
for k ≥ 1

P (D(i)
n = |Bi(k)| − 1) = λi(k), (5.40)

and for k = 0
P (D(i)

n = −1) = λi(0). (5.41)

Note that under assumption (2.6), the condition (4.34) holds (see Lemma 1). Hence,
supi∈Zd E(D(i)

1 ) ≤ −γ < 0. For any i ∈ Zd, let us call I
(i)
n the index of the site whose
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Poisson clock rings at the n−th jump of the process C(i). Recall that I
(i)
n are conditionally

independent given the sequence (C(i)
n )n such that

P (I(i)
n = k|C(i)

n−1) =
Mk∑

j∈C
(i)
n−1

Mj
.

Put

S(i)
n =

n∑
k=1

D
I
(i)
k

k .

Note that by construction, S
(i)
n + nγ is a super-martingale. Then a very rough upper

bound is
L(i)

n ≤ 1 + S(i)
n as long as n ≤ V

(i)
STOP , (5.42)

where V
(i)
STOP is defined as

V
(i)
STOP = min{k : S

(i)
k = −1}.

By construction
N

(i)
STOP ≤ V

(i)
STOP .

Fix a truncation level N. Then by the stopping rule for super-martingales, we have that

E(S(i)

V
(i)
STOP∧N

) + γE(V (i)
STOP ∧N) ≤ 0.

But notice that

E(S(i)

V
(i)
STOP∧N

) = −1 · P (V (i)
STOP ≤ N) + E(S(i)

N ;V (i)
STOP > N).

On {V (i)
STOP > N}, S

(i)
N ≥ 0, hence we have that E(S(i)

V
(i)
STOP∧N

) ≥ −P (V (i)
STOP ≤ N). We

conclude that

E(V (i)
STOP ∧N) ≤ 1

γ
P (V (i)

STOP ≤ N).

Now, letting N →∞, we get

E(V (i)
STOP ) ≤ 1

γ
,

and therefore
E(N (i)

STOP ) ≤ 1
γ

.

Proof of item 2. We have to show that the coupled perfect sampling algorithm G defined
in Section 4 achieves the bound (2.8). For that sake we introduce the following stopping
times. For any site j ∈ Zd and any t ≥ 0, let

T
(j,t)
1 = inf{T (j,0)

n > t} − t

be the first jump of the Poisson point process (T (j,0)
n )n shifted by time t.
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Let us call T
(i)
L the first time that a range of order k > L has been chosen. T

(i)
L is given by

T
(i)
L = inf{t > 0 :

∑
j∈C

(i)
t

∑
k>L

N (j,k)([t, t + T
(j,t)
1 [) ≥ 1}. (5.43)

Recall that in order to construct µ and µ[L], we use the same Poisson point processes for
all ranges k ≤ L. Thus we have that

P (X(i) 6= X [L](i)) ≤ P (T (i)
L ≤ T

(i)
STOP ). (5.44)

By Lemma 2 given below we conclude the proof of Theorem 1. •

Lemma 2
P (T (i)

L ≤ T
(i)
STOP ) ≤ sup

i∈Zd

(
1− e

−β
P

B:i∈B,B 6⊂Bi(L) |JB |
) 1

γ
.

Proof Put
αi(k) =

∑
`≤k

λi(`).

Given the structure of the interaction, we have for k ≥ 2, αi(k) = e
−β

P
B:i∈B,B 6⊂Bi(k) |JB |

and thus 1− αi(L) ≤ supi∈Zd

(
1− e

−β
P

B:i∈B,B 6⊂Bi(L) |JB |
)

. Call this last quantity

δ(L) = sup
i∈Zd

(
1− e

−β
P

B:i∈B,B 6⊂Bi(L) |JB |
)

.

Then we have

P (T (i)
L ≤ T

(i)
STOP )

≤
∑
n≥1

E
(
P
({

N (j,k)(]T̃ (i)
n−1, T̃

(i)
n ]) = 1 for j ∈ C(i)

n−1, k > L
} ∣∣∣ C(i)

n−1, N
(i)
STOP > n− 1

))

=
∑
n≥1

E

 ∑
j∈C

(i)
n−1

Mj(1− αj(L))∑
k∈C

(i)
n−1

Mk
1{N(i)

STOP >n−1}


≤
∑
n≥1

E

 ∑
j∈C

(i)
n−1

Mjδ(L)∑
k∈C

(i)
n−1

Mk
1{N(i)

STOP >n−1}


= δ(L)E(N (i)

STOP ).

In the above calculus we used that given C(i)
n−1, T̃

(i)
n defined in (4.32) is a jump of N (j,k)

with probability
Mjλj(k)∑
k∈C

(i)
n−1

Mk
.

Summing over all possibilities k > L gives the term (Mj(1 − αj(L)))/(
∑

k∈C
(i)
n−1

Mk). By

(4.36) we get the result. •

Proof of Proposition 3 (4.35) is the statement of Theorem 3. (4.36) has been proved
above in the proof of (2.7). •
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6 Final discussion

It is worth to note that Theorem 1 immediately provides an upper bound for the d̄−distance
of µ and µ[L]. The d̄−distance is defined as follows.

Definition 5 Given two probability measures µ and ν on S, a coupling between µ and ν is
a probability measure on S×S having as first and second marginals µ and ν, respectively.
The set of all couplings between µ and ν will be denoted M(µ, ν).

In the next definition, the elements of the product space S × S will be denoted by
((σ1(i), σ2(i)), i ∈ Zd).

Definition 6 The distance d̄ between two probability measures ν1 and ν2 on S is defined
as

d̄(ν1, ν2) = inf
Q∈M(ν1,ν2)

{
sup
i∈Zd

Q(σ1(i) 6= σ2(i))

}
.

This definition naturally extends Ornstein’s d̄−distance to the space of non-homogeneous
random fields. As a corollary of Theorem 1 we obtain

Theorem 4 Under the assumptions of Theorem 1 we have

d̄(µ, µ[L]) ≤ C sup
i∈Zd

(
1− e

−β
P

B:i∈B,B 6⊂Bi(L) |JB |
)

, (6.45)

where C is the same constant as in (2.8).

Upper bounds on the d̄−distance can as well be obtained by using a contraction argument.
This approach was introduced in Dobrushin (1968-1970) to prove uniqueness of the infinite
volume Gibbs measure. Applied to our context, it implies the existence of a good coupling
through compactness arguments.

For a nice and self contained presentation of this method, we refer the reader to Pre-
sutti (2009), see also Chapter 8 of Georgii. Applying Dobrushin’s method, we obtain the
following upper bound on Ornstein’s d̄−distance.

Theorem 5 Assume that
β sup

i

∑
B:i∈B

|JB| = r < 1. (6.46)

Then there exist unique infinite volume Gibbs measures µ and µ[L] and they satisfy

d̄(µ, µ[L]) ≤ β

1− r

sup
i∈Zd

∑
B:i∈B,B 6⊂Bi(L)

|JB|

 . (6.47)

Proof The proof of Theorem 5 can be achieved following the ideas in Dobrushin (1968-
1970), exposed in Chapter 3 of Presutti (2009). •
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Observe that condition (6.46) is weaker than the one requested in Theorem 1. In particular,
this condition is too weak to guarantee that our perfect simulation procedure of µ and µ[L]

stops after a finite number of steps. As a counterpart of the less restrictive assumption
(6.46), the upper bound (6.47) is not as good as the upper bound (6.45).

However, from our point of view, the important fact is that the contraction method of
Dobrushin is not constructive and does not provide an explicit sampling procedure for both
measures. To provide an explicit coupled perfect simulation procedure for the measures
is precisely the goal of the present paper.

Further features of high temperature region can be deduced by our constructive approach.
We discuss as an example the decay of correlations between localized observables as the
regions of localization are moved away from each other.

This decay of correlations can be described in terms of an associated random walk that
we introduce now. Suppose that µ is translational invariant. In this case, the sequence
(λi(k))k does not depend on i, and we shall write λ(k) = λi(k), for any k ≥ 0. Let ξ1, ξ2, . . .
be i.i.d. random variables with common distribution

P (ξ1 = −1) = λ(0), P (ξ1 = |B0(k)| − 1) = λ(k), k ≥ 1.

Put ϕ(λ) = E(eλξ1) and let

ρ = sup{λ > 0 : ϕ(λ) ≤ 1}.

Finally, consider the following left-continuous random walk Sn = ξ1 + . . . + ξn, for n ≥ 0.
Note that Sn is an upper bound on the total number of sites whose spins affect the
spin at site i under equilibrium, after n steps of the algorithm. Under condition (4.34),
E(ξ1) = −γ < 0, hence Sn drifts to −∞. This implies that M = supn Sn, the maximum
of the random walk, is finite almost surely.

The following theorem is an immediate consequence of our construction and of results
of Korshunov (1997) concerning the maximum of a random walk. In order to state the
theorem, we have to recall the notion of locally power functions.

Definition 7 A function f : R+ → R+ is called locally power if for every fixed t ≥ 0,

f(x + t) ∼ f(x) as x→∞, i.e. limx→∞
f(x+t)
f(x) = 1.

Theorem 6 Take two cylinder functions f and g having support ∆f b Zd and ∆g b Zd.
Assume the distance d(∆f ,∆g) = R. Under the assumption (4.34) we have

|µ(fg)− µ(f)µ(g)| ≤ 2cfcg(|∆f |+ |∆g|) P (M ≥ R/2), (6.48)

where
cf = sup

i∈∆
sup
σ∈S
|f(σ)− f(σi)| (6.49)

and cg is similarly defined. Concerning the decay of P (M ≥ R/2), the following holds.

1. Suppose that ρ = 0 and that P (ξ1 + ξ2 ≥ n) ∼ 2P (ξ1 ≥ n) as n → ∞. Then as
n→∞,

P (M ≥ |B0(n)|) ∼ 1
γ

[ ∞∑
k=n+1

λ(k)|B0(k)| − |B0(n)|

( ∑
k>n+1

λ(k)

)]
where γ is given in (4.37).
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2. Suppose that ρ > 0, ϕ(ρ) < 1, that P (ξ1 + ξ2 ≥ n) ∼ cP (ξ1 ≥ n) as n→∞ for some
constant c and suppose that eρnP (ξ1 ≥ n) is locally power. Then as n→∞

P (M ≥ |B0(n)|) ∼ ρE(eρM )
1− ϕ(ρ)

∞∑
k=n+1

λ(k).

3. Suppose that ρ > 0, ϕ(ρ) = 1 and ϕ′(ρ) < +∞. Then

P (M ≥ |B0(n)|) ∼ ce−ρn

as n→∞, where c is some positive constant.

Remark 4 Using the same type of upper bounds as in the proof of Lemma 1, note that
the expression

∞∑
k=n+1

λ(k)|B0(k)|

that defines the decay of correlations can be upper bounded by

β
∞∑

k=n+1

 ∑
B:0∈B,B⊂B0(k),B 6⊂B0(k−1)

|JB|

 |B0(k)|,

which yields the tail of the converging series of condition (2.6).

Proof We start by proving (6.48). It is sufficient to prove it for functions f and g having
support ∆f = {i} and ∆g = {j}, R = ‖i− j‖ > 0. For any site k ∈ Zd, let

C(k) =
⋃
n≥0

C(k)
n (6.50)

be the total number of sites whose spins affect the spin of site k under equilibrium (recall
(4.33)). Then it is evident that

|µ(fg)− µ(f)µ(g)| ≤ cfcg(|∆f |+ |∆g|)P (C(i) ∩C(j) 6= ∅). (6.51)

Then the same comparison argument that leads to (5.42) yields

P (C(i) ∩C(j) 6= ∅) ≤ P (M + M ′ ≥ R) ≤ 2P (M ≥ R/2).

This concludes the proof of (6.48).

Item 1 is a consequence of Theorem 1 of Korshunov (1997), see [9]. First notice that
F̄ (t) = P (ξ1 > t) is constant on intervals [|B0(n)| − 1, |B0(n + 1)| − 1[. Then evidently
F̄ (|B0(n)| − 1) = 1− α(n), where αn = λ0 + . . . + λn. Therefore,∫ ∞

|B0(n)|
F̄ (t)dt =

( ∞∑
k=n

(1− α(k)) [|B0(k + 1)| − |B0(k)|]

)
− (1− α(n))

=

( ∞∑
k=n+1

λ(k)|B0(k)|

)
− (1− α(n))[|B0(n)|+ 1]

=

( ∞∑
k=n+1

λ(k)|B0(k)|

)
− [|B0(n)|+ 1]

(∑
k>n

λ(k)

)
.
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This integral
∫∞
|B0(n)| F̄ (t)dt is the quantity that determines the asymptotic behavior of

P (M ≥ |B0(n)|) as it is shown in Theorem 1 of Korshunov (1997). Items 2 and 3 are a
consequence of Theorem 2 and Theorem 3 (ii) of Korshunov (1997). •
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