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Abstract. We consider a family of integral operators which appears when analyzing layered equilibria

and front dynamics of a phase kinetics equation with a conservation law. We study the spectra of
these operators in L2 and derive a lower bound for the associated quadratic forms in terms of the H´1

norm.

1. Introduction

The purpose of this paper is to derive spectral estimates for a family of integral operators which
appear when analyzing layered equilibria and front dynamics of a phase kinetics equation with a con-
servation law. We start by recalling some background.

Consider in the torus Td the nonlocal and nonlinear evolution equation

B

Bt
mpx, tq “ ∇ ¨

`

∇mpx, tq ´ βp1´mpx, tq2qpJ ‹∇mqpx, tq
˘

(1.1)

where β ą 1, ‹ denotes convolution and J is a smooth, spherically symmetric probability density with
compact support. This equation first appeared in the literature in a paper [13] on the dynamics of Ising
systems with a long–range interaction and so–called “Kawasaki” or “exchange” dynamics and later it
was rigorously derived in [10]. In this physical context, mpx, tq P r´1, 1s is the magnetization density
at x at time t, viewed on the length scale of the interaction, and β is the inverse temperature. This
introduction is not the place to fully explain the physical origins of the equation (1.1), and familiarity
with them is not needed to understand our results or their proofs. We refer to the previous quoted
paper for more physical insight. The equation (1.1) can be written in a gradient flow form. To do this,
we introduce the free energy functional Fpmq:

Fpmq “
ż

Td
rV pmpxqq ´ V pmβqsdx`

1

4

ż

Td

ż

Td
Jpx´ yqrmpxq ´mpyqs2dxdy, (1.2)

where V pmq is

V pmq “ ´
1

2
m2 `

1

β

„ˆ

1`m

2

˙

ln

ˆ

1`m

2

˙

`

ˆ

1´m

2

˙

ln

ˆ

1´m

2

˙

. (1.3)

For β ą 1, this potential function V is a symmetric double well potential on r´1, 1s. We denote the
positive minimizer of V on r´1, 1s by mβ . It is easy to see that mβ is the positive solution of the
equation

mβ “ tanhpβmβq. (1.4)

Then equation (1.1) can be written as

B

Bt
m “ ∇ ¨

ˆ

σpmq∇
ˆ

δF
δm

˙˙

(1.5)
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where the mobility σpmq is given by

σpmq “ βp1´m2q. (1.6)

Formally one derives

d

dt
Fpmptqq “ ´

ż

ˇ

ˇ

ˇ

ˇ

∇
ˆ

δF
δm

˙
ˇ

ˇ

ˇ

ˇ

2

σpmptqqdx (1.7)

thus F is a Lyapunov function for (1.1). This suggests that the free energy should want to tend locally to
one of the two minimizing values, ˘mβ , and that the interface between a region of `mβ magnetization
and a region of ´mβ magnetization should have a “profile” – in the direction orthogonal to the interface
– that makes the transition from one local equilibrium to the other in a way that minimizes the free
energy. This is indeed the case, as it has been shown in [3], [4] in dimension d “ 1 and in [6] in
dimension d ď 3. Also clearly, the minimizers of the free energy ˘mβ represent the “pure phases” of
the system. However, unless the initial data m0 happens to satisfy

ş

Tm0pxqdx “ ˘mβ |T|, these “pure
phases” cannot be reached because of the conservation law. Instead, what will eventually be produced
is a region in which mpxq « `mβ , with mpxq « ´mβ in its complement, and with a smooth transition
across its boundary. This is referred to a phase segregation, and the boundary is the interface between
the two phases. If we “stand far enough back” from T, all we see is the interface, and we do not see any
structure across the interface – the structure now being on an invisibly small scale. The evolution of m
under the (1.1), or another evolution equation of this type, drives an evolution of the interface. To see
any evolution of the interface, one must wait a long time. More specifically, let λ be a small parameter,
and introduce new variables τ and ξ through

τ “ λ3t and ξ “ λx .

Then of course
B

Bt
“ λ3 B

Bτ
and

B

Bx
“ λ

B

Bξ
.

Hence if mpx, tq is a solution of (1.1), and we define mλpξ, τq by mλpξ, τq “ mpxpξq, tpτqq, we obtain

B

Bτ
mλpξ, τq “

1

λ
∇ ¨

ˆ

σpmλq∇
„

1

β
arctanhmλ ´ pJλ ‹mλq

˙

pξ, τq (1.8)

where we denoted Jλpξq “ λ´dJpλ´1ξq. One should just bear in mind that now we are looking at the
evolution over a very long time scale when λ is small.

One might hope that for small values of λ, all information about the evolution on mλ is contained in
the evolution of the interface Γτ . This is indeed the case. The sharp interface limit of equations tipyfied
by (1.8) has been investigated by Giacomin and Lebowitz, see [11], where it is heuristically proven that
the limit motion is driven by the Mullins–Sekerka flow. They applied asymptotic analysis in the same
spirit of the heuristic work of Pego [15] who derived the sharp interfaces limit for the Cahn-Hilliard
equation.

The heuristic analysis of Pego has been rigorously proven for the Cahn-Hilliard equation by [1] in
the 1994 and later on, applying a different method, in [5]. In both the papers the proof is based on
two steps. The first step is to construct approximate solutions to the Cahn-Hilliard equation, which
are, in the limit, close to the the Mullins–Sekerka flow. The second step is to show that the family of
approximate solutions is indeed suitably close to the solution of the Cahn-Hilliard equation. To show
this second step spectral estimates are needed. These were proven in [2], in dimensions d “ 2, and [7]
in any dimensions.

In [1] the family of the approximate solutions to Cahn-Hilliard equations are constructed by matched
asymptotic expansions. In [5], the approximate solutions are constructed by an alternative method. The
method based on the Hilbert expansion used in kinetic theory besides its relative simplicity, it leads to
calculable higher order corrections to the interface motion. More important in this context is that the
above approach allows to construct approximate solutions to the non local evolution equation (1.8).
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Hence, to prove rigorously the heuristic analysis done by Giacomin and Lebowitz in [11], one might
first construct approximate solutions and this can be done applying the same method as in [5]. Then
one needs to derive spectral estimates to show that the constructed approximate solutions are close in
some convenient norm to the solution of (1.8). In this paper we prove such spectral estimates. We set
the problem in a bounded domain Ω Ă R2. The restriction at dimension d “ 2 is purely technical. In
d “ 2 we still can use global set of coordinates to represent the operator when close to the interface,
Γ. Namely in such a case any simple, smooth, closed, one dimensional curve can be mapped into a
one dimensional circle. This allows to use Fourier series by going to the universal cover. In dimension
d ě 3 this would not be possible and one needs to deal with local coordinates and, possibly, Fourier
transforms. Indeed, we believe that the result holds in any dimension and we leave this problem to
further investigation.

We consider a family mλ
A of smooth functions which as λÑ 0 approach a step function with values

˘mβ which is discontinuous along a smooth curve Γ Ă Ω. This family consists of approximate solutions
to (1.8), which can be constructed as in [5]. The functions mλ

A have a very specific behaviour in the
direction orthogonal to Γ, as λ Ñ 0. The specific form of mλ

A is given in (2.9). To simplify notations
from now on we drop the index λ. The linear equation obtaining linearising (1.8) at mA, is 1

B

Bτ
vpξ, τq “

1

λ
∇ ¨

ˆ

σpmAq∇ ¨
„

v

σpmAq
´ pJλ ‹Ω vq

˙

pξ, τq, ξ P Ω, (1.9)

where pJλ ‹Ω vqpξq “
ş

Ω
Jλpξ´ ξ1qvpξ1qdξ1, v “ mλ´mA and we assume that vpξ, 0q “ 0, ξ P Ω. By the

conservation law,
ş

Ω
dξvpξ, τq “ 0 for all τ ě 0. To simplify the explanation let us first pretend that

σpmAq “ 1 in ∇ ¨ σpmAq∇. Let us then denote

1

λ
pAλmAvqpξq “

1

λ

"

vpξq

σpmApξqq
´ pJλ ‹Ω vqpξq

*

, ξ P Ω. (1.10)

Accordingly, to lower bound the spectrum of the linear operator on the right hand side of (1.9) in
H´1pΩq it suffices to show that

1

λ
xxv,AλmAvyy ě ´C}v}

2
H´1pΩq, (1.11)

where xxv, gyy “
ş

Ω
vpξqgpξqdξ and C ą 0 does not depend on λ. In the general case, when σpmAq ‰ 1,

one can argue in the same manner by using a weighted H´1 norm, the weigh being σpmAq. Because
0 ă a ď σpmAq ď β the weighted H´1 norm is equivalent to the H´1. So we will prove (1.11), with
v P H´1pΩq.

As in Alikakos and Fusco, [2], or in X. Chen, [7], we first prove a lower bound of the spectrum of the
operator in (1.10) in the L2 norm, see Theorem 2.4, i.e

xxv,AλmAvyy ě ´Cλ
2}v}2L2pΩq. (1.12)

Then, when

xxv,AλmAvyy ď 0 (1.13)

we show that

λ}v}2L2pΩq ď }v}
2
H´1pΩq (1.14)

see Theorem 2.5. In this way we prove the lower bound (1.11).

1We are now considering (1.8) in Ω Ť R2 with non flux boundary conditions and with the convolution operator
“restricted” in Ω.
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1.1. Sketch of the proof. The proof of (1.11) presents some similarities with the one given in [2] and
in [7] for the Cahn-Hilliard (C-H) case. Nevertheless, the implementation of each single step requires
different technique due to the non locality of the operator. In particular, we cannot follow the method
in [2] and in [7], as we cannot split the integral kernel in (1.10) into a tangential and in normal part,
whereas expressions like }∇v}2 split in such a way naturally.

Now we sommarize how we proceed in proving (1.11). We consider a neighborhood of Γ, N pΓq.
We map the curve Γ in a circle T having perimeter equal to the length of the curve L and each point
ξ P N pΓq is mapped to ps, rq P T “ T ˆ r´d0, d0s in a diffeomorphic way. We denote by αps, rq the
Jacobian of the map. We take a subset N1pΓq Ă N pΓq and we assume that

inf
ξPΩzN1pΓq

1

σpmApξqq
ą C˚ ą 1. (1.15)

To take advantage of (1.15) we split the quadratic form (1.12) in two integrals: one over N1pΓq the
other in ΩzN1pΓq. To this end we introduce the indicator function of the set N1pΓq, η1pξq “ 1 when
ξ P N1pΓq, η1pξq “ 0 in ΩzN1pΓq and η2pξq “ 1 ´ η1pξq. Because of the non locality of the operator,
taking into account that η2pξqη1pξq “ 0 for ξ P Ω and the symmetry of Jλp¨q we obtain that

ż

Ω

pAλmAvqpξqvpξqdξ “

ż

Ω

pAλmAη1vqpξqη1pξqvpξqdξ

`

ż

Ω

pAλmAη2vqpξqη2pξqvpξqdξ

´ 2

ż

Ω

dξη1pξqvpξqpJ
λ ‹ η2vqpξq.

(1.16)

Condition (1.15) implies
ż

Ω

pAλmAη2vqpξqη2pξqvpξqdξ ě pC
˚ ´ 1q}η2v}

2
L2pΩq ą 0.

Even if we show that
ż

Ω

pAλmAη1vqpξqη1vpξqdξ ě ´Cλ
2

ż

Ω

v2pξqdξ, (1.17)

the last term of (1.16) might create problems for getting estimate (1.12). The first task in proving
estimate (1.12) is therefore to show that there exists N1pΓq so that

ˇ

ˇ

ˇ

ˇ

ż

Ω

dξη1pξqvpξqpJ
λ ‹ η2vqpξq

ˇ

ˇ

ˇ

ˇ

ď Cλ2}v}2L2pΩq. (1.18)

This is proven at the beginning of the proof of Theorem 2.4. The following step is to show (1.17). We
write the quadratic form on the left hand side of (1.17) in local variables. Notice that the integrals are
on the set N pΓq. In these local variables the convolution operator pJλ ‹ η1vqpξq becomes equal, up to
order λ2, to an operator which is not a convolution anymore but it is still self-adjoint with respect to a
weighed Lebesgue measure on T , see Lemma 4.1. In this way we show, see Lemma 4.2, that setting

v̂ps, rq “
a

αps, rqvps, rq
ż

Ω

pAλmAη1vqpξqη1vpξqdξ ě

ż

T
dsdrpLλv̂qps, rqv̂ps, rq ´ Cλ2}v}2L2pΩq. (1.19)

It turns out that the operator Lλ is conjugate to the operator 1I´Pλ, where Pλ is an integral operator,
positivity improving. Therefore Lλ and 1I ´ Pλ have the same spectrum. By the Perron -Frobenius
Theorem we know that the principal eigenfunction is point wise positive. To estimate the principal
eigenvalue we still need other ingredients. We show that when the operator Lλ acts on functions
depending only on the signed distance r from Γ, becomes equal, up to order λ2, to a one dimensional

operator Lλ,s1 , s P T . The knowledge of the spectrum of Lλ,s1 (obtained using the results of [14]) together

with the properties of the eigenfunctions associated to the principal eigenvalues of Lλ,s1 and Pλ allows to
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upper and lower bound the principal eigenvalue µ0 of Lλ. In this way we show that ´Cλ2 ď µ0 ď Cλ2.
Hence (1.17) follows. To prove the H´1pΩq lower bound, see (1.11), we cannot proceed as in [2] and in
[7]. For the non local operator (1.10) a bound on its quadratic form does not imply any bound on the
gradient of the function. Nevertheless, we are still able to show that when

ż

Ω

pAλmAη1vqpξqη1vpξqdξ ď λ2}v}2L2pΩq (1.20)

then v in local variables enjoys the following decomposition, see Theorem 6.1,

vps, rq “ Zpsq
1
?
λ
ψ0

0p
r

λ
q ` vRps, rq (1.21)

where }Z}L2pT q » 1, }∇Z}L2pT q ď C, }vR}2L2pN pΓqq ď Cλ2 and ψ0
0p¨q is a strictly positive, even, smooth

function, exponential decreasing. In such a way we obtain a decomposition similar to the one in [2] and
[7] and we can proceed as in [7] to prove (1.14). To prove the decomposition (1.21) a more complete
analysis of the spectrum of the operator Lλ is needed. Let tµkukPN be the eigenvalues of Lλ in L2pT q.
Essentially we prove that ´Cλ2`c0k

2λ2 ď µk ď Cλ2`c1k
2λ2, for k ď h0

λ , and, for k ą h0

λ , µk ě ν ą 0,

where C, c0, c1, h0 and ν are positive, real numbers independent on λ. In addition, when k ď h0

λ , we
also need, and establish, a precise knowledge of the shape of the associated eigenfunctions. To obtain
such informations on the spectrum of the operator Lλ we make a judicious use of Fourier analysis.

Acknowledgements I am indebted to Sao Carvalho and Eric Carlen for discussions on this and related
problems, discussions which started many years ago when visiting Georgia Tech and never stopped. I
also benefited from suggestions by Carlangelo Liverani.

2. Notations and Results

Let Ω be a bounded domain in R2 with sufficiently smooth boundary and let Γ Ă Ω be a simple,
smooth, closed curve, boundary of an open set Ω´. We denote by Ω` “ ΩzpΩ´ Y Γq. We denote by C
a constant which might change from one occurrence to the other, independent on λ.

2.1. The interaction Jλ. Let J be a smooth spherically symmetric, translation invariant, probability
density on R2 with compact support, tξ P R2 : |ξ| ď 1u. We assume J P C1pR2q. We say that ξ P R2

and ξ1 P R2 interact each other if Jpξ ´ ξ1q ą 0. For ξ “ pξ1, ξ2q we denote

J̄pξ1q “

ż

R
Jpξqdξ2, (2.1)

and for λ P p0, 1s

Jλpξq “
1

λ2
Jp
ξ

λ
q, J̄λpξ1q “

1

λ
J̄p
ξ1
λ
q.

The scaling is such that for all λ P p0, 1s
ż

R2

Jλpξqdξ “ 1,

ż

R
J̄λpξ1qdξ1 “ 1.

2.2. Interaction in bounded domain. In a bounded domain Q we require the interaction to act
only when ξ and ξ1 are in Q. Let v be a function having support Q. We denote for ξ P Q

pJ ‹ vqpξq “ pJ ‹Q vqpξq “

ż

Q

Jpξ ´ ξ1qvpξ1qdξ1. (2.2)

We do not add the suffix Q, unless confusion arises. Same notation when J is replaced by Jλ.
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2.3. Local variables in a neighborhood of Γ. We parametrize Γ by arc length. Let L be the length
of Γ and let T be a circle of length L. Let γ : T Ñ Γ be the map parametrizing Γ so that for s P T ,
|γ1psq| “ 1. We assume γ P C5pT q. We denote by νpsq a smoothly varying unit vector normal to Γ at
the point γpsq. We denote by kpsq the signed curvature defined by ν1psq “ ´kpsqγ1psq . We therefore
have

|νpsq| “ 1, |γ1psq| “ 1, ν1psq “ ´kpsqγ1psq, γ2psq “ kpsqνpsq, γ1psq ¨ νpsq “ 0, (2.3)

where for two vectors w1 and w2 in R2, w1 ¨ w2 is the scalar product. Let dpξ,Γq be the euclidean
distance of the point ξ from Γ and r “ rpξ,Γq be the signed distance of a point ξ from Γ with the
convention that r ă 0 when ξ P Ω´ and r ą 0 when ξ P Ω`. Let d0 ą 0 be so that

N pd0q “ tξ P R2 : dpξ,Γq ď d0u Ă Ω.

We require d0 to be small enough so that the map ρ : T ˆ r´d0, d0s Ñ N pd0q,

ξ “ γpsq ` νpsqr “ ρps, rq, (2.4)

is a diffeomorphism. We denote I “ r´d0, d0s, T “ T ˆ I and αps, rq for ps, rq P T the Jacobian of the
local change of variables

αps, rq “ det

ˆ

Bρps, rq

Bps, rq

˙

“ 1´ rkpsq. (2.5)

We further require d0 to be small enough so that

sup
sPT

|kpsq|d0 ď
1

2
. (2.6)

This implies 3
2 ě αps, rq ě 1

2 for all ps, rq P T .
A function upξq for ξ P N pd0q becomes by the change of coordinates vps, rq “ upρps, rqq, ps, rq P T .

In the sequel we identify functions of variable ξ and functions of variable ps, rq in the domain N pd0q.
We often lift the function v on the universal cover of T without mentioning. We write

ż

N pd0q
upξqdξ “

ż

T
ups, rqαps, rqdsdr (2.7)

and for v and w in L2pT q

xv, wy “

ż

T
vps, rqwps, rqdsdr. (2.8)

2.4. The approximate solution mAp¨q. Let β ą 1, mβ be the strictly positive solution of m “

tanhβm and m̄ be the unique antisymmetric solution of

mpzq “ tanhpβJ̄ ‹mqpzq in R, mp0q “ 0, lim
zÑ˘8

mpzq “ ˘mβ . (2.9)

Notice that mβ ă 1 and it can be proven that m̄ P C8pRq, it is strictly increasing, and there exist
a ą 0, α ą α0 ą 0 and c ą 0 so that

0 ă m2
β ´ m̄

2pzq ď ce´α|z| ,

|m̄1pzq ´ aαe´α|z|| ď ce´α0|z|.
(2.10)

A proof of these estimates and related results can be found in [16, Chapter 8, Section 8.2]. We assume
that mAp¨q in N pd0q has the expansion

mApξq “ m̄p
rpξ,Γq

λ
q ` λrh1p

rpξ,Γq

λ
qgpspξqq ` φpξqs ` λ2qλpξq ξ P N pd0q. (2.11)

We assume that h1 P C
1pRq X L8pRq, lim|z|Ñ8 h1pzq “ 0 exponentially fast and that h1 is an even

function. Hence if v is an odd function
ż

R

h1pzqvpzqdz “ 0. (2.12)
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In particular, since m̄ is an odd function,
ż

R

m̄pzq

σ2pm̄pzqq
h1pzqpm̄

1pzqq2dz “ 0 (2.13)

where σpmq “ βp1´m2q, see Remark 2.2. We assume that g and φ are smooth functions, at leact C3,

sup
λPp0,1s

sup
ξPN pd0q

`

gpspξqq ` φpξq ` qλpξq
˘

ď C, (2.14)

|∇ΓmApξq| ď Cλ, ξ P N pd0q, (2.15)

where ∇Γ is the tangential derivative to Γ. The function φp¨q has a Lipschitz norm bounded uniformly
with respect to λ:

}φ}LippN pd0qq ď C. (2.16)

We assume that away of the interface,

mApξq » ˘mβ ξ P Ω˘ X rΩzN pd0qs

where » means up to correction of order λ. We require that there exist C˚ ą 1, a ą 0 and λ0 ą 0 so
that for λ ď λ0

inf
ξPΩzN p d02 q

1

σpmApξqq
ą C˚, (2.17)

and
a ď σpmApξqq ď β, ξ P Ω. (2.18)

Remark 2.1. The assumptions regarding mA are suggested by the preliminary results obtained by
applying the method of [5] to the construction of approximate solutions of (1.8). The condition (2.15) is
stronger than the corresponding requirement used in proving the spectral estimates in the Cahn-Hilliard
case. In [7], it is required |∇ΓmApξq| ď C, for ξ P N pd0q, although the function approximating the
solution of the Cahn-Hilliard case constructed in [1] satisfies condition (2.15), see [1, formula (5.2)].

Remark 2.2. Condition (2.13) corresponds to the condition required by Alikakos, Fusco and Chen in
the Cahn-Hilliard case, see for example [7, formula (1.12)]. In the Chen notation one needs

ż

R
f2pm̄pzqqh1pzqpm̄

1pzqq2dz “ 0, (2.19)

where f2p¨q is the third derivative of a double well potential. Let V pmq be the double well potential defined
in (1.3). We have fpmq “ V 1pmq “ ´m ` 1

2β ln 1`m
1´m , f 1pmq “ ´1 ` 1

β
1

p1´m2q
, f2pmq “ 2 m

βp1´m2q2
.

Inserting this into (2.19) gives condition (2.13).

2.5. Main Results. Denote by AλmA the operator acting on functions v P L2pΩq:

pAλmAvqpξq “
vpξq

σpmApξqq
´ pJλ ‹Ω vqpξq ξ P Ω. (2.20)

For λ ď λ0, σpmApξqq is strictly positive for ξ P Ω, see (2.18), therefore the operator (2.20) is well
defined. Denote

X “

"

v P H1pΩq : ∆w “ v,

ż

v “ 0

*

.

We have the following main result.

Theorem 2.3. Set β ą 1. There exists λ1 ą 0 such that for λ P p0, λ1s

inf
tvPXu

1

λ

ş

Ω

`

AλmAvpξq
˘

vpξqdξ
ş

Ω
|∇wpξq|2dξ

ě ´C. (2.21)

The proof of Theorem 2.3 is based on two important intermediate results.
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Theorem 2.4. Set β ą 1. There exists λ2 such that for λ P p0, λ2s
ż

Ω

AλmAvpξqvpξqdξ ě ´Cλ
2

ż

Ω

v2pξqdξ.

Theorem 2.5. Set β ą 1. There exists λ4 such that if for λ ď λ4, v P X
ż

Ω

AλmAvpξqvpξqdξ ď Cλ2

ż

Ω

v2pξqdξ (2.22)

then

}∇w}2L2pΩq ě Cλ}v}2L2pΩq. (2.23)

where w solves ∆w “ v in Ω with Neumann boundary conditions on BΩ.

Theorem 2.4 and Theorem 2.5 imply the thesis of Theorem 2.3. Preliminary to our analysis is the
study of the spectra of one dimensional linear operators. This is done in Section 3. In Section 4 we
prove Theorem 2.4. In Section 5 we study the spectrum of a two dimensional convolution operator.
The knowledge of it allows to prove in Section 6 the representation theorem for function v so that (1.21)
holds. This is the main ingredient to show Theorem 2.5 which is proven in Section 7. In the Appendix,
Section 8, we collect some estimates needed to prove the results.

3. One dimensional convolution operators in enlarged intervals.

Denote by z “ r
λ the stretched variable and by Iλ “ r´

d0
λ ,

d0
λ s the stretched interval. Also we denote

by v the generic function of ps, rq and by V the generic function of ps, zq. Define for V P L2pIλq the
following operator

pL0V qpzq “
V pzq

σpm̄pzqq
´ pJ̄ ‹Iλ V qpzq, z P Iλ. (3.1)

Preliminary to the analysis of the spectrum of L0 is the knowledge of the spectrum of the following
operator L defined on the space L2pRq.

pLV qpzq “ V pzq

σpm̄pzqq
´ pJ̄ ‹ V qpzq, z P R. (3.2)

Spectral properties of L are given in [8]. The spectrum of L is positive, the lower bound of the spectrum
is 0 which is an eigenvalue of multiplicity one and the corresponding eigenvalue is m̄1p¨q, i.e

Lm̄1 “ 0. (3.3)

The remaining part of the spectrum is strictly bigger then some positive number. The operator L0 is
the “restriction” of the operator L in the bounded interval Iλ. The spectrum of L0 is studied in [14].
We collect in Theorem 3.1 stated below the main results. Denote

pV,W q “

ż

Iλ

V pzqW pzqdz, }V }2 “

ż

Iλ

V pzq2dz.

Theorem 3.1 ([14]). For any β ą 1 there exists λ0pβq so that for λ ď λ0pβq the following holds.
(0)The operator L0 is a bounded, self adjoint operator on L2pIλq.
(1) There exist µ0

0 P R and ψ0
0 P L

2pIλq, ψ
0
0 strictly positive in Iλ so that

L0ψ0
0 “ µ0

0ψ
0
0 . (3.4)

The eigenvalue µ0
0 has multiplicity one.

0 ď µ0
0 ď Ce´

2α
λ , (3.5)
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where α ą 0 is given in (2.10). Further ψ0
0 P C

8pIλq, ψ
0
0pzq “ ψ0

0p´zq for z P Iλ. The spectrum of L0

is discrete and any other eigenvalue is strictly bigger than µ0
0.

(2) Let µ0
2 be the second eigenvalue of L0 and D ą 0 independent on λ. We have that

µ0
2 “ inf

pV,ψ0
0q“0;}V }“1

pV,L0V q ě D. (3.6)

(3) Let ψ0
0 be the normalized eigenfunction corresponding to µ0

0 we have

}ψ0
0 ´

m̄1

}m̄1}
} ď Ce´

2α
λ . (3.7)

The point (0) it is easy to prove. To show point (1) one first notes that the Perron-Frobenius Theorem
holds for the operator pP0gqpzq “ ppzqpJ̄ ‹Iλ gqpzq, g P L

2pIλq, since J̄ is a positivity improving integral
kernel. The operator L0 is conjugate to the operator 1I ´ P0. This implies immediately the result
stated in point (1). Estimate (3.6) is obtained by applying the operator to a convenient trial function
and using (2.13). The most difficult part is to show point (2). This has been obtained by applying
a generalization of Cheeger’s inequality. For more details see [14]. Next we introduce a family of one
dimensional operators. For any s P T and for mA given in (2.11), let

pLsV qps, zq “ V ps, zq

σpmAps, λzqq
´ pJ̄ ‹Iλ,z V qps, zq, z P Iλ (3.8)

be the operator acting on L2pIλq where

pJ̄ ‹Iλ,z V qps, zq “

ż

Iλ

J̄pz ´ z1qV ps, z1qdz1. (3.9)

We stress that Ls acts for any fixed s only on the z variable of V . We denote

xV,W ys “

ż

Iλ

V ps, zqW ps, zqdz, }V }2s “

ż

Iλ

V ps, zq2dz.

By the definition of mA given in (2.11) we have

1

βp1´m2
Aps, λzqq

“
1

βp1´ m̄2pzqq

„

1` λ
2m̄pzq

p1´ m̄2pzqq
rh1pzqgpsq ` φps, λzqs



` qλps, λzqλ2. (3.10)

By the point wise bound (2.14) we have that
ˇ

ˇ

ˇ

ˇ

1

βp1´m2
Aps, λzqq

´
1

βp1´ m̄2pzqq

ˇ

ˇ

ˇ

ˇ

ď Cλ.

Therefore the operator Ls is for each s P T , a λ´perturbation of the operator L0, i.e.

sup
t}V }s“1u

|xpLs ´ L0qV, V ys| ď Cλ.

Nevertheless, by (2.13), it is possible to show that the perturbation on the principal eigenvalue of L0 is
of order λ2. We have the following result.

Theorem 3.2. For any β ą 1 there exists λ0 “ λ0pβq so that for λ ď λ0 the following holds.

(1) For all s P T , the operator Ls is a bounded, selfadjoint operator on L2pIλq. There exist µ1psq P R
and Ψ1ps, ¨q P L

2pIλq, Ψ1ps, ¨q strictly positive in Iλ so that

LsΨ1ps, ¨q “ µ1psqΨ1ps, ¨q. (3.11)

The eigenvalue µ1psq has multiplicity one and any other point of the spectrum is strictly bigger
than µ1psq.
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(2) We have that for all s P T

Cλ2 ě µ1psq “ inf
}V }s“1

xLsV, V ys ě ´Cλ2, (3.12)

Ψ1ps, ¨q “
1

}m1}
m̄1p¨q `ΨR

1 ps, ¨q (3.13)

where

sup
sPT

}ΨR
1 }s ď Cλ. (3.14)

Moreover, there exist z1 ą 0 and ζ1 ą 0 independent on λ so that

Ψ1ps, zq ě ζ1, |z| ď z1, s P T. (3.15)

(3) There exists γ ą 0 such for every λ P p0, λ0s and s P T

µ2psq “ inf
xΨ,Ψ1ys“0;}Ψ}s“1

xΨ,LsΨys ě γ. (3.16)

(4)

sup
sPT

}∇sΨ1}s ď C}∇smA}L8pN pd0q. (3.17)

Proof. By the symmetry of J̄ and (2.18), immediately one gets that Ls is a bounded, self-adjoint
operator on L2pIλq, for s P T . Point (1) of the theorem follows by the positivity improving property of
the integral kernel J̄ , similarly as done in proving point (1) of Theorem 3.1. As a consequence we have
that the principal eigenvalue of the spectrum of Ls, µ1psq, has multiplicity one and any other point of
the spectrum of Ls is strictly bigger than µ1psq. Further the associated eigenfunction Ψ1ps, ¨q does not
change sign and we assume that it is positive.

(2) We show (3.12). Taking into account (3.10), we split the operator Ls as following

xLsV, V ys “ xL0V, V ys ` xrLs ´ L0sV, V ys, (3.18)

where L0 is the operator defined in (3.1). We write

xrLs ´ L0sV, V ys “ I2,spV q ` I3,spV q ` I4,spV q (3.19)

where

I2,spV q “ λ2gpsqβ

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqh1pzqV ps, zq

2, (3.20)

I3,spV q “ λ2β

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqφps, λzqV ps, zq2, (3.21)

I4,spV q “ λ2β

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqqλps, λzqV ps, zq2. (3.22)

Take as trial function

V̄ ps, zq “
m̄1pzq

}m̄1}L2pIλq
s P T, z P Iλ. (3.23)

By the variational form for the eigenvalues

µ1psq ď xV̄ ,LsV̄ ys “ xL0V̄ , V̄ ys ` xrLs ´ L0sV̄ , V̄ ys. (3.24)
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Next we compute the right hand side of (3.24). We have

xV̄ ,L0V̄ ys “
1

}m̄1}2L2pIλq

ż

Iλ

dz

"

m̄1pzq

σpm̄q
´ pJ̄ ‹Iλ m̄

1qpzq

*

m̄1pzq

“
1

}m̄1}2L2pIλq

ż

Iλ

dz

"

m̄1pzq

σpm̄q
´ pJ̄ ‹ m̄1qpzq

*

m̄1pzq ´
1

}m̄1}2L2pIλq

ż

Iλ

dzm̄1pzq

ż

Icλ

J̄pz ´ z1qm̄1pz1qdz1

“ ´
1

}m̄1}2L2pIλq

ż

Iλ

dzm̄1pzq

ż

Icλ

J̄pz ´ z1qm̄1pz1qdz1,

(3.25)

since, see (3.3), pLm̄1qpzq “ m̄1pzq
σpm̄pzqq ´ pJ̄ ‹ m̄

1qpzq “ 0. By (2.10) we have that

ˇ

ˇxV̄ ,L0V̄ ys
ˇ

ˇ ď
1

}m̄1}2L2pIλq

ż

Iλ

dzm̄1pzq

ż

Icλ

J̄pz ´ z1qm̄1pz1qdz1 ď Ce´2α
d0
λ . (3.26)

We split, as in (3.19), the second term in (3.24)

xrLs ´ L0sV̄ , V̄ ys “ I2,spV̄ q ` I3,spV̄ q ` I4,spV̄ q. (3.27)

By condition (2.13)

I2,spV̄ q “ 0.

Applying again (2.13)

I3,spV̄ q “ λ2β
1

}m̄1}2L2pIλq

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqrφps, λzq ´ φps, 0qspm̄1pzqq2. (3.28)

By (2.16) and the exponentially decreasing of m̄1, see (2.10), we have

|I3,spV̄ q| ď λ2β
1

}m̄1}2L2pIλq

ˇ

ˇ

ˇ

ˇ

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzq|φps, λzq ´ φps, 0q|pm̄1pzqq2

ˇ

ˇ

ˇ

ˇ

ď λ2C.

By (2.14) and (2.10), we have that

I4,spV̄ q| ď Cλ2.

Therefore, recalling (3.26) we get

µ1psq ď xV̄ ,LsV̄ ys ď Cλ2. (3.29)

We need to show µ1psq ě ´Cλ
2. Let Ψ1ps, ¨q be the normalized positive eigenfunction associated to

µ1psq. Since µ1psq ď Cλ2, by Lemma 8.1 stated in the Appendix, for λ small enough, Ψ1ps, ¨q as
function of z decays to zero exponentially fast for z large enough. Set

Ψ1ps, ¨q “ apsqψ0
0p¨q ` pψ

0
0q
Kps, ¨q, (3.30)

where ψ0
0p¨q is the normalized eigenfunction associated to the principal eigenvalue of L0, see (3.7),

apsq “

ż

Iλ

Ψ1ps, zqψ
0
0pzqdz,

ż

Iλ

ψ0
0pzqpψ

0
0q
Kps, zqdz “ 0 s P T.

By (3.18) we have that

µ1psq “ xΨ1,LsΨ1ys “ xΨ1,L0Ψ1ys ` xrLs ´ L0sΨ1,Ψ1ys. (3.31)

By (3.30) we obtain

xΨ1,L0Ψ1ys “ a2psqxψ0
0 ,L0ψ0

0ys ` xpψ
0
0q
K,L0pψ0

0q
Kys

ě a2psqµ0
0 ` µ

0
2}pψ

0
0q
K}2s,

(3.32)
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where µ0
0 and µ0

2 are, respectively, the first and second eigenvalue of L0. We split the second term on
the right hand side of (3.31) as in (3.27) obtaining

xrLs ´ L0sΨ1,Ψ1ys “ I2,spΨ1q ` I3,spΨ1q ` I4,spΨ1q. (3.33)

By the L8 bounds on σ, qλ and m̄ we have

|I4,spΨ1q| ď Cλ2. (3.34)

Taking into account (3.30) we get

I2,spΨ1q “ λgpsqβapsq

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqh1pzqψ

0
0pzq

2

` λgpsqβ

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqh1pzq

“

pψ0
0q
Kps, zq2 ` 2apsqψ0

0pzqpψ
0
0q
Kps, zq

‰

.

(3.35)

By (3.7) and (2.13) we have
ˇ

ˇ

ˇ

ˇ

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqh1pzqpψ

0
0pzqq

2

ˇ

ˇ

ˇ

ˇ

ď Ce´
α
λ . (3.36)

By the L8 bounds on σ, h1 and m̄ we have
ˇ

ˇ

ˇ

ˇ

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqh1pzq

“

ppψ0
0q
Kps, zqq2 ` 2apsqψ0

0pzqpψ
0
0q
Kps, zq

‰

ˇ

ˇ

ˇ

ˇ

ď C}pψ0
0q
K}s. (3.37)

Therefore, by (3.36) and (3.37),

|I2,spΨ1q| ď λC}pψ0
0q
K}s. (3.38)

For the third term in the right hand side of (3.31), we have

I3,spΨ1q “ λβ

ż

Iλ

dz
1

σ2pm̄pzqq
m̄pzqφ1p0, sqpΨ1ps, zqq

2

` λ

ż

Iλ

dz
1

σpm̄pzqq
m̄pzqrφ1pλz, sq ´ φ1p0, sqspΨ1ps, zqq

2

ď λC}pψ0
0q
K}s ` Cλ

2.

(3.39)

We bound the first term on the right hand side of (3.39), as in (3.35), by splitting Ψ1, see (3.30),
taking into account that (2.13) hold. The bound for the second term on the right hand side of (3.39)
is a consequence of the Lipschitz bound (2.16) for φ and the exponentially decay to zero of Ψ1ps, ¨q.
Therefore, see (3.31),(3.32), (3.35) and (3.39) and (3.34) we obtain

xΨ1,LsΨ1ys ě a2psqµ0
0 ` µ

0
2}pψ

0
0q
K}2s ´ λ}pψ

0
0q
K}s ´ Cλ

2. (3.40)

By Theorem 3.1 we have that µ0
0 ě 0, µ0

2 ě D. This, together with the upper bound (3.29), implies

}pψ0
0q
K}s ď Cλ. (3.41)

Further, writing Ψ1 as in (3.30) we have

1 “ }Ψ1}
2
s “ a2psq}ψ0

0}
2 ` }pψ0

0q
K}2s “ a2psq ` }pψ0

0q
K}2s.

Then

a2psq “ 1´ }pψ0
0q
K}2s ě 1´ Cλ2, s P T. (3.42)

From (3.40) and (3.41) we get therefore

xΨ1,LsΨ1ys ě ´Cλ
2. (3.43)
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Next we show (3.13). By (3.7) there exists a function Rpzq, z P Iλ, }R} ď Ce´
α
λ so that ψ0

0p¨q “
m̄1p¨q
}m̄1} `Rp¨q. Therefore by (3.30) we have

Ψ1ps, ¨q “ apsqψ0
0p¨q ` pψ

0
0q
Kps, ¨q “ apsq

„

m̄1p¨q

}m̄1}
`Rp¨q



` pψ0
0q
Kps, ¨q.

Denote by

ΨR
1 ps, ¨q “ apsqRp¨q ` pψ0

0q
Kps, ¨q.

By (3.41)

}ΨR
1 }s ď }pψ

0
0q
K}s ` Ce

´αλ ď Cλ s P T

and (3.13) is proven. The (3.15) is a consequence of exponential decay of Ψ1ps, ¨q, see Lemma 8.1.
Further

ż

Iλ

Ψ1ps, zq
2dz “ 1, @s P T.

Therefore we must have that there exists z1 ą 0 independent on λ so that
ż z1

´z1

Ψ1ps, zq
2dz ě

1

2
. (3.44)

This implies that there exists ζ1 ą 0, independent on λ so that

Ψ1ps, zq ě ζ1, |z| ď z1,@s P T.

Namely, if this is false, there exists z̄ P r´z1, z1s so that Ψ1ps, z̄q “ 0. Since J̄ is positivity improving
and Ψ1 is an eigenfunction one can easily show that Ψ1ps, zq “ 0 for z P r´z1, z1s. This is impossible
since (3.44) holds.

(3) Let Ψ2ps, ¨q be one of the normalized eigenfunctions corresponding to the second eigenvalue µ2psq
of Ls, then

ż

Iλ

Ψ1ps, zqΨ2ps, zqdz “ 0, @s P T.

Split Ψ1ps, ¨q as in (3.30). We obtain

0 “ xΨ1,Ψ2ys “ apsqxψ0
0 ,Ψ2ys ` xpψ

0
0q
K,Ψ2ys.

Therefore, taking into account (3.42),

xψ0
0 ,Ψ2ys “ ´

1

apsq
xpψ0

0q
K,Ψ2ys.

Hence, by (3.41),
ˇ

ˇxψ0
0 ,Ψ2ys

ˇ

ˇ ď
1

|apsq|
}pψ0

0q
K}s ď Cλ. (3.45)

Further we assume that µ2psq satisfies the hypothesis of Lemma 8.1. In fact either it is small and
therefore satisfies the hypothesis of Lemma 8.1, either it is large, than there is nothing to prove. Then
we can argue as in Lemma 8.1 and show that Ψ2ps, ¨q, as function of z decays exponentially fast to zero.
So we can decompose Ψ2ps, ¨q as

Ψ2ps, ¨q “ xΨ2, ψ
0
0ysψ

0
0p¨q `

“

Ψ2ps, ¨q ´ xΨ2, ψ
0
0ysψ

0
0p¨q

‰

. (3.46)

We therefore obtain

µ2psq “ xLsΨ2,Ψ2ys “ xL0Ψ2,Ψ2ys ` xrLs ´ L0sΨ2,Ψ2ys.

By (3.19)
ˇ

ˇxrLs ´ L0sΨ2,Ψ2ys
ˇ

ˇ ď Cλ.
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Then inserting (3.46) we have that

µ2psq ě µ0
0xΨ2, ψ

0
0y

2
s ` µ

0
2

“

1´ xΨ2, ψ
0
0y

2
s

‰

´ Cλ

ě Dr1´ Cλ2s ´ Cλ
(3.47)

where D ą 0 is the lower bound in (3.6) and we applied estimate (3.45). For λ small enough, there
exists γ ą 0 so that (3.16) holds.

(4) To prove (3.17) we differentiate the eigenvalue equation for Ψ1 with respect to s. We obtain

rLs ´ µ1psqsΨ1s “ µ1spsqΨ1 ´
d

ds

ˆ

1

σpmAq

˙

Ψ1. (3.48)

Since
ż

Ψ1spzqΨ1pzqdz “ 0 (3.49)

xrLs ´ µ1psqsΨ1s,Ψ1sys “ ´x
d

ds

1

σpmAq
Ψ1,Ψ1sys. (3.50)

Therefore,

|xrLs ´ µ1psqsΨ1s,Ψ1sys| ď C}Ψ1s}s }∇smA}L8pN pd0q.

On the other hand, by (3.16)

xrLs ´ µ1psqsΨ1s,Ψ1sys ě pγ ´ µ1psqq}Ψ1s}
2
s.

Then

}Ψ1s}s ď
C

pγ ´ µ1psqq
}∇smA}L8pN pd0q ď C}∇smA}L8pN pd0q. (3.51)

This completes the proof of the theorem. �

In the following we deal with functions defined in I “ r´d0, d0s. To this end, for ups, ¨q P L2pIq,
s P T , denote

pLλ,s1 uqps, rq “
ups, rq

σpmAps, rqq
´ pJ̄λ ‹I,r uqps, rq, (3.52)

where

pJ̄λ ‹I,r uqps, rq “

ż

I

J̄λpr ´ r1qups, r1qdr1. (3.53)

The subscript 1 in (3.52) is to remind the reader that Lλ,s1 acts only only on functions of the r´ variable.
We immediately have the following.

Proposition 3.3. The spectrum of Lλ,s1 on L2pIq is equal to the spectrum of Ls on L2pIλq. In particular

the principal eigenvalue of Lλ,s1 is

ψ1ps, rq “
1
?
λ

Ψ1ps,
r

λ
q, (3.54)

where Ψ1ps, ¨q is the principal eigenvalue of Ls.

Proof. The operator Ls : L2pIλq Ñ L2pIλq and the operator Ls1 : L2pIq Ñ L2pIq are conjugate. Namely,
let T : L2pIλq Ñ L2pIq be the map so that pTUqps, rq “ 1?

λ
Ups, rλ q. The map T is an isometry:

ż

I

ppTUqps, rqq2dr “

ż

I

1

λ
U2ps,

r

λ
qdr “

ż

Iλ

U2ps, zqdz

and Lλ,s1 “ TLsT´1. Therefore the spectrum of Ls1 is equal to the spectrum of Ls and (3.54) holds �
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4. L2 estimates

This section is devoted to the proof of Theorem 2.4. Let ηp¨q be the indicator function of the set
N pd0q, ηpξq “ 1 when ξ P N pd0q, ηpξq “ 0 when ξ R N pd0q. In Subsection 4.1 we bound from below
ş

N pd0qpA
λ
mAηuqpξqηpξqupξqdξ in term of the quadratic form of the local operator Lλ defined in (4.6).

Then, in Subsection 4.2 we bound from below the quadratic form of the local operator Lλ. Finally in
Subsection 4.3 we show Theorem 2.4.

4.1. Bound from below of
ş

N pd0qpA
λ
mAηuqpξqηpξqupξqdξ. We start writing in local coordinates when

ξ P N pd0q the integral
ş

N pd0q J
λpξ ´ ξ1qupξ1qdξ1.

Lemma 4.1. Let ξ P N pd0q, ξ “ ρps, rq, ps, rq P T be the change of variables defined in (2.4),
ups, rq “ upρps, rqq and αps, rq as in (2.5). We have that

ż

N pd0q
Jλpξ ´ ξ1qupξ1qdξ1 “

ż

T
Jλps, s1, r, r1qups1, r1qαps1, r1qds1dr1

`

ż

T
Rλ1 ps, s

1, r, r1qups1, r1qαps1, r1qds1dr1

`

ż

T
Rλ2 ps, s

1, r, r1qups1, r1qαps1, r1qds1dr1,

(4.1)

where, for s˚ “ s`s1

2 , r˚ “ r`r1

2 and αps˚, r˚q “ 1´ kps˚qr˚

Jλps, s1, r, r1q “ Jλ
`

ps´ s1qαps˚, r˚q, pr ´ r1q
˘

, (4.2)

Rλ1 is defined in (8.17) and Rλ2 in (8.18). Further we have that
ˇ

ˇ

ˇ

ˇ

ż

T
Rλ1 ps, s

1, r, r1qαps1, r1qds1dr1
ˇ

ˇ

ˇ

ˇ

ď Cλ2, (4.3)

ˇ

ˇ

ˇ

ˇ

ż

T
Rλ2 ps, s

1, r, r1qαps1, r1qds1dr1
ˇ

ˇ

ˇ

ˇ

ď Cλ4. (4.4)

For the proof of the lemma it is enough that Γ is a C3 curve. The proof is simple although lengthy
and it is reported in the appendix. The decomposition obtained in Lemma 4.1 turns out to be very
useful. Set for u P L2 pT q

pBλuqps, rq “

ż

T
Jλps, s1, r, r1qαps˚, r˚qups1, r1qds1dr1, (4.5)

and

pLλuqps, rq “
ups, rq

σpmAps, rqq
´ pBλuqps, rq. (4.6)

The operator Lλ is selfadjoint in L2 pT q. We have the following result.

Lemma 4.2. Let ηp¨q be the indicator function of the set N pd0q. Set

ûps, rq “
a

αps, rqups, rq. (4.7)

We get that
ż

N pd0q
pAλmAηuqpξqηpξqupξqdξ ě xû, L

λûy ´ λ2C}u}2N pd0q. (4.8)
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Proof. By changing variables we have that
ż

N pd0q
pAλmAηuqpξqηpξqupξqdξ “

ż

T
dsdrαps, rqups, rq

"

ups, rq

σpmAps, rqq
´ pJλ ‹ ηuqps, rq

*

.

Taking into account Lemma 4.1 we have
ż

T
dsdrαps, rqups, rq

"

ups, rq

σpmAps, rqq
´ pJλ ‹ ηuqps, rq

*

ě

ż

T
dsdrαps, rqups, rq

"

ups, rq

σpmAps, rqq
´

ż

T
Jλps, s1, r, r1qups1, r1qαps1, r1qds1dr1

*

´ λ2C}u}2L2pN pd0qq.

(4.9)

By (4.3) and (4.4) one obtains
ˇ

ˇ

ˇ

ˇ

ż

T
dsdrdrαps, rqups, rq

ż

T
ds1dr1Rλ1 ps, s

1, r, r1qups1, r1qαps1, r1q

ˇ

ˇ

ˇ

ˇ

ď Cλ2}u}2L2pT ,αps,rqdsdrq “ Cλ2}u}2L2pN pd0qq,

ˇ

ˇ

ˇ

ˇ

ż

T
dsdrdrαps, rqups, rq

ż

T
ds1dr1Rλ2 ps, s

1, r, r1qups1, r1qαps1, r1q

ˇ

ˇ

ˇ

ˇ

ď Cλ4}u}2L2pT ,αps,rqdsdrq “ Cλ4}u}2L2pN pd0qq.

Set û as in (4.7) and

pD̂λûqps, rq “
a

αps, rq

ż

T
Jλps, s1, r, r1q

a

αps1, r1qûps1, r1qds1dr1. (4.10)

We have immediately that
ż

T
dsdrαps, rqups, rq

"

ups, rq

σpmAps, rqq
´

ż

T
Jλps, s1, r, r1qups1, r1qαps1, r1qds1dr1

*

“

ż

T
dsdrûps, rq

"

ûps, rq

σpmAps, rqq
´ pD̂λûqps, rq

*

“

ż

T
dsdr

"

ûps, rq

σpmAps, rqq
´ pBλûqps, rq

*

`

ż

T
dsdrûps, rqpCλûqps, rq

(4.11)

where

pCλûqps, rq “
ż

T
Jλps, s1, r, r1q

”

a

αps, rqαps1, r1q ´ αps˚, r˚q
ı

ûps1, r1qds1dr1. (4.12)

By Lemma 4.3 given below we have that

|xû, Cλûy| ď Cλ2}û}2L2pT q. (4.13)

Taking into account definition (4.6), from (4.11) we get (4.8). �

Lemma 4.3. Take |s´ s1| ď λ and |r ´ r1| ď λ. We have
a

αps, rqαps1, r1q “ αps˚, r˚q
a

1` bps, s1, r, r1q (4.14)

where bps, s1, r, r1q is defined in (4.17) and

|bps, s1, r, r1q| ď Cλ2. (4.15)

Proof. Adding and subtracting kps˚qr˚ we have

αps, rqαps1, r1q “ αps˚, r˚q2 ` αps˚, r˚q
“

2kps˚qr˚ ´ kps1qr1 ´ kpsqr
‰

` rkps˚qr˚ ´ kps1qr1srkps˚qr˚ ´ kpsqrs

“ αps˚, r˚q2
“

1` bps, s1, r, r1q
‰

(4.16)
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where

bps, s1, r, r1q “
r2kps˚qr˚ ´ kps1qr1 ´ kpsqrs

αps˚, r˚q
`
rkps˚qr˚ ´ kps1qr1srkps˚qr˚ ´ kpsqrs

αps˚, r˚q2
. (4.17)

Next we show (4.15). We have
“

2kps˚qr˚ ´ kps1qr1 ´ kpsqr
‰

“ rkps˚q ´ kpsqsr ` rkps˚q ´ kps1qsr1. (4.18)

Taylor expanding kp¨q we have

kps1q “ kps˚q ` k1ps˚qrs1 ´ s˚s `
1

2
k2ps˚qrs1 ´ s˚s2 `

1

6
k3ps̃qrs1 ´ s˚s3, (4.19)

where s̃ P ps, s1q. Similarly we proceed for kpsq. By (4.18), taking into account (4.19) and that

s1 ´ s˚ “ rs1´ss
2 and s´ s˚ “ rs´s1s

2 we obtain
ˇ

ˇrkps˚q ´ kps1qsr1 ` rkps˚q ´ kpsqsr
ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

k1ps˚q
rs1 ´ ss

2
rr ´ r1s `

1

4
k2ps˚qrs1 ´ ss2r˚ `

1

48
k3ps̃qrs1 ´ ss3rr ´ r1s

ˇ

ˇ

ˇ

ˇ

ď Cλ2.
(4.20)

By similar computations
ˇ

ˇrkps˚qr˚ ´ kps1qr1srkps˚qr˚ ´ kpsqrs
ˇ

ˇ ď Cλ2.

�

4.2. Properties of Lλ. The operator Lλ acts on function of ps, rq. In Corollary 4.5, stated below, we
show that when the operator Lλ acts on functions depending only on the variable r, it is, in the L2

norm, λ2 close to the one dimensional operator Lλ,s1 , defined in (3.52). Preliminarily we need to see
how the operator Bλ, defined in (4.5), acts on functions depending only on r. This is the content of
the next lemma. The symmetry of J̄ is essential to obtain the estimate (4.22).

Lemma 4.4. Let Bλ be the operator defined in (4.5) and v a function depending only on the r variable.
For any s P T we have

pBλvqprq “ pJ̄λ ‹I vqprq ` pΓ
λ,svqprq, r P I (4.21)

where Γλ,s is the operator defined in (4.26),

|Γλ,svprq| ď Cλ2pJ̄λ ‹I |v|qprq, r P I. (4.22)

When v P L2pIq,

}Γλ,sv}L2pIq ď Cλ2}v}L2pIq. (4.23)

Proof. Taking into account that the support of Jλ, see the definition of the operator Bλ, is the ball of
radius λ centred in ps, rq P T we make the following local change of variable: For each ps, rq P T and
r1 P I,

w “ fps1q “ ´ps´ s1qαps˚, r˚q, |s´ s1| ď λ. (4.24)

Notice that we are not explicitly writing the dependence on ps, r, r1q. Denoting by f 1 the derivative
with respect to s1 of f , we have

f 1ps1q “ αps˚, r˚q `
1

2
ps´ s1qk1ps˚qr˚.

By (2.6) and for λ small enough, f 1ps1q ą 0 when |s´ s1| ď λ. By the inverse function theorem we have

ds1 “
1

f 1ps1pwqq
dw, f 1ps1pwqq “ αps˚pwq, r˚q `

1

2

w

αps˚pwq, r˚q
k1ps˚pwqqr˚,
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where by an abuse of notation we set s˚pwq “ 1
2s`

1
2f
´1pwq. We have

pBλvqprq “

ż

T
Jλpps´ s1qαps˚, r˚q, pr ´ r1qqαps˚, r˚qvpr1qds1dr1

“

ż

I

dr1
ż

f´1p|s´s1|ďλq

Jλpw, r ´ r1qαps˚pwq, r˚q
1

f 1ps1pwqq
vpr1qdw

“

ż

I

dr1
ż

Jλpw, r ´ r1qvpr1qdw ` pΓλ,svqprq

(4.25)

where

pΓλ,svqprq “

ż

T
dr1dwJλpw, r ´ r1q

»

–

1

1` wk1ps˚pwqqr˚

αps˚pwq,r˚q2

´ 1

fi

fl vpr1q. (4.26)

For r and r1 in I, the support of Jλpw, r ´ r1q is the ball of radius λ centered in the point p0, rq P T .
Hence we have for r P I and r1 P I

ż

Jλpw, r ´ r1qdw “ J̄λpr ´ r1q, (4.27)

where J̄λ is defined in Subsection 2.1. Therefore from (4.25), (4.26) and (4.27) we have (4.21). Denote

shortly by a “ wk1ps˚pwqqr˚

αps˚pwq,r˚q2 . Since |w| ď λ we have that |a| ď Cλ. Writing 1
1`a “

ř8

k“0p´aq
k we have

that
„

1

1` a
´ 1



“ ´a`
8
ÿ

k“2

p´aqk.

Therefore from (4.25) we obtain

pΓλ,svqprq “ ´

ż

I

dr1
ż

Jλpw, r ´ r1q
wk1ps˚pwqqr˚

αps˚pwq, r˚q2
vpr1qdw

`

ż

I

dr1
ż

Jλpw, r ´ r1q
8
ÿ

k“2

p´aqkvpr1qdw.

(4.28)

For the second term we have
ˇ

ˇ

ˇ

ˇ

ˇ

ż

I

dr1
ż

Jλpw, r ´ r1q
8
ÿ

k“2

p´aqkvpr1qdw

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cλ2

ż

I

dr1
ż

Jλpw, r ´ r1q|vpr1q|dw “ Cλ2

ż

I

dr1J̄λpr ´ r1q|vpr1q|.

(4.29)

For the first term of (4.28) develop in Taylor expansion around w “ 0

k1ps˚pwqqr˚

αps˚pwq, r˚q2
“

k1ps˚p0qqr˚

αps˚p0q, r˚q2
` gpw̃qw

where we denote by g the derivative of k1ps˚pwqqr˚

αps˚pwq,r˚q2 with respect to w. We have that

ż

r´d0,d0s

dr1
ż

Jλpw, r ´ r1q
wk1ps˚pwqqr˚

αps˚pwq, r˚q2
vpr1qdw

“

ż

r´d0,d0s

dr1
k1ps˚p0qqr˚

αps˚p0q, r˚q2
vpr1q

ż

Jλpw, r ´ r1qwdw

`

ż

r´d0,d0s

dr1
ż

Jλpw, r ´ r1qgpw̃qw2vpr1qdw.

(4.30)
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By the symmetry of Jλ
ż

Jλpw, r ´ r1qwdw “ 0.

Since |gpw̃q|w2 ď Cλ2, from (4.30), (4.29) and (4.28) we obtain

|pΓλ,svqprq| ď Cλ2pJ̄λ ‹ |v|qprq. (4.31)

�

Corollary 4.5. Let v P L2pIq we have that

pLλvqprq “ pLλ,s1 vqprq ` pΓλ,svqprq, (4.32)

where Γλ,s is the operator defined in (4.26) and

|Γλ,svprq| ď Cλ2pJ̄λ ‹ |v|qprq. (4.33)

The proof is immediate by recalling the definition of Lλ given in (4.6) and Lλ,s1 given in (3.52).

Corollary 4.6.
ż

T
Jλps, s1, r, r1qαps˚, r˚qds1dr1 “ 1` pΓλ,sqprq (4.34)

where we denote by pΓλ,sqprq the quantity defined in (4.26) when applied to the function vprq “ 1 for
all r P I and

|pΓλ,sqprq| ď Cλ2.

Further
ż

T

Jλps, s1, r, r1qαps˚, r˚qds1 “ Jλpr ´ r1q ` pΓλ,s1 qpr, r1q, (4.35)

where Γλ,s1 is defined in (4.38),

|pΓλ,s1 qpr, r1q| ď Cλ2Jλpr ´ r1q. (4.36)

Proof. The proof of (4.34) is straightforward. Take vprq “ 1 in Lemma 4.4 and the thesis follows. To
show (4.35), we proceed similarly as in Lemma 4.4. For r and r1 in I, we have as in (4.25)

ż

T

Jλpps´ s1qαps˚, r˚q, r ´ r1qαps˚, r˚qds1

“

ż

Jλpw, r ´ r1qαps˚pwq, r˚q
1

f 1ps1pwqq
dw

“

ż

Jλpw, r ´ r1qdw ` pΓλ,s1 qprq “ J̄λpr ´ r1q ` pΓλ,s1 qpr, r1q

(4.37)

where

pΓλ,s1 qpr, r1q “

ż

Jλpw, r ´ r1q

»

–

1

1` wk1ps˚pwqqr˚

αps˚pwq,r˚q2

´ 1

fi

fl dw. (4.38)

Similarly as done in (4.28) and (4.29), (4.30) and (4.31) we have

|pΓλ,s1 qpr, r1q| ď Cλ2J̄λpr ´ r1q. (4.39)

�
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4.3. Two dimensional integral operators in enlarged bounded domains. Let Tλ be the enlarged
cylinder

Tλ “ T ˆ Iλ, Iλ “ r´
d0

λ
,
d0

λ
s. (4.40)

Notice that the circle T is kept unchanged. Denote z˚ “ z`z1

2 , s˚ “ s`s1

2 and, see (2.5),

αps˚, z˚q “ 1´ λkps˚qz˚, (4.41)

Jcps, s1, z, z1q “
1

λ
J

ˆ

ps´ s1q

λ
αps˚, z˚q, pz ´ zq

˙

αps˚, z˚q, (4.42)

and

pBV qps, zq “
ż

Tλ
Jcps, s1, z, z1qV ps1, z1qds1dz1. (4.43)

The Jc is obtained by rescaling only the r´variable of the integral kernel defining the operator Bλ, see
(4.5). Denote for V P L2pTλq

pAV qps, zq “ 1

σpmAps, zqq
V ps, zq ´

ż

Tλ
Jcps, s1, z, z1qV ps1, z1qds1dz1, (4.44)

where Jc is defined in (4.42). We avoid to write explicitly the dependence on λ on the previous notations,
but the reader should bear in mind that if not explicitly written, there is almost always an hidden
dependence on λ. In this section we study the spectrum of the integral operator A : L2pTλq Ñ L2pTλq,
defined in (4.44). The operator A is conjugate to Lλ : L2pT q Ñ L2pT q, hence the spectrum of A and
Lλ are the same, see Theorem 4.8 We have the following result.

Theorem 4.7. (0)The operator A is a bounded, self adjoint operator on L2pTλq with discrete spectrum.
(1) There exist µ0 P R and Φ0 P L

2pTλq, Φ0 strictly positive in Tλ so that

AΦ0 “ µ0Φ0. (4.45)

The eigenvalue µ0 has multiplicity one and any other point of the spectrum is strictly bigger than µ0.
2) There exists ζ1 ą 0 and z1 ą 0 independent on λ so that

Φ0ps, zq ě ζ1 |z| ě z1. (4.46)

(3) There exists C ą 0 independent on λ so that

´Cλ2 ď µ0 ď Cλ2. (4.47)

The proof is given at the end of the subsection. This result immediately implies the following.

Theorem 4.8. Let Lλ be the operator defined in (4.6). The spectrum of Lλ is equal to spectrum of A.
In particular we have

xu, Lλuy ě µ0}u}
2
L2pT q ě ´λ

2C}u}2L2pT q.

The thesis immediately follows by Theorem 4.7 and noticing that Lλ and A are conjugate. The proof
is similar to the one given in Proposition 3.3. The following results are straightforward consequences of
Lemma 4.4 and Corollary 4.6.

Proposition 4.9. Let V P L2pIλq. For any s P T we have

pBV qpzq “ pJ̄ ‹Iλ V qpzq ` pΓsV qpzq, (4.48)
ż

Tλ
ds1dz1Jcps, s1, z, z1q “ 1` pΓsqpzq, (4.49)

ż

Tλ
ds1Jcps, s1, z, z1q “ J̄pz ´ z1q ` pΓs1qpz, z

1q, (4.50)

|pΓsV qpzq| ď Cλ2pJ̄ ‹Iλ |V |qpzq, |Γspzq| ď Cλ2, |Γs1pz, z
1q| ď Cλ2J̄pz ´ z1q. (4.51)
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Proof. Taking into account the definition of Jc, see (4.42), applying similar argument as in Lemma 4.4
and Corollary 4.6 one gets the statements. �

Denote

pps, zq “ σpmAps, zqq, ps, zq P Tλ, (4.52)

H “

"

u :

ż

Tλ
ups, zq2

1

pps, zq
dzds ă 8

*

,

xxV,Uyy “

ż

Tλ
V ps, zqUps, zq

1

pps, zq
dzds,

}V }2H “

ż

Tλ
V ps, zq2

1

pps, zq
dzds,

and P the linear integral operator acting on functions V P H

pPV qps, zq “ pps, zq

ż

Tλ
Jcps, s1, z, z1qV ps1, z1qds1dz1. (4.53)

By the property of mA stated in Subsection 2.4, β ě pps, zq ą a ą 0 and p P C1pTλq.

Theorem 4.10. The operator P is a compact, self-adjoint operator on H, positivity improving. Further,
there exist ν0 ą 0 and V0 P H, V0 strictly positive function, so that

PV0 “ ν0V0. (4.54)

The eigenvalue ν0 has multiplicity one and any other point of the spectrum is strictly inside the ball of
radius ν0. The eigenfunction V0 P C

1pTλq. Further there exists z1 ą 0 and ζ ą 0 independent on λ so
that

V0ps, zq ě ζ, |z| ď z1,@s P T. (4.55)

Proof. It is immediate to see that

xxPV,W yy “ xxV,PW yy.
The compactness can be shown by proving that any bounded set of H is mapped by P in a relatively
compact set. To show the positivity improving we take V ě 0 in T , V ‰ 0, and show that for all
ps, zq P Tλ,

pPV qps, zq ą 0. (4.56)

Namely, assume that there exists ps̄, z̄q P Tλ so that pPV qps̄, z̄q “ 0. Since Jc ě 0 we have that
V ps, zq “ 0 for all ps, zq P Qλps̄, z̄q “ tps, zq P Tλ : |s´ s̄| ď λ, |z´ z̄| ď 1u. Repeating the same argument
for points ps, zq in Qλps̄, z̄q we end up that V ps, zq “ 0 for ps, zq P Tλ, obtaining a contradiction.
Therefore the positivity improving property is proven. From the positivity hypothesis on Jc, there
exists an integer nλ such that for n ě nλ, there is ζ ą 0 so that for any x “ ps, zq and x̄ “ ps̄, z̄q in Tλ

ż

dx1dx2....dxnJ
cpx, x1qJ

cpx1, x2q...J
cpxn, x̄q ą ζ. (4.57)

Denote for x P T and x̄ P T

Kpx, x̄q “ ppxq

ż

dx1dx2....dxnppx1qJ
cpz, z1qppx2qJ

cpx1, x2q...ppxnqJ
cpxn, x̄q. (4.58)

Then one can apply the classical Perron Frobenius Theorem to the kernel Kp¨, ¨q. As a consequence we
have that the maximum eigenvalue of the spectrum of P, which we denote ν0, has multiplicity one and
any other point of the spectrum of P is strictly smaller than ν0. Let V0 be the eigenfunction associated
to ν0. Then it does not change sign and we assume that it is positive. Differentiating the eigenvalue
equation, taking into account that p P C1pTλq we get that V0 P C

1pTλq. Next we show (4.55). From
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(4.61) of Lemma 4.11, stated below, we have that
ş

T
V0ps, zq

2ds is exponentially decreasing for |z| ě z0.
Further

ż

Tλ

1

pps, zq
V0ps, zq

2dsdz “ 1.

Therefore we must have that there exists z1 ą 0 independent on λ so that
ż z1

´z1

1

pps, zq

ż

T

V0ps, zq
2dsdz ě

1

2
. (4.59)

This implies that there exists ζ ą 0, independent on λ so that

V0ps, zq ě ζ, |z| ď z1,@s P T.

Namely, if this is false, there exists ps̄, z̄q P T ˆ r´z1, z1s so that V0ps̄, z̄q “ 0. Since P is positiv-
ity improving and V0 is an eigenfunction, repeating the argument done after formula (4.56), we get
V0ps, zq “ 0 in T ˆ r´z1, z1s. This is impossible since (4.59) holds. �

Lemma 4.11. For any ε0 P p0,
p1´σpmβqq

2 q there exists λ0 “ λ0pε0q ą 0 so that for λ ď λ0 the following
holds. Let ν ą 1 ´ ε0 be an eigenvalue of the operator P on H and Ψ be any of the corresponding
normalized eigenfunctions. There exists z0 “ z0pε0q P Iλ independent on λ so that

|Ψps, zq| ď
C
?
λ
e´αpε0q|z|}Ψ}H |z| ě z0, @s P T, (4.60)

where αpε0q is given in (4.67). Further
ż

T

|Ψps, zq|2ds ď Ce´αpε0q|z|}Ψ}2H, |z| ě z0. (4.61)

Proof. For any ε0, choose λ0 “ λ0pε0q ą 0, z0 “ z0pε0q ą 0, such that for for λ ď λ0

pps, zq ă 1´ 2ε0, |z| ě z0, ps, zq P Tλ. (4.62)

This is possible since |pps, zq´σpm̄pzqq| ď Cλ, lim|z|Ñ8 σpm̄pzqq “ σpmβq and 1´2ε0 ă σpmβq. Further
ν ą 1´ ε0, hence, by (4.62), we have for |z| ě z0,

1

ν
pps, zq ă

1´ 2ε0
1´ ε0

. (4.63)

Take λ0 “ λ0pε0q small enough so that 2z0 P Iλ. Take z “ z0 ` n where n is any integer so that
z0 ` 2n P Tλ. By the eigenvalue equation we have

Ψps, z0 ` nq “
1

ν
pPΨqps, z0 ` nq. (4.64)

Iterating n times (4.64) and by (4.63) we obtain

|Ψps, z0 ` nq| ď

ˆ

1´ 2ε0
1´ ε0

˙n

|pJcqnΨps, z0 ` nq| ď

ˆ

1´ 2ε0
1´ ε0

˙n

}pJcqnΨ}8. (4.65)

By Proposition 4.9 we have that

}Jc}1 “

ż

T

ds1dz1Jcps, s1, z, z1q “ 1` Γspzq,

where |Γspzq| ď Cλ2. Hence, by Jensen inequality we get

}pJcqnΨ}8 ď }J
c}2}pJ

cqn´1Ψ}2 ď
1
?
λ
C}J}2p}J

c}1q
n´1}Ψ}H ď

1
?
λ
Cp1` Cλ2qn´1}J}2}Ψ}H,
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where we estimated }Jc}2 ď
C?
λ
}J}2. Take λ small enough so that 1

2 ln
´

1´ε0
1´2ε0

¯

ě lnp1`Cλ2q. Hence,

by (4.65), we have

|Ψps, z0 ` nq| ď
1
?
λ
Ce´nαpε0q}J}2}Ψ}H, (4.66)

where

αpε0q “
1

2
ln

ˆ

1´ ε0
1´ 2ε0

˙

ą 0. (4.67)

To get (4.61) we proceed as above obtaining
ż

T

ds|Ψps, z0 ` nq|
2 ď

ˆ

1´ 2ε0
1´ ε0

˙2n ż

T

ds|pJcqnΨps, z0 ` nq|
2. (4.68)

By Proposition 4.9 we have that
ż

T

ds1Jcps, s1, z, z1q “ J̄pz ´ z1q ` Γs1pz, z
1q

where |Γs1pz, z
1q| ď Cλ2J̄pz ´ z1q. Set z̄ “ z0 ` n, by Jensen inequality we have

ż

T

ds|pJcqnΨps, z0 ` nq|
2 “

ż

T

ds

ˆ
ż

Tλ
ds1dz1Jcps, s1, z̄, z1q

ˇ

ˇpJcqn´1Ψps1, z1q
ˇ

ˇ

˙2

ď p1` Cλ2q

ż

Tλ
ds1dz1

ˆ
ż

T

dsJcps, s1, z̄, z1q

˙

ˇ

ˇpJcqn´1Ψps1, z1q
ˇ

ˇ

2

ď p1` Cλ2q

ż

Tλ
ds1dz1J̄pz̄ ´ z1q

ˇ

ˇpJcqn´1Ψps1, z1q
ˇ

ˇ

2
` Cλ2

ż

Tλ
ds1dz1J̄pz̄ ´ z1q

ˇ

ˇpJcqn´1Ψps1, z1q
ˇ

ˇ

2

“ p1` 2Cλ2q

ż

Tλ
ds1dz1J̄pz̄ ´ z1q

ˇ

ˇpJcqn´1Ψps1, z1q
ˇ

ˇ

2
ď p1` 2Cλ2q sup

z
J̄pzq

ż

Tλ
ds1dz1

ˇ

ˇpJcqn´1Ψps1, z1q
ˇ

ˇ

2

ď p1` 2Cλ2qn sup
z
J̄pzq}Ψ}2H ď Cp1` 2Cλ2qn}Ψ}2H.

(4.69)

Therefore by (4.68), (4.69) and (4.67)
ż

T

ds|Ψps, z0 ` nq|
2 ď C

ˆ

1´ 2ε0
1´ ε0

˙2n

p1` 2Cλ2qn}Ψ}2H ď Ce´4nαpε0qen lnp1`2Cλ2
q}Ψ}2H. (4.70)

Take λ small enough so that 3αpε0q ě ln p1` 2Cλ2q, we then obtain (4.61).
�

Proof of Theorem 4.7 The points (0), (1) and (2) are an immediate consequence of Theorem
4.10. Namely, let T : H Ñ L2pTλq so that TV “ V?

p . The map T is an isometry and the operator

1I ´ P : H Ñ H is therefore conjugate to the operator A : L2pTλq Ñ L2pTλq. This means that
the spectrum of the two operators are equal, moreover if V is an eigenfunction of P, then TV is an
eigenfunction of A. Next we show the upper bound in (4.47). By the variational form for the eigenvalues

µ0 “ inf
V PL2pTλq,}V }“1

xAV, V y ď xAV̄ , V̄ y,

where V̄ “ m̄1pzq
}m̄1}L2pTλq

. Since V̄ is a function of only the z´variable, by Proposition 4.9,

AV̄ “ LsV̄ ` ΓsV̄ .

Hence

µ0 ď xAV̄ , V̄ y “
ż

T

dsxV̄ ps, ¨q,LsV̄ ps, ¨qys `
ż

T

dsxV̄ ps, ¨q,ΓsV̄ ps, ¨qys.
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By (3.29)
ż

T

dsxV̄ ps, ¨q,LsV̄ ps, ¨qys ď Cλ2,

and by (4.51)
ż

T

dsxV̄ ps, ¨q,ΓsV̄ ps, ¨qys ď Cλ2.

Therefore

µ0 ď Cλ2. (4.71)

Let Φ0 be the normalized positive eigenfunction associated to µ0. Multiply the eigenvalue equation by
Ψ1, see (3.11) the principal eigenvalue of Ls, defined in (3.8). We have, since A is self-adjoint

µ0xΦ0,Ψ1y “ xAΦ0,Ψ1y “ xΦ0,Aψ1y.

By Taylor formula Ψ1ps
1, zq “ Ψ1ps, zq ` ps´ s

1q∇sΨ1ps̃, zq, where s̃ P ps, s1q. By Proposition 4.9

AΨ1 “
Ψ1

σpmAq
´

ż

Tλ
Jcps, s1, z, z1qΨ1ps

1, z1qds1dz1

“
Ψ1

σpmAq
´

ż

Tλ
Jcps, s1, z, z1qΨ1ps, z

1qds1dz1 ´

ż

Tλ
Jcps, s1, z, z1qps´ s1q∇sΨ1ps̃, z

1qds1dz1

“ pLsΨ1qps, zq ` ΓsΨ1 ´

ż

Tλ
Jcps, s1, z, z1qps´ s1q∇sΨ1ps̃, z

1qds1dz1.

(4.72)

Therefore

µ0xΦ0,Ψ1y “ xΦ0,LsΨ1y ` xΦ0,Γ
sΨ1y

`

ż

Tλ
dsdzΦ0ps, zq

ż

Tλ
Jcps, s1, z, z1qps´ s1q∇sΨ1ps̃, z

1qds1dz1.
(4.73)

By (3.17) and (2.15) we estimate

ˇ

ˇ

ˇ

ˇ

ż

Tλ
dsdzΦ0ps, zq

ż

Tλ
Jcps, s1, z, z1qps´ s1q∇sΨ1ps̃, z

1qds1dz1
ˇ

ˇ

ˇ

ˇ

ď Cλ}Φ0}}∇sΨ1} ď Cλ}∇smA} ď Cλ2,

xΦ0,Γ
sΨ1y ď Cλ2.

Therefore, we have

µ0xΦ0,Ψ1y ě inf
s
µs1xΦ0,Ψ1y ´ Cλ

2.

We need to show that

xΦ0,Ψ1y ě C. (4.74)

By (3.15) and (4.46) there exist z1 ą 0 and ζ1 ą 0 independent on λ so that Φ0ps, zqΨ1ps, zq ě ζ1 for
|z| ď z1 and for all s P T . Therefore (4.74) holds and we obtain

µ0 ě ´Cλ
2.

�
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4.4. Proof of Theorem 2.4. As explained in the introduction, we would like to take advantage of
(2.17), splitting the quadratic form associated to the operator AλmA in two integrals. One integral is

over the region ΩzN pd02 q and because of (2.17) is positive. The second integral is over the region N pd02 q,
i.e near the surface Γ and we can estimate it from below by applying Lemma 4.2 and Lemma 4.8. But
because of the non locality of the operator this argument does not work. Namely when splitting the
integral of the quadratic form there is an extra term which might spoil the estimate. Here, we show
that it is always possible to find a way to split the integral of the quadratic form associated to the
operator AλmA to obtain the desired estimate.

Define for any integer k P t0, . . . , Nu, for N “ r 1
λ s where for x P R, rxs is the integer part of x, a

sequences of cut off functions

ηk1 pξq “

$

&

%

1 when ξ P N pd0

2
p1` λkqq

0 otherwise,
(4.75)

ηk2 pξq “ 1´ ηk1 pξq and set

sk “ 2

ż

Ω

dξηk1 pξqvpξqpJ
λ ‹ ηk2vqpξq.

Let k “ 0. We have, taking into account that η0
2pξqη

0
1pξq “ 0 for ξ P Ω and the symmetry of Jλp¨q

ż

Ω

pAλmAvqpξqvpξqdξ “

ż

Ω

pAλmAη
0
1vqpξqη

0
1pξqvpξqdξ

`

ż

Ω

pAλmAη
0
2vqpξqη

0
2pξqvpξqdξ ´ s0

(4.76)

Because of (2.17)
ż

Ω

pAλmAη
0
2vqpξqη

0
2pξqvpξqdξ ě pC

˚ ´ 1q}η0
2v}

2
L2pΩq ą 0.

By Lemma 4.2 and Lemma 4.8 we have that
ż

Ω

pAλmAη
0
1vqpξqη

0
1vpξqdξ ě ´Cλ

2}v}2L2pΩq.

But the last term of (4.76) might create problems. Obviously if

s0 ă 0 (4.77)

or if

s0 ď δ˚}η0
2v}

2
L2pΩq (4.78)

for δ˚ ą 0 so that pC˚ ´ 1´ δ˚q ą 0 or if

s0 ď Cλ2}v}2L2pΩq (4.79)

then the theorem would be proven. But this might not be the case. We proceed recursively as following.
Assume that no one of the three conditions (4.77), (4.78), (4.79) hold. Take δ ą 0 so that 2 δ

1´δ ď δ˚

Notice that since we are assuming that (4.77) does not hold, s0 ą 0. We must have

s0 ą δ
”

s0 ` 2}η0
2v}

2
L2pΩq

ı

. (4.80)

Namely if the reverse inequality holds in (4.80) then

s0 ď 2
δ

1´ δ
}η0

2v}
2
L2pΩq ď δ˚}η0

2v}
2
L2pΩq, (4.81)

which is (4.78). But we are assuming that (4.78) does not hold. Notice that the integral defining s0

has support in a stripe of width 2λ around Γ
˘
d0
2
“ tξ P Ω : rpξ,Γq “ ˘d0

2 u. So we might try to split
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the integral of the quadratic form moving by λ from Γ
˘
d0
2

, i.e applying the cut off function η1
1 . If one

of the following conditions holds
$

’

&

’

%

s1 ď 0,

s1 ď δ˚}η1
2v}

2
L2pΩq,

s1 ď λ2}v}2L2pΩq,

(4.82)

we can conclude the proof of the theorem. If not then

s1 ą δ
”

s1 ` 2}η1
2v}

2
L2pΩq

ı

. (4.83)

By (4.80),

s1 “

1
ÿ

i“0

si ´ s0 ď

1
ÿ

i“0

si ´ δ
”

s0 ` 2}η0
2v}

2
L2pΩq

ı

. (4.84)

Notice that

s1 “ 2

ż

Ω

dξη1
1pξqvpξqpJ

λ ‹ η1
2vqpξq ď 2

ż

Ω

dξη0
2pξq|vpξq||pJ

λ ‹ η0
2vqpξq| ď 2}η0

2v}
2
L2pΩq. (4.85)

Therefore

s1 ď p1´ δq
1
ÿ

i“0

si. (4.86)

Next we show that there exists k̄ P t0, . . . , Nu so that if for j P t0, . . . , k̄ ´ 1u no one of the following
conditions is satisfied

$

’

&

’

%

sj ď 0

sj ď δ˚}ηj2v}
2
L2pΩq

sj ď λ2}v}2L2pΩq

(4.87)

then

sk̄ ď λ2}v}2L2pΩq.

Namely, reiterating the argument done in the case of s1 we have that for k P t0, . . . , Nu

sk ď p1´ δq
k

k
ÿ

i“0

si.

Denote δ0 “ ´ logp1´ δq ą 0. Take λ small enough so that 1
δ0

log 1
λ2 ă r

1
λ s “ N and set k̄ “ r 1

δ0
log 1

λ2 s.

With such a choice k̄ ă N . We have

sk̄ ď e´δ0k̄
k̄
ÿ

i“0

si

ď λ2
k̄
ÿ

i“0

si ď Cλ2}v}2L2pΩq.

(4.88)

We then split
ż

Ω

pAλmAvqpξqvpξqdξ “

ż

Ω

pAλmAη
k̄
1vqpξqη

k̄
1 pξqvpξqdξ

`

ż

Ω

pAλmAη
k̄
2vqpξqη

k̄
2 pξqvpξqdξ ´ sk̄.

(4.89)

Because of (2.17)
ż

Ω

pAλmAη
k̄
2vqpξqη

k̄
2 pξqvpξqdξ ě pC

˚ ´ 1q}ηk̄2v}L2pΩq ą 0.
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By Lemma 4.2 and Lemma 4.8 we have that
ż

Ω

pAλmAη
k̄
1vqpξqη

k̄
1vpξqdξ ě ´Cλ

2}v}2L2pΩq,

and

sk̄ ď Cλ2}v}2L2pΩq.

Theorem is proved. �

5. Two dimensional convolution operators in enlarged bounded domains.

Essential ingredient to show the H´1´ estimate, stated in Theorem 2.5, is the knowledge of the
spectrum of the operator defined below, see (5.1). For V P L2pTλq, where Tλ is the the enlarged
cylinder defined in (4.40), denote

pGλV qps, zq “ V ps, zq

σpm̄pzqq
´

ż

Tλ

1

λ
Jp
ps´ s1q

λ
, z ´ z1q V ps1, z1qdz1ds1, (5.1)

where J is the symmetric probability density on R2 defined in Subsection 2.1. We study the spectrum
of the operator Gλ on L2pTλq by Fourier analysis. For h P R, let Jhp¨q be the h component of the
Fourier transform of Jps, ¨q, s P R:

Jhpzq “

ż

R
Jps, zqeihsds “

ż

R
Jps, zq cosphsqds. (5.2)

The last identity holds because J is an even function of s. This implies that Jh “ J´h. Since J P C1pR2q

we have that

|Jhpzq| ď
Cpzq

p1` |h|q
, (5.3)

where Cpzq “ 0 when |z| ą 1 and

Cpzq “

ż

ds|
d

ds
Jps, zq|, for |z| ď 1. (5.4)

Further

J0pzq “

ż

Jps, zqds “ J̄pzq, (5.5)

see Subsection 2.1. For w P L2pIλq denote

pLhwqpzq “
„

wpzq

σpm̄pzqq
´ pJh ‹Iλ wqpzq



. (5.6)

Proposition 5.1. The operator Lh, h P R, is a bounded, self-adjoint operator on L2pIλq. The spectrum
of Lh is discrete.

Proof. The proof is straightforward. One needs to exploit that Phw “ σpm̄qJh‹w is a bounded integral
operator in L2pIλq and that Lh is conjugate to 1I´ Ph. �

By general arguments one can deduce informations about the spectrum of Gλ by the knowledge of
the spectrum of Lh. Any V P L2pTλq can be expanded in Fourier complex series as the following

V ps, zq “
ÿ

kPZL

eiksukpzq (5.7)

where ZL “ 2π
L Z and ukpzq “

1
L

ş

T
V ps, zqe´iksds. Let F : L2pTλq Ñ

À

kPZL Hk, Hk “ L2pIλq, be the

isometry induced by the Fourier expansion. We denote by W “ pukqkPZL an element of
À

kPZL Hk.
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Theorem 5.2. Let σpGλq be the spectrum of Gλ in L2pTλq and σpLhq the spectrum of Lh in L2pIλq.
Then

σpGλq “
ď

tkPZLu
σpLλkq.

Proof. Let G̃λ “
À

kPZL Lλk be the operator defined on
À

kPZL Hk so that G̃λW “ pLλkukqkPZL . We
have that

Gλ “ F´1G̃λF .
Being conjugate G̃λ and Gλ have the same spectrum. By [9], σpG̃λq “

Ť

tkPZLu σpL
λkq. The thesis of

theorem follows. �

The aim is then to study the spectrum of Lh, h P R. It turns out that when |h| ą h0, where h0 is
a positive real number, conveniently chosen, the spectrum of Lh is strictly positive and can be lower
bounded by a positive constant depending on h0 but not on h. For |h| ď h0 the spectrum of Lh is
still positive but the lower bound does depend on h. In this case, we are able to give upper and lower
bound of the principal eigenvalue of Lh which turns out to be very useful. We analyse these type of
behaviour in Proposition 5.6 and Proposition 5.7. Next, we show that eigenfunctions associated to
small eigenvalues decay exponentially for |z| large enough. This result is valid for all tLhuh.

Proposition 5.3. For any ε0 P p0,
p1´σpmβqq

2 q, there exists z0 ą 0, λ0 “ λ0pε0q and αpε0q ą 0 so that

for λ ď λ0 the following holds. Let µ ď ε0
2 be an eigenvalue of Lh and ψ be any of the corresponding

eigenfunctions. There is αpε0q ą 0 and z0 “ z0pε0q independent on h and λ so that

|ψpzq| ď Ce´αpε0q|z| |z| ě z0. (5.8)

The proof is similar to the one given in [14][ Lemma 3.5] and it is therefore omitted.

Remark 5.4. Notice that z0 and αpε0q depend only on ε0 and not on h. Applying the argument
as in [14][ Lemma 3.5] one ends up with |ψpzq| ď β}Jh}2e

´αpε0q|z|. But it is immediate to see that
}Jh}2 ď }J

0}2.

The spectrum of the operator L0, i.e. when h “ 0 has been studied in [14]. When |h| ď π
2 the integral

kernel Jh is positivity improving, i.e if vpzq ě 0 and vpzq ‰ 0 for z P Iλ, then
ş

Iλ
dz1Jhpz´ z1qvpz1q ą 0.

Hence we could apply the same type of arguments used in [14] to study the spectrum of the operator
Lh when |h| ď π

2 . In Proposition 5.6 we summarise the results for the spectrum of Lh, |h| ď h0, where

h0 ď
π
2 is suitable chosen. To prove a uniform (in |h| ď h0 and λ ą 0) lower bound for the gap of Lh

we apply perturbation theory.

Proposition 5.5. Let Jh, |h| ď π
2 , be the integral kernel defined in (5.2). We have that there exists

h0 ą 0 so that for |h| ď h0,

J̄pzq ´
1

2
h2J̄tanpzq ď Jhpzq ď J̄pzq ´

1

4
h2J̄λtanpzq, (5.9)

where J̄tanp¨q is defined in (5.10),
0 ď J̄tanpzq ă J̄pzq.

Proof. By Taylor expanding coshξ we have

1´
1

2
h2ξ2 `

1

4!
h4 ě coshξ ě 1´

1

2
h2ξ2.

Denote

J̄tanpzq “

ż

Jpξ, zqξ2dξ. (5.10)

We have

J̄pzq ´
1

2
h2J̄tanpzq `

1

4!
h4

ż

Jpξ, zqξ4dξ ě Jhpzq ě J̄pzq ´
1

2
h2J̄tanpzq.
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Since
ż

Jpξ, zqξ4dξ ď J̄tanpzq

taking h0 ą 0 so that when |h| ď h0, 1
4!h

2 ď 1
4 we obtain

J̄pzq ´
1

2
h2J̄tanpzq ď Jhpzq ď J̄pzq ´

1

4
h2J̄λtanpzq.

Therefore we get (5.9).
�

Proposition 5.6. There exists h0 P p0,
π
2 q so that for |h| ď h0, the following holds for Lh defined in

(5.6) on L2pIλq.

(1) There exists µh0 P R and ψh0 strictly positive in Iλ, ψh0 even function, so that

Lhψh0 “ µh0ψ
h
0 .

The eigenvalue µh0 has multiplicity one and any other eigenvalue is strictly bigger that µh0 .
(2) Let µ0

0 be the principal eigenvalue of the operator L0. We have that

µ0
0 ă µh0 ď µ0

0 `
1

2
h2.

(3) There exists D ą 0 independent on λ and h so that

inf
}ψ}“1,xψ,ψh0 y“0

xLhψ,ψy ě D, @h : |h| ď h0. (5.11)

(4) The principal eigenvector ψh0 is such that

}ψh0 ´ ψ
0
0}

2 ď Ch2. (5.12)

(5) There exists z0 ą 0 and ζ0 ą 0 independent on h and λ so that

ψh0 pzq ě ζ0, |z| ď z0.

(6) There exists C0 ą 0, independent on λ and h, so that

µh0 ě µ0
0 ` C0h

2. (5.13)

Proof. For |h| ď π
2 , for |s| ď 1, the integral kernel Jh, in the definition of Lh, is non negative for

z P Iλ. Applying the Perron Frobenius Theorem to the operator pAhgqpzq “ σpm̄qpJh ‹ gqpzq, z P Iλ
and proceeding as in [14] [Theorem 2.1] we prove point (1). To show (2) and (3) we apply standard
perturbation theory for bounded selfadjoint operators, see [12]. Define the following family of operators
indexed by ν:

Aν “ L0 ` νB, ν P r0, 1s

where
B “ Lh ´ L0.

The family Aν connects in a smooth way the unperturbed operator L0 to Lh. We have that

Bwpzq “
“

Lh ´ L0
‰

wpzq “

ż

Jpξ, z ´ z1qr1´ cosphξqsdξwpz1qdz1.

Notice that for |h| ď h0, B leaves invariant the cone of the positive functions. Further, by (5.9),

}B} “ sup
t}w}“1u

xw,
“

Lh ´ L0
‰

wy ď
1

2
h2. (5.14)

Since L0 has an isolated simple eigenvalue and a spectral gap D, independent on λ, see Theorem 3.1,
the Lh for all

|h| ď

c

D

3
” h0
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will have an isolated simple eigenvalue and a spectral gap bigger or equal of D{4. Moreover the principal
eigenvalue µν0 and eigenvector ψν0 of Aν are analytic in ν. By Perron Frobenius Theorem ψν0 ą 0 and
we assume xψν0 , ψ

ν
0 y “ 1. Next we would like to show that that µ0

h ą µ0
0. We derive with respect to ν

the eigenvalue equation
Aνψ

ν
0 “ µν0ψ

ν
0 .

We have
Bψν0 `AνBνpψ

ν
0 q “ Bνpµ

ν
0qψ

ν
0 ` µ

ν
0Bνpψ

ν
0 q,

xψν0 , rBψ
ν
0 `AνBνpψ

ν
0 qsy “ xψ

ν
0 , rBνpµ

ν
0qψ

ν
0 ` µ

ν
0Bνpψ

ν
0 qqsy.

Therefore
xψν0 , Bψ

ν
0 y ` µ

ν
0xψ

ν
0 , Bνpψ

ν
0 qy “ Bνpµ

ν
0qxψ

ν
0 , ψ

ν
0 y ` µ

ν
0xψ

ν
0 , Bνpψ

ν
0 qy.

We have
xψν0 , Bψ

ν
0 y “ Bνpµ

ν
0q.

Hence

µν0 “ µ0
0 `

ż ν

0

xψν
1

0 , Bψ
ν1

0 ydν
1. (5.15)

Since ψν0 ą 0 and B is a positive operator µν0 ą µ0
0. By (5.14),

µν0 ď µ0
0 ` ν

1

2
h2.

When ν “ 1, Atν“1u “ Lh, µ1
0 “ µh0 and we have

µh0 ď µ0
0 `

1

2
h2.

Next we show (5.12). For h ‰ 0, split

ψ0
0 “ aψh0 ` pψ

h
0 q
K. (5.16)

Then
a2 ` }pψh0 q

K}2 “ 1 (5.17)

xLhψ0
0 , ψ

0
0y “ a2µh0 ` xLhpψh0 qK, pψh0 qKy ě a2µh0 `

D

4
}pψh0 q

K}2. (5.18)

Further

xLhψ0
0 , ψ

0
0y “ xL0ψ0

0 , ψ
0
0y ` xpLh ´ L0qψ0

0 , ψ
0
0y

ď µ0
0 `

1

2
h2.

(5.19)

By (5.17), (5.18) and µh0 ą 0 we have that

µ0
0 `

1

2
h2 ě a2µh0 `

D

4
}pψh0 q

K}2 ě
D

4
}pψh0 q

K}2.

By [14] [Theorem 2.2, formula (2.8)], 0 ď µ0
0 ď Ce´2α 1

λ . It follows that there exists C ą 0 independent
on λ and h so that

}pψh0 q
K}2 ď Ch2. (5.20)

By (5.17) a2 “ 1´ }pψh0 q
K}2. This, together with decomposition (5.16) and (5.20) implies (5.12).

The proof of the point (5) can be done as in [14] [Lemma 3.6, formula (3.22)]. The proof is similar
to the one given in Theorem 3.2 when proving (3.15).

To show (6) we need to lower bound, see (5.15),
ş1

0
xψ0

ν1 , Bψ
0
ν1ydν

1. First of all we note that the same

type of argument of point (5) applies to ψ0
ν the principal eigenvalue of Aν . Namely ψ0

νpzq, z P Iλ, is
positive and exponentially decaying when |z| large enough. Hence, as in point (5), there exists z0 ą 0
and ζ0 ą 0 so that

ψ0
νpzq ě ζ0, |z| ď z0, @ν P r0, 1s, (5.21)
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where ζ0 ą 0 and z0 ą 0 are independent on λ. Hence, by Proposition 5.5 we have that

xψ0
ν1 , Bψ

0
ν1y “

ż

Iλ

dzψ0
ν1pzq

ż

Iλ

rJpz ´ z1q ´ Jhpz ´ z1qsψ0
ν1pz

1qdz1

ě 2ζ2
0z0

1

4
h2

ż

J̄tanpz
1qdz1 ” C0h

2.

(5.22)

The statement follows. �

Proposition 5.7. Let Lh be the operator defined in (5.6) on L2pIλq. Let h0 be as in Proposition 5.6.
There exists ν “ νph0q ą 0 independent on h and λ so that for |h| ą h0

xw,Lhwy ě ν}w}2. (5.23)

The proof of Proposition 5.7 follows from Proposition 5.8 and Proposition 5.9.

Proposition 5.8. Let Lh be the operator defined in (5.6) on L2pIλq. There exists h1 “ h1pβ, Jq ą 0
independent on λ so that for |h| ą h1

xw,Lhwy ě 1

2
β´1}w}2. (5.24)

Proof. By (5.3)

|xw, Jhwy| ď
1

p1` |h|q

ż

Iλ

dz|wpzq|

ż

dz1Cpz ´ z1q|wpz1q| ď
C2

p1` |h|q
}w}2

where

C2 “

ż

Iλ

Cpzqdz “

ż

Iλ

dz

ż

T

ds|
d

ds
Jps, zq|. (5.25)

Hence, by definition of Lh and (5.4), we get

sup
tw:}w}“1u

xw,Lhwy ě sup
tw:}w}“1u

p
1

β
´

C2

p1` |h|q
q}w}2. (5.26)

Choosing h1 “ h1pβ, Jq ą 0, so that 1
2β
´1 ě C2

p1`|h|q we get (5.27). �

Proposition 5.9. Let Lh be the operator defined in (5.6) over functions L2pIλq. For any given h0 ą

and h1 ą 0, there exists ν “ νph0, h1q ą 0 so that for h0 ď |h| ď h1

xw,Lhwy ě ν}w}2. (5.27)

Proof. We first show that there exists c1 “ c1ph0, h1q ą 0 so that

|Jhpzq| ď J̄pzqp1´ c1q, h0 ď |h| ď h1, z P p´1, 1q. (5.28)

To show this we argue by contradiction. Assume that there exists z̄ P p´1, 1q and h̄ so that |J h̄pz̄q| “

J̄pz̄q. Then J h̄pz̄q “ eiθJ̄pz̄q for some θ P R, and therefore

J̄pz̄q “ e´iθJ h̄pz̄q

which means
ż

R
Jpξ, z̄q

”

1´ e´iθeih̄ξ
ı

dξ “ 0. (5.29)

This implies that the real part of (5.29), i.e
ż

R
Jpξ, z̄q

“

1´ cospθ ´ h̄ξq
‰

dξ “ 0.
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This forces Jpξ, z̄q “ 0 for all ξ P R, which is a contradiction. Since for any given z the set tJhpzq, h0 ď

|h| ď h1u is a compact subset of R, and |Jhpzq| ă J̄pzq, then (5.28) follows. Hence, by definition of Lh
and (5.28), we get, for 1 ą a ą 0,

xw,Lhwy “ p1´ aq
ż

dz
w2pzq

σpm̄pzqq
` a

„
ż

dz
w2pzq

σpm̄pzqq
´ x|w|pJ̄ ‹ |w|y



` ax|w|pJ̄ ‹ |w|y ´ xw, Jh ‹ wy.

(5.30)

By (5.28),
ˇ

ˇxw, Jh ‹ wy
ˇ

ˇ ď x|w|, |Jh| ‹ |w|y ď p1´ c1qx|w|, J̄ ‹ |w|y.

Then, taking a “ 1´ c1 we have that

ax|w|, J̄ ‹ |w|y ´ xw, Jh ‹ wy ě 0.

Further, since
inf

tw:}w}“1u
x|w|,L0|w|y ě inf

tw:}w}“1u
xw,L0wy ě 0, (5.31)

and σpm̄pzqq ď β

inf
tw:}w}“1u

xw,Lhwy ě c1
β
” ν. (5.32)

�

6. Representation formula for functions with small energy.

In this section, we show a representation theorem for functions having small energy, see (6.1) below.
The representation stated in Theorem 6.1 is reminiscent of the one obtained by X.Chen, see [7, Lemma
2.4] in the C-H case. The proof, as explained in the introduction, is different.

Theorem 6.1. Take f P H1pN pd0qq such that }f}L2pN pd0qq “ 1, and
ż

N pd0q

`

AλmAfpξq
˘

fpξqdξ ď Cλ2. (6.1)

Then, there exists λ0 ą 0, so that for any λ P p0, λ0q we can construct Zp¨q P H1pT q, fRp¨, ¨q P
L2pN pd0qq such that

fps, rq “ Zpsq
1

a

αps, rq

1
?
λ
ψ0

0p
r

λ
q ` fRps, rq, (6.2)

where ψ0
0p¨q is the first eigenvalue of L0, see Theorem 3.1,

1´ Cλ2 ď }Z}2L2pT q ď 1, }∇Z}L2pT q ď C (6.3)

}fR}2L2pN pd0qq ď Cλ2. (6.4)

Set f̂ps, rq “
a

αps, rqfps, rq. By Lemma 4.2, (6.1) implies

Cλ2 ě

ż

N pd0q
AλmAfpξqfpξqdξ ě xf̂ , L

λf̂y ´ λ2C}f}2L2pN pd0qq. (6.5)

Since by assumption }f}2L2pN pd0qq “ 1 we have

λ2C ě xf̂ , Lλf̂y. (6.6)

Further setting

f̂ps, rq “
1
?
λ
V ps,

r

λ
q

we have that (6.6) is equivalent to

λ2C ě xV,AV y, (6.7)
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where A is the operator defined in (4.44) Therefore Theorem 6.1 follows once we show the following
theorem.

Theorem 6.2. Take V P H1pTλq, }V } “ 1,

xV,AV y ď Cλ2, (6.8)

where A is the operator defined in (4.44). Let ψ0
0p¨q be the first eigenvalue of L0, see Theorem 3.1, we

have

V ps, zq “ Zpsqψ0
0pzq ` V

Rps, zq, (6.9)

1´ λ2 ď }Z}2L2pT q ď 1, }∇Z} ď C, }V R}2 ď Cλ2. (6.10)

The proof of Theorem 6.2 is based on a deeper knowledge of the spectrum of the operator A in  L2
pTλq.

We explain in Subsection 6.1 how to prove (6.9) when the operator A is replaced by the operator G
defined in (5.1). Then in Subsection 6.2 we write the operator A in term of G plus extra terms. In
Subsection 6.3 we show Theorem 6.2.

6.1. Toy model. We explain the method for proving Theorem 6.2 in a simpler context. Replace the
operator A with the operator Gλ defined in (5.1). Notice that Gλ defined in (5.1) is different from the
A defined in (4.44). Namely m̄ replaces mA and the convolution term replaces Jc. Assume

xV,GλV y ď Cλ2. (6.11)

We would like to prove that (6.9) and (6.10) follow. Write V ps, zq “
ř

kPZL e
i2π kL sukpzq, see (5.7). By

(6.11) and simple computations

Cλ2 ě xV,GλV y “
ÿ

kPZL

xLkλuk, uky. (6.12)

We then apply the spectral results for tLhuh obtained above. Let h0 ą 0 be as in Proposition 5.6.
When |k| ď h0

λ split

uk “ αkψ
kλ
0 ` uKk

where ψkλ0 is the principal eigenvalue of Lkλ and
ż

dzψkλ0 pzqu
K
k pzq “ 0.

By Proposition 5.6 and Proposition 5.7 we have
ÿ

kPZL

xLkλuk, uky ě
ÿ

|k|ď
h0
λ

xLkλuk, uky ` ν
ÿ

|k|ą
h0
λ

}uk}
2

“
ÿ

|k|ď
h0
λ

“

µkλ0 α2
k ` xu

K
k ,LkλuKk y

‰

` ν
ÿ

|k|ą
h0
λ

}uk}
2

ě
ÿ

|k|ď
h0
λ

“

µkλ0 α2
k `D}u

K
k }

2
‰

` ν
ÿ

|k|ą
h0
λ

}uk}
2.

(6.13)

Therefore, see (6.12),

Cλ2 ě
ÿ

|k|ď
h0
λ

“

µkλ0 α2
k `D}u

K
k }

2
‰

` ν
ÿ

|k|ą
h0
λ

}uk}
2. (6.14)

Since µkλ0 ě 0, see (5.13), the three terms on the right hand side of (6.14) are positive, hence
ÿ

|k|ď
h0
λ

µkλ0 α2
k ď Cλ2, (6.15)
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ÿ

|k|ď
h0
λ

}uKk }
2 ď

C

D
λ2, (6.16)

ÿ

|k|ą
h0
λ

}uk}
2 ď

C

ν
λ2. (6.17)

By Proposition 5.6, since µ0
0 ě 0,

ÿ

|k|ď
h0
λ

µkλ0 α2
k “

ÿ

|k|ď
h0
λ

rµkλ0 ´ µ0
0 ` µ

0
0sα

2
k ě

ÿ

|k|ď
h0
λ

rµkλ0 ´ µ0
0sα

2
k

ą C0

ÿ

|k|ď
h0
λ

rpkλq2sα2
k.

(6.18)

Hence, by (6.15)
ÿ

|k|ď
h0
λ

k2α2
k ď

C

C0
. (6.19)

Define

Zpsq “
ÿ

|k|ď
h0
λ

eiksαk, (6.20)

V Rps, zq “ V2ps, zq ` V3ps, zq, (6.21)

where

V2ps, zq “
ÿ

|k|ď
h0
λ

eiksuKk `
ÿ

|k|ą
h0
λ

eiksukpzq, (6.22)

V3ps, zq “
ÿ

|k|ď
h0
λ

eiksαkrψ
kλ
0 ´ ψ0

0s. (6.23)

Then

V ps, zq “ Zpsqψ0
0pzq ` V

Rps, zq. (6.24)

By (6.16) and (6.17)

}V2}
2 ď Cλ2.

By (5.12) and (6.19)

}V3}
2 “

ÿ

|k|ď
h0
λ

α2
k}ψ

kλ
0 ´ ψ0

0}
2 ď λ2

ÿ

|k|ď
h0
λ

α2
kk

2 ď λ2C.

Hence }V R}2 ď Cλ2, 1´ Cλ2 ď }Z}2 ď 1,

}∇sZ}
2 “

ÿ

|k|ď
h0
λ

k2α2
k ď C. (6.25)

In this way we get the decomposition (6.9), (6.10) in the toy model. The proof of Theorem 6.2 is more
complicated because terms outside diagonal are present.
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6.2. Expansion of A in term of G. In this subsection we decompose A “ G`R, but the L2 norm of R
is not of order λ2. Nevertheless we show that when V satisfies (6.8) then xAV, V y » xGV, V y`Cλ2|V }2.

We start writing the operator B defined in (4.43) in term of a convolution operator plus an operator
involving the first derivative with respect to the s´ variable of V , plus a remainder. The remainder for
general L2pTλq functions is of order 1 in L2pTλq, so it is not small. To get the remainder small we need
to require decay properties of V . They hold when V satisfies (6.8).

Lemma 6.3. Let V P H1pTλq and B be the operator defined in (4.43). We have

pBV qps, zq “
ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

V ps1, z1qds1dz1

´ λ2

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙„

ps´ s1q

λ
kps˚qz˚αps˚, z˚qDs1V ps

1, z1q



ds1dz1

` pRλV qps, zq

(6.26)

where Rλ is defined in (6.33).

Proof. Set x0 “
ps´s1q
λ and x “ ps´s1q

λ αps˚, z˚q. We expand J in Taylor formula, up to second order, at
the point x0 and for any given z P Iλ. We obtain

J px, zq “J px0, zq `D1J px0, zq px´ x0q

`
1

2

ż x

x0

D11J
`

x1, z
˘

px0 ´ x
1qdx1.

(6.27)

We denoted by D1J and by D11J the first derivative and respectively the second derivative of J with
respect to the first argument. Recalling that the support of J is the ball of radius 1 we have that
|s´ s1| ď λ, |z ´ z1| ď 1 and px´ x0q “ ´

1
λ ps´ s

1qλkps˚qz˚ » λkps˚qz˚. We set

Mps, s1, z, z1q “
1

2

ż x

x0

D11J
`

x1, z
˘

px0 ´ x
1qdx1. (6.28)

By the properties of J and the boundness of the curvature
ˇ

ˇMps, s1, z, z1q
ˇ

ˇ ď λ2Cpz˚q21I|s´s1|ďλ1I|z´z1|ď1. (6.29)

By (6.27), taking into account that αps˚, z˚q “ 1´ λkps˚qz˚, we have

pBV qps, zq “
ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
αps˚, z˚q, pz ´ z1q

˙

αps˚, z˚qV ps1, z1qds1dz1

“

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

V ps1, z1qds1dz1

´ λ

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

kps˚qz˚V ps1, z1qds1dz1

´ λ

ż

Tλ

1

λ
pD1Jq

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

1

λ
ps´ s1qkps˚qz˚αps˚, z˚qV ps1, z1qds1dz1

`
1

λ

ż

Tλ
Mps, s1, z, z1qαps˚, z˚qV ps1, z1qds1dz1.

(6.30)

Since

pD1Jq

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

“ λpDsJq

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

“ ´λpDs1Jq

ˆ

ps´ s1q

λ
, pz ´ z1q

˙



36 ENZA ORLANDI

we obtain
ż

Tλ
pD1Jq

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

1

λ
ps´ s1qkps˚qz˚αps˚, z˚qV ps1, z1qds1dz1

“ ´

ż

Tλ
pDs1Jq

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

ps´ s1qkps˚qz˚αps˚, z˚qV ps1, z1qds1dz1

“

ż

Tλ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

Ds1
“

ps´ s1qkps˚qz˚αps˚, z˚qV ps1, z1q
‰

ds1dz1

“ ´

ż

Tλ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

kps˚qz˚r1´ λkps˚qz˚sV ps1, z1qds1dz1

`

ż

Tλ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

ps´ s1qks1ps
˚qz˚αps˚, z˚qV ps1, z1qds1dz1

`

ż

Tλ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

ps´ s1qkps˚qz˚αps˚, z˚qDs1V ps
1, z1qds1dz1

`

ż

Tλ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

ps´ s1qkps˚qz˚Ds1rαps
˚, z˚qsV ps1, z1qds1dz1.

(6.31)

We replaced αps˚, z˚q “ 1 ´ λkps˚qz˚ in the first term of the last equality of (6.31). We insert (6.31)
into the third term of the last equality in (6.30). Notice that we must multiply (6.31) by ´λ 1

λ . We
obtain

ż

Tλ
Jcps, s1, z, z1qV ps1, z1qds1dz1 “

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ zq

˙

V ps1, z1qds1dz1

´ λ

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

“

ps´ s1qkps˚qz˚αps˚, z˚qDs1V ps
1, z1q

‰

ds1dz1

` pRλV qps, zq,

(6.32)

where

pRλV qps, zq “ ´ λ2

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

“

pkps˚qz˚q2V ps1, z1q
‰

ds1dz1

´ λ2

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙„

ps´ s1q

λ

1

2
ks1ps

˚qz˚αps˚, z˚qV ps1, z1q



ds1dz1

´ λ3

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙„

ps´ s1q

λ
kps˚qks1ps

˚qpz˚q2V ps1, z1q



ds1dz1

`

ż

Tλ

1

λ
Mps, s1, z, z1qαps˚, z˚qV ps1, z1qds1dz1,

(6.33)

with M defined in (6.28). The term

´λ

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ zq

˙

kps˚qz˚V ps1, z1qds1dz1

appearing in the third lines of (6.30) cancels with the first addend of the last equality of (6.31) when
multiplied by ´λ 1

λ . �

We have the following

Lemma 6.4. Let V P L2pTλq with the property that there exists z0 and a ą 0 so that
ż

T

dsV ps, zq2 ď e´a|z|}V }2 for|z| ě z0. (6.34)
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Let Rλ be the quantity defined in (6.33), there exists C “ Cpz0q ą 0 so that

}RλV } ď λ2C}V }.

Proof. Denote

pRλ1V qps, zq “ ´λ
2

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

rkps˚qz˚qs2V ps1, z1qds1dz1,

pRλ2V qps, zq “ ´λ
2

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙„

ps´ s1q

λ

1

2
ks1ps

˚qz˚αps˚, z˚qV ps1, z1q



ds1dz1,

pRλ3V qps, zq “ ´λ
3

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙„

ps´ s1q

λ
kps˚qks1ps

˚qpz˚q2V ps1, z1q



ds1dz.

By Jensen inequality, (6.34) and taking into account that |z ´ z1| ď 1, we have

}Rλ1V }
2 “λ4

ż

Tλ
dsdz

"
ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

rkps˚qz˚s2V ps1, z1qds1dz1
*2

ď λ4C

ż

Tλ
dsdz

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

“

pz1 ` 1q2V ps1, z1q
‰2
ds1dz1

ď λ4Cpz0q}V }
2.

(6.35)

We estimate similarly the term Rλ2V and Rλ3V . By (6.29) and (6.34) we have

}Rλ4V }
2 ”

ż

Tλ
dsdz

"

1

λ

ż

Tλ
Mps, s1, z, z1qαps˚, z˚qV ps1, z1qds1dz1

*2

ď

ď Cλ4

ż

Tλ
dsdz

"
ż

Tλ
pz˚q2

1

λ
1I|s´s1|ďλ1I|z´z1|ď1|V ps

1, z1q|ds1dz1
*2

ď Cλ4

ż

Tλ
dsdz

ż

Tλ

1

λ
1I|s´s1|ďλ1I|z´z1|ď1pz

˚q4V ps1, z1q2ds1dz1

ď Cpz0qλ
4|V }2.

(6.36)

Since RλV “
ř4
i“1R

λ
i V , the thesis follows. �

Lemma 6.5. Set V ps, zq “
ř

hPZL e
ihsuhpzq, see (5.7). We have

ż

Tλ
dsdzV ps, zqpBV qps, zq

“
ÿ

hPZL,kPZL

"

δh,k

ż

Iλ

dzuhpzq

ż

Iλ

Jλkpz ´ z1qukpz
1qdz1 ` Fλ1 puh, ukq

*

`

ż

Tλ
dsdzV ps, zqpRλV qps, zq

(6.37)

where Jλk is defined in (5.2), Fλ1 puh, ukq in (6.41).
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Proof. From (6.26) we have
ż

Tλ
dsdzV ps, zqpBV qps, zq

“
ÿ

h,k

ż

Tλ
dsdzeihsuhpzq

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

eiks
1

ukpz
1qds1dz1

´ λ2
ÿ

h,k

ż

Tλ
dsdze´ihsuhpzq

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙„

ps´ s1q

λ
kps˚qz˚ikeiks

1

ukpz
1q



ds1dz1

`

ż

Tλ
dsdzV ps, zqpRλV qps, zq.

(6.38)

We have that
ż

Tλ
dsdze´ihsuhpzq

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

eiks
1

ukpz
1qds1dz1

“

ż

Tλ
dsdze´ihsuhpzqe

iksJλkpz ´ z1qukpz
1q “ δh,k

ż

Iλ

dzuhpzq

ż

Iλ

Jλkpz ´ z1qukpz
1qdz1

(6.39)

where, see (5.2),

Jλkpz ´ z1q “

ż

T

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

eikλ
ps1´sq
λ ds1 “

ż

J
`

w, pz ´ z1q
˘

e´ikλwdw. (6.40)

Set

Fλ1 puh, ukq “ ´ ikλ
2

ż

Tλ
dsdze´ihsuhpzqe

iks

ż

Tλ

1

λ
J

ˆ

ps´ s1q

λ
, pz ´ z1q

˙

ps´ s1q

λ
kps˚qeikλ

ps´s1q
λ z˚ukpz

1qds1dz1

“ ´ikλ2

ż

Iλ

dzuhpzq

ż

Iλ

z˚ukpz
1qdz1

ż

J
`

w, pz ´ z1q
˘

we´ikλw
ż

T

dseipk´hqskps`
1

2
λwqdw

“ ´ikλ2

ż

Iλ

dzuhpzq

ż

Iλ

z˚ukpz
1qdz1

ż

J
`

w, pz ´ z1q
˘

we´i
1
2 p3k´hqλw

ż

T

ds1eipk´hqs
1

kps1q

“ ´kλ2

ż

Iλ

dzuhpzq

ż

Iλ

z˚ukpz
1qdz1

ż

J
`

w, pz ´ z1q
˘

w sinp
1

2
p3k ´ hqλwq

ż

T

ds1eipk´hqs
1

kps1q.

(6.41)

We use that s˚ “ s`s1

2 “ s` s1´s
2 and therefore kps˚pwqq “ kps` 1

2λwq. �

Remark 6.6. Notice that when v and w are even function

Fλ1 pv, wq “ 0.

Lemma 6.7. Take }V } “ 1, V ps, zq “
ř

kPZL e
iksukpzq, see (5.7),

xV,AV y ď Cλ2, (6.42)

where the operator A is defined in (4.44). Then

xV,AV y ´ xV,Rλ0V y “
ÿ

kPZL,hPZL

 

δh,kxuh,Lkλuky ` Fλ1 puh, ukq ` Fλ2 puh, ukq ` Fλ3 puh, ukq
(

, (6.43)

xV,Rλ0V y ď Cλ2, (6.44)

see (6.60), where Fλ1 is given in (6.41), Fλ2 in (6.56) and Fλ3 in (6.57). Further we have for u and v
even function

Fλ1 pu, vq “ Fλ2 pu, vq “ Fλ3 pu, vq “ 0, (6.45)

|Fλ1 puh, ukq| ď λ2|k|C
1

p1` |k ´ h|q3
1

p1` | 12 p3k ´ hq|λq
}uh}}uk}, (6.46)



SPECTRAL PROPERTIES 39

|Fλ2 puh, ukq ` F
λ
3 puh, ukq| ď Cλ}uh}}uk}C

1

p1` |k ´ h|q3
. (6.47)

Proof. From (6.42) it follows that V satisfies (6.34), i.e there exists z0 and a ą 0 so that
ż

T

dsV ps, zq2 ď e´a|z|}V }2 for |z| ě z0. (6.48)

Namely, by Lemma 4.11, one deduces that the eigenfunctions tΨiui associated to eigenvalues of A smaller

than some ε0 decay as (6.48). Therefore we can write for some positive integer N , V “
řN
i aiΨips, zq

where ai “
ş

Tλ dsdzΨips, zqV ps, zq. We get

ż

T

dsV ps, zq2 “
N
ÿ

i

a2
i

ż

T

dsΨ2
i ps, zq ď e´a|z|C

N
ÿ

i

a2
i }Ψi}

2 “ Ce´a|z|}V }2 for |z| ě z0. (6.49)

By (3.10) and definitions (3.20), (3.21) and (3.22) we obtain
ż

Tλ
dsdz

V ps, zq2

σpmAps, λzqq
“

ż

Tλ
dsdz

V ps, zq2

βp1´ m̄2pzqq

`

ż

T

ds rI2,spV q ` I3,spV q ` I4,spV qs .

(6.50)

We write

I3,spV q “ λ

ż

Tλ
dsdz

pV ps, zqq2

βp1´ m̄2pzqq2
m̄pzqφps, 0q

` λ2

ż

Tλ
dsdz

pV ps, zqq2

βp1´ m̄2pzqq2
m̄pzqrφps, zq ´ φps, 0s.

(6.51)

By (2.16) and (6.48) we get
ˇ

ˇ

ˇ

ˇ

ż

Tλ
dsdz

pV ps, zqq2

βp1´ m̄2pzqq2
m̄pzqrφps, zq ´ φps, 0s

ˇ

ˇ

ˇ

ˇ

ď C}V }2. (6.52)

Hence by (6.50) and (6.51)
ż

Tλ
dsdz

pV ps, zqq2

σpmAps, λzqq
“

ż

Tλ
dsdz

pV ps, zqq2

βp1´ m̄2pzqq

` 2λ

ż

Tλ
dsdz

pV ps, zqq2

βp1´ m̄2pzqq2
m̄pzqrh1pzqgpsq ` φps, 0qs ` λ

2

ż

Tλ
dsdzR1ps, zqpV ps, zqq

2,

(6.53)

where we denoted by

R1ps, zq “
1

βp1´ m̄2pzqq2
m̄pzqrφps, zq ´ φps, 0s ` qλps, λzq.

By (6.52) and (2.14) we have that

xV,R1V y ď C}V }2. (6.54)

Set V ps, zq “
ř

k e
iksukpzq. Taking into account (6.53) we have

ż

Tλ
dsdz

pV ps, zqq2

σpmAps, λzqq
“
ÿ

k

ż

Iλ

dz
pukpzqq

2

σpm̄pzqq
`
ÿ

k

ÿ

h

“

Fλ2 puh, ukq ` F
λ
3 puh, ukq

‰

` λ2

ż

Tλ
dsdzR1ps, zqpV ps, zqq

2,

(6.55)

where

Fλ2 puh, ukq “ 2λ

ż

Iλ

dz
ukpzquhpzq

βp1´ m̄2pzqq2
m̄pzqh1pzq

ż

T

dseipk´hqsgpsq (6.56)
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Fλ3 puh, ukq “ 2λ

ż

Iλ

dz
ukpzquhpzq

βp1´ m̄2pzqq2
m̄pzq

ż

T

dseipk´hqsφps, 0q. (6.57)

Then by Lemma 6.5

xV,LλV y ´ xV,RλV y ` λ2xV,R1V y

“
ÿ

k,h

 

δh,kxuh,Lkλuky ` Fλ1 puh, ukq ` Fλ2 puh, ukq ` Fλ3 puh, ukq
(

. (6.58)

Since V satisfies the decay property (4.61) we can apply Lemma 6.4 obtaining

xV,RλV y ď Cλ2}V }2. (6.59)

Denote

xV,Rλ0V y “ λ2xV,R1V y ` xV,R
λV y. (6.60)

By (6.54) and (6.59) we get (6.44). By inspection one realises that when u and v are even (6.45) holds.
Further, since

uhpzq “

ż

V ps, zqeihsds

then, see (4.61),

|uhpzq| ď

ż

|V ps, zq|ds ď C

ˆ
ż

|V ps, zq|2ds

˙
1
2

ď Ce´a|z|}V }, |z| ě z0, (6.61)

where a ą 0 and z0 ą 0 do not depend on λ. To estimate Fi, i “ 1, 2, 3 we use the smoothness of J , Γ
and mA. We therefore use estimate (5.3),

ˇ

ˇ

ˇ

ˇ

ż

T

dseipk´hqskpsq

ˇ

ˇ

ˇ

ˇ

ď
C

p1` |k ´ h|q3
, (6.62)

ˇ

ˇ

ˇ

ˇ

ż

T

dseipk´hqsgpsq

ˇ

ˇ

ˇ

ˇ

ď C
1

p1` |k ´ h|q3
,

ˇ

ˇ

ˇ

ˇ

ż

T

dseipk´hqsΦps, 0q

ˇ

ˇ

ˇ

ˇ

ď C
1

p1` |k ´ h|q3
.

To estimate Fλ1 we bound |z˚| ď |z ` 1| since J has support in the ball of radius 1. The exponential
decay of the uh, see (6.61), is essential to control the growing of |z ` 1|. We get

ˇ

ˇFλ1 puh, ukq
ˇ

ˇ ď λ2|k|C
1

p1` |k ´ h|q3
1

p1` | 12 p3k ´ hq|λq

ż

Iλ

dz|uhpzq||z ` 1|

ż

Iλ

Cpz ´ z1q|ukpz
1q|dz1

ď λ2|k|C
1

p1` |k ´ h|q3
1

p1` | 12 p3k ´ hq|λq
}uh}}uk},

(6.63)

|Fλ2 puh, ukq ` F
λ
3 puh, ukq| ď Cλ}uh}}uk}

1

p1` |k ´ h|q3
. (6.64)

�

Proof of Theorem 6.2 By assumption, xV,AV y ď Cλ2, see (6.8), hence Lemma (6.7) holds. Take
V ps, zq as in (5.7) and consider the representation of xV,AV y given in (6.43). We start considering the
diagonal term, i.e when h “ k. We need to lower bound the following quantity.

ÿ

k

 

xuk,Lkλuky ` Fλ1 puk, ukq ` Fλ2 puk, ukq ` Fλ3 puk, ukq
(

. (6.65)
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Split
ř

k “
ř

|λk|ďh0
`
ř

|λk|ąh0
where h0 is as in Proposition 5.6. When |λk| ď h0 split

uk “ αkψ
kλ
0 ` uKk (6.66)

where ψkλ0 is the principal eigenvalue of Lkλ and
ż

dzψkλ0 pzqu
K
k pzq “ 0.

By (5.11)

xuk,Lkλuky “ µkλ0 α2
k ` xu

K
k ,LkλuKk y ě µkλ0 α2

k `D}u
K
k }

2.

By Proposition 5.6 the principal eigenvalue of the operator Lkλ is even, hence for i “ t1, 2, 3u

Fλi pψ
hλ
0 , ψkλ0 q “ 0, |λh| ď h0, |λk| ď h0, (6.67)

and
Fλi puk, uhq “ Fλi pαkψ

kλ
0 , uKh q ` F

λ
i pu

K
k , αhψ

hλ
0 q ` F

λ
i pu

K
k , u

K
h q. (6.68)

Property (6.67) is essential to obtain the final estimate. Taking into account (6.46), (6.47) and (6.67)
we have

|Fλ1 puk, ukq| ď λ2|k|C
1

p1` |k|λq
r2|αk|}u

K
k } ` }u

K
k }

2s ď λCr|αk|}u
K
k } ` }u

K
k }

2s, (6.69)

|Fλ2 puk, ukq ` F
λ
3 puk, ukq| ď λCr2|αk|}u

K
k } ` }u

K
k }

2s. (6.70)

Therefore
ÿ

|k|ď
h0
λ

 

xuk,Lkλuky ` Fλ1 puk, ukq ` Fλ2 puk, ukq ` Fλ3 puk, ukq
(

ě
ÿ

|k|ď
h0
λ

 

µkλ0 α2
k `D}u

K
k }

2 ´ λCr}uKk } ` }u
K
k }

2s
(

ě
ÿ

|k|ď
h0
λ

 

µkλ0 α2
k ` rD ´ Cλs}u

K
k }

2 ´ λC|αk|}u
K
k }
(

.

(6.71)

When |k| ą h0

λ , taking advantage that λ2 |k|
p1`|k|λq ď λ, and by (6.46), (6.47) we get

|
ÿ

i

Fλi puk, ukq| ď λC}uk}
2.

Hence
ÿ

|k|ą
h0
λ

 

xuk,Lkλuky ` Fλ1 puk, ukq ` Fλ2 puk, ukq ` Fλ3 puk, ukq
(

ě
ÿ

|k|ą
h0
λ

rν ´ λCs}uk}
2.

(6.72)

Next we estimate the therms outside diagonal, i.e h ‰ k:
ÿ

k,h;k‰h

rFλ1 puh, ukq ` F
λ
2 puh, ukq ` F

λ
3 puh, ukqs

“

»

–

ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

`
ÿ

|kλ|ďh0

ÿ

|hλ|ąh0

`
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

`
ÿ

|kλ|ąh0

ÿ

|hλ|ąh0,h‰k

fi

fl

ÿ

i

Fλi puh, ukq.

(6.73)

We estimate each term of (6.73). We control the double sums using that

@k
ÿ

h

1

p1` |k ´ h|q3
ď C,

ÿ

h

1

p1` |k ´ h|q2
ď C.
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When |kλ| ď h0 we decompose uk as in (6.66). When |kλ| ď h0 and |hλ| ď h0 we take advantage of
(6.67) and (6.68). By (6.46) we obtain

ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

|Fλ1 puh, ukq|

ď λ2
ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

"

|k|
1

p1` |k ´ h|q3
1

p1` | 12 p3k ´ hq|λq

“

|αk|}u
K
h } ` }u

K
h }}u

K
k }
‰

*

ď λh0

ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

1

p1` |k ´ h|q3

„

|αk|}u
K
h } `

1

2
}uKh }

2 `
1

2
}uKk }

2



ď λh0C

$

&

%

ÿ

|hλ|ďh0

}uKh }
2 `

ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

1

p1` |k ´ h|q3
|αk|}u

K
h }

,

.

-

.

(6.74)

Taking into account (6.67) and (6.68), applying estimate (6.47) and proceeding as above we get

ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

ˇ

ˇFλ2 puh, ukq ` F
λ
3 puh, ukq

ˇ

ˇ

ď λC

$

&

%

ÿ

|hλ|ďh0

}uKh }
2 `

ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

1

p1` |k ´ h|q3
|αk|}u

K
h }

,

.

-

.

(6.75)

Next we consider the case when |kλ| ď h0 and |hλ| ą h0. By (6.46), we get

|Fλ1 puh, ukq| ď λ2|k|
1

p1` |k ´ h|q3
1

p1` | 12 p3k ´ hq|λq
}uh}r}u

K
k } ` |αk|s

ď λh0
1

p1` |k ´ h|q3

„

1

2
}uh}

2 `
1

2
}uKk }

2 ` |αk|}uh}



.

(6.76)

By (6.47), proceeding as above,

|Fλ2 puh, ukq ` F
λ
3 puh, ukq| ď λ

1

p1` |k ´ h|q3

„

1

2
}uh}

2 `
1

2
}uKk }

2 ` |αk|}uh}



. (6.77)

Therefore

ÿ

|kλ|ďh0

ÿ

|hλ|ąh0

ÿ

i

|Fλi puh, ukq|

ď λC
ÿ

|kλ|ďh0

ÿ

|hλ|ąh0

1

p1` |k ´ h|q3

„

1

2
}uh}

2 `
1

2
}uKk }

2 ` |αk|}uh}



ď λC
ÿ

|kλ|ďh0

}uKk }
2 ` λC

ÿ

|hλ|ąh0

}uh}
2 ` λC

ÿ

|kλ|ďh0

ÿ

|hλ|ąh0

1

p1` |k ´ h|q3
|αk|}uh}.

(6.78)
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When |kλ| ą h0 and |hλ| ă h0 the estimate of |Fλ2 puh, ukq`F
λ
3 puh, ukq| gives similar terms as in (6.77),

with h replacing k. To estimate Fλ1 we note that |k| ď |k ´ h| ` |h|. Therefore by (6.46)
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

|Fλ1 puh, ukq|

ď λ2
ÿ

|kλ|ąh0

ÿ

|kλ|ďh0

|k|
1

p1` |k ´ h|q3
1

p1` | 12 p3k ´ hq|λq
}uh}}uk}

ď λ2
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

|h|
1

p1` |k ´ h|q3
}uh}}uk}

` λ2
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

|k ´ h|
1

p1` |k ´ h|q3
}uh}}uk}

ď λh0

ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

1

p1` |k ´ h|q3
}uh}}uk} ` λ

2
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

1

p1` |k ´ h|q2
}uh}}uk}.

(6.79)

Since |hλ| ď h0, we split uh as in (6.66). Insert this decomposition into (6.79) we get
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

|Fλ1 puh, ukq|

ď λ
ÿ

|kλ|ąh0

}uk}
2 ` λ

ÿ

|hλ|ăh0

}uKh }
2 ` λ

ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

1

p1` |k ´ h|q3
|αh|}uk}.

(6.80)

Next we consider the case when |kλ| ą h0 and |hλ| ą h0, h ‰ k. The main point is to control the |k| in
the estimate of Fλ1 . When k and h have opposite sign, then

|k|

1` |k ´ h|
ď 1. (6.81)

When k and h have the same sign it might be that |k|
1`|k´h| ą 1. But if this is case, then for these values

of h and k
kλ

p1` 1
2 p3k ´ hqλq

ď 2. (6.82)

This statement can be easily verified. Take k ą 0 the case with k ă 0 can be treated in the same way.
Assume that (6.81) does not hold. This means that, for given k, |k ´ h| ă k ´ 1. This inequality is
satisfied for h P t1, . . . , 2k´ 1u. For such value of h we have that 3k´h ě k and therefore (6.82) holds.
Hence

ÿ

|kλ|ąh0

ÿ

|hλ|ąh0,h‰k

Fλ1 puh, ukq “
1
ÿ

|kλ|ąh0

1
ÿ

|hλ|ąh0,h‰k

Fλ1 puh, ukq `
2
ÿ

|kλ|ąh0

2
ÿ

|hλ|ąh0,h‰k

Fλ1 puh, ukq, (6.83)

where
ř1

is a sum restricted to the h and k so that (6.81) holds, and
ř2

is a sum restricted to the h
and k so that (6.81) does not hold. By (6.46) and (6.81) we get

1
ÿ

|kλ|ąh0

1
ÿ

|hλ|ąh0,h‰k

Fλ1 puh, ukq

ď λ2C
1
ÿ

|kλ|ąh0

1
ÿ

|hλ|ąh0,h‰k

|k|
1

p1` |k ´ h|q3
kλ

p1` 1
2 p3k ´ hqλq

}uh}}uk} ď λ2C
ÿ

|kλ|ąh0

ÿ

|hλ|ąh0,h‰k

1

p1` |k ´ h|q2
}uh}}uk}

ď λ2C
ÿ

|kλ|ąh0

ÿ

|hλ|ąh0,h‰k

1

p1` |k ´ h|q2
r
1

2
}uh}

2 `
1

2
}uk}

2s ď λ2C
ÿ

|kλ|ąh0

}uk}
2.

(6.84)
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By (6.46) and (6.82) we get

2
ÿ

|kλ|ąh0

2
ÿ

|hλ|ąh0,h‰k

Fλ1 puh, ukq

ď λ2C
2
ÿ

|kλ|ąh0

2
ÿ

|hλ|ąh0,h‰k

|k|
1

p1` |k ´ h|q3
kλ

p1` 1
2 p3k ´ hqλq

}uh}}uk} ď λC
ÿ

|kλ|ąh0

ÿ

|hλ|ąh0,h‰k

1

p1` |k ´ h|q3
}uh}}uk}

ď λC
ÿ

|kλ|ąh0

ÿ

|hλ|ąh0,h‰k

1

p1` |k ´ h|q3
r
1

2
}uh}

2 `
1

2
}uk}

2s ď Cλ
ÿ

|kλ|ąh0

}uk}
2.

(6.85)

By the previous estimates we have
ÿ

k,h;k‰h

rFλ1 puh, ukq ` F
λ
2 puh, ukq ` F

λ
3 puh, ukqs

ď λC

¨

˝

ÿ

|kλ|ďh0

}uKk }
2 `

ÿ

|kλ|ąh0

}uk}
2

˛

‚

` λC
ÿ

|kλ|ďh0

ÿ

|hλ|ďh0,h‰k

1

p1` |k ´ h|q3
|αk|}u

K
h }

` λC
ÿ

|kλ|ďh0

ÿ

|hλ|ąh0

1

p1` |k ´ h|q3
|αk|}uh}

` λC
ÿ

|kλ|ąh0

ÿ

|hλ|ďh0

1

p1` |k ´ h|q3
|αh|}uk}.

(6.86)

Define

bh “

#

}uKh }, |hλ| ď h0

}uh}, |hλ| ą h0.

Adding to the (6.86) the terms on the diagonal, i.e Fλi puk, ukq, for i “ 1, 2, 3, we get
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k,h

rFλ1 puh, ukq ` F
λ
2 puh, ukq ` F

λ
3 puh, ukqs

ˇ

ˇ

ˇ

ˇ

ˇ

ď λC

¨

˝

ÿ

|kλ|ďh0

}uKk }
2 `

ÿ

|kλ|ąh0

}uk}
2

˛

‚

` λC
ÿ

|kλ|ďh0

ÿ

h

1

p1` |k ´ h|q3
|αk|bh.

(6.87)

By Schwartz

ÿ

|kλ|ďh0

ÿ

h

1

p1` |k ´ h|q3
|αk|bh ď

d

ÿ

|kλ|ďh0

ÿ

h

1

p1` |k ´ h|q3
|αk|2

d

ÿ

|kλ|ďh0

ÿ

h

1

p1` |k ´ h|q3
b2h

ď C

d

ÿ

|kλ|ďh0

|αk|2
d

ÿ

h

b2h ď C

d

ÿ

h

b2h.

(6.88)
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Taking into account (6.43) and (6.44) and estimates (6.71), (6.72) and (6.86) we have

xV,AV y ´ xV,Rλ0V y “
ÿ

k,h

 

δh,kxuh,Lkλuky ` Fλ1 puh, ukq ` Fλ2 puh, ukq ` Fλ3 puh, ukq
(

ě
ÿ

|k|ď
h0
λ

µkλ0 α2
k ` rD ´ Cλs

ÿ

|k|ď
h0
λ

}uKk }
2 ` rν ´ λCs

ÿ

|k|ą
h0
λ

}uk}
2 ´ λ

d

ÿ

h

b2h

(6.89)

Since xV,AV y ď Cλ2, see (6.8), and |xV,Rλ0V y| ď Cλ2, see (6.44), taking C ď mintrD´Cλs, rν´λCsu
we get

Cλ2 ě
ÿ

|k|ď
h0
λ

µkλ0 α2
k ` C

ÿ

k

b2k ´ λ

d

ÿ

k

b2k

ě C
ÿ

k

b2k ´ λ

d

ÿ

k

b2k.

(6.90)

In the last inequality we use that µkλ0 ą µ0
0 ą 0, see Proposition 5.6 and Theorem 3.1. Therefore

Cλ2 ` λ

d

ÿ

k

b2k ě C
ÿ

k

b2k. (6.91)

This inequality immediately implies
d

ÿ

k

b2k ď Cλ. (6.92)

Lower bounding (6.89) by (6.92) we get

Cλ2 ě
ÿ

|k|ď
h0
λ

µkλ0 α2
k ` rD ´ Cλs

ÿ

|k|ď
h0
λ

}uKk }
2 ` rν ´ λCs

ÿ

|k|ą
h0
λ

}uk}
2.

(6.93)

We get similar estimates as in Subsection 6.1 (Toy model). This implies
ÿ

|k|ď
h0
λ

µkλ0 α2
k ď Cλ2, (6.94)

ÿ

|kλ|ďh0,

}uKk }
2 ď Cλ2, (6.95)

ÿ

|kλ|ąh0,

}uk}
2 ď Cλ2. (6.96)

We therefore define

Zpsq “
ÿ

|k|ď
h0
λ

eiksαk (6.97)

V Rps, zq “
ÿ

|k|ď
h0
λ

eiksuKk pzq `
ÿ

|k|ą
h0
λ

eiksukpzq `
ÿ

|k|ď
h0
λ

eiksαkrψ
kλ
0 pzq ´ ψ

0
0pzqs. (6.98)

Then

V ps, zq “ Zpsqψ0
0pzq ` V

Rps, zq (6.99)

and, proceeding as in Subsection 6.1, the requirements (6.10) hold. �
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7. Proof of Theorem 2.5

Proof. If v “ 0 then the assertion of the theorem holds. So let v be non identically equal to zero and
assume that

ş

Ω
v2pξqdξ “ 1. Proceeding as in the proof of Theorem 2.4 there exists k̄ P t0, . . . Nu, with

N “ r 1
λ s, and cut off functions η1 “ ηk̄1 and η2 “ 1´ ηk̄1 so that

ż

Ω

pAλmAvqpξqvpξqdξ “

ż

Ω

pAλmAη1vqpξqη1pξqvpξqdξ

`

ż

Ω

pAλmAη2vqpξqη2pξqvpξqdξ

´ 2

ż

Ω

dξη1pξqvpξqpJ
λ ‹ η2vqpξq,

(7.1)

ż

Ω

pAλmAη2vqpξqη2pξqvpξqdξ ě pC
˚ ´ 1q}η2v}L2pΩq ą 0, (7.2)

and
ˇ

ˇ

ˇ

ˇ

2

ż

Ω

dξη1pξqvpξqpJ
λ ‹ η2vqpξq

ˇ

ˇ

ˇ

ˇ

ď λ2C}v}2L2pΩq. (7.3)

Without loss of generality we keep on denoting by N pd0q the set where η1pξq “ 1. The (2.22), (7.2)
and (7.3) imply that

ż

N pd0q

`

AλmAη1pξqvpξq
˘

η1pξqvpξqdξ ď Cλ2 ´

ż

ΩzN pd0q
pAλmAη2vqpξqη2vpξqdξ ď Cλ2. (7.4)

By (2.22) and (7.3)
ż

ΩzN pd0q
pAλmAη2vqpξqvpξqdξ ď Cλ2 ´

ż

N pd0q

`

AλmAη
N
1 pξqvpξq

˘

η1pξqvpξqdξ. (7.5)

By Lemma 4.2 and Lemma 4.8 we have that
ż

N pd0q
pAλmAη1vqpξqη1vpξqdξ ě ´Cλ

2

ż

Ω

v2pξqdξ “ ´Cλ2. (7.6)

Then, from (7.5), taking into account (7.6) we obtain
ż

ΩzN pd0q
pAλmAη1vqpξqvpξqdξ ď Cλ2. (7.7)

This together with (7.2) implies
ż

ΩzN pd0q
v2pξqdξ ď Cλ2, (7.8)

hence
ż

N pd0q
v2pξqdξ ě 1´ Cλ2. (7.9)

Therefore, see (7.4) and (7.9), we can apply Theorem 6.1 decomposing v as

vpr, sq “ Zpsq
1

a

αps, rq

1
?
λ
ψ0

0p
r

λ
q ` vRps, rq, (7.10)

where ψ0
0p¨q is the first eigenvalue of L0, see Theorem 3.1, with

}vR}2L2pN pd0q ď λ2C, (7.11)

and

1´ Cλ2 ď }Z}2L2pT q ď 1, }∇Z}L2pT q ď C. (7.12)
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Set

∆w “ v. (7.13)

Denote

ŵ “
1
?
λ
w.

Then, from (7.10)

∆ŵ “
1
?
λ

«

Zpsq
1

a

αps, rq

1
?
λ
ψ0

0p
r

λ
q ` vRps, rq

ff

.

To show (2.23) it is enough to prove that

}∇ŵ}L2pΩq ě C (7.14)

for some positive C independent on λ. Let δ P p0, 1
2 s a small constant to be determined and let

χ P C80 pRq be a cut-off function, such that

χpxq “ 1 if |x| ď
1

2
, χpxq “ 0 if |x| ą 1, xχ1pxq ď 0 in R.

(7.15)
Set χδpxq “ χpxδ q, with χ as in (7.15). We have

ż

N pd0q
Zpspξqqχδprpξ,Γqq∆ŵpξqdξ

“

ż

Tˆr´δ,δs

Zpsqχδprq

#

Zpsq
1

a

αps, rq

1

λ
ψ0

0p
r

λ
q `

1
?
λ
vRps, rq

+

αps, rqdrds.

(7.16)

By (3.7), for δ ą λ,
ş

r´δ,δs
1
λψ

0
0p
r
λ qdr ě 2m̄p δλ q ` Ce´α

δ
λ ě C. This, together with (7.12), allows to

lower bound
ż

Tˆr´δ,δs

a

αpr, sqZ2psqχδprq
1

λ
ψ0

0p
r

λ
qdrds

ě C inf
tpr,sqPTˆr´δ,δsu

a

αps, rq}Z2}2L2pT q

ż

r´δ,δs

1

λ
ψ0

0p
r

λ
qdr ě C}Z2}2L2pT q ě Cp1´ λ2q.

(7.17)

By Schwartz inequality
ˇ

ˇ

ˇ

ˇ

ˇ

1
?
λ

ż

Tˆr´δ,δs

ZpsqχδprqvRpr, sqαpr, sqdrds

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
?
λ
}vR}L2pN pδqq

˜

ż

Tˆr´δ,δs

αpr, sqZ2psqrχδprqs2drds

¸
1
2

ď
1
?
λ
}vR}L2pN pδqq

˜

sup
tpr,sqPTˆr´δ,δsu

|αpr, sq|

¸
1
2

}Z}L2pT qδ
1
2 ď Cδ

1
2λ

1
2 .

(7.18)

The last inequality is obtained applying (7.11). Then from (7.16), (7.17) and (7.18) we obtain
ż

N pd0q
Zpspξqqχδprpξ,Γqq∆ŵpξqdξ ě Cp1´ λ2q ´ Cδ

1
2λ

1
2 . (7.19)
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On the other hand we can calculate
ż

N pd0q
Zpspξqqχδprpξ,Γqq∆ŵpξqdξ

“ ´

ż

N pd0q
∇
 

Zpspξqqχδprpξ,Γqq
(

¨ t∇ŵpξqu dξ

“ ´

ż

N pd0q

 

∇Zpspξqqχδprpξ,Γqq ` Zpspξqq∇χδprpξ,Γqq
(

¨∇ŵpξqdξ

ď }∇ŵ}L2pN pδqq

#

}∇Z}L2pT qδ
1
2 ` sup

rPr´δ,δs

|∇χδprq|δ 1
2 }Z}L2pT q

+

ď }∇ŵ}L2pN pδqq

”

δ
1
2 ` δ´

1
2

ı

C,

(7.20)

where we estimated }Z}L2pT q and }∇Z}L2pT q, as in (7.12) and

˜

ż

N pd0q
p∇Zpspξqq2χδprpξ,Γqqdξ

¸
1
2

ď C}∇Z}L2pT qδ
1
2 .

Combining (7.20) with the estimates (7.19) we obtain for δ small enough

}∇ŵ}L2pN pδqq ě
Cp1´ λ2q ´ δ

1
2λ

1
2

”

δ
1
2 ` δ´

1
2

ı ě C ą 0,

hence (7.14). The theorem is proved. �

8. Appendix

Lemma 8.1. Let µpsq be any eigenvalue of Ls such that

ε0 “
1

σpmβq
´ 1´ sup

sPT
µpsq ą 0. (8.1)

Let ψps, ¨q be one of the normalized eigenfunctions corresponding to µpsq. There exists z0 “ z0pε0q ą 0
and λ0 ” λ0pε0q ą 0 such that for λ P p0, λ0s, we have that for |z| ě z0, for all s P T

|ψps, zq| ď e´αpε0qp|z|´z0q}J̄}2, (8.2)

where αpε0q is given in (8.13).

Proof. Let µpsq and ψps, ¨q be as in the hypothesis, then

ψps, zq

σpmAps, λzqq
´ pJ̄ ‹z ψqps, zq “ µpsqψps, zq z P Iλ. (8.3)

By the definition of mA, see (2.11) and (2.14), there exists C ą 0 so that

sup
sPT

|σpmAps, λzqq ´ σpm̄pzqq| ď λC. (8.4)

Since lim|z|Ñ8 σpm̄pzqq “ σpmβq, there exists z0 “ z0pε0q ą 0 so that for |z| ě z0

1

σpm̄pzqq
´ 1 ą sup

sPT
µpsq `

ε0
2
. (8.5)

Set for |z| ě z0

A0ps, zq “
1

1
σpm̄pzqq ´ µpsq

“
σpm̄pzqq

1´ µpsqσpm̄pzqq
.
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By (8.5) there exists ε1 “ ε1pε0q so that for all s P T

0 ă A0ps, zq ă 1´ ε1, |z| ě z0. (8.6)

Set for |z| ě z0

Aλps, zq “
1

1
σpmAps,λzqq

´ µpsq
“

σpmAps, λzqq

1´ µpsqσpmAps, λzqq
.

By (8.4) we have that

|Aλps, zq ´A0ps, zq| ď Cλ, @s P T. (8.7)

Choose then λ0 “ λ0pε0q small enough so that that for λ ď λ0, z0 ă
1

2λ and

|Aλps, zq ´A0ps, zq| ď
ε1
2

@s P T. (8.8)

By (8.6) and (8.8) we have that

Aλps, zq ď A0ps, zq `
ε1
2
ă 1´

ε1
2
, @s P T, @|z| ě z0. (8.9)

From (8.3)

ψps, zq “ Aλps, zqpJ̄ ‹z ψqps, zq. (8.10)

Suppose z “ z0 ` n where n is any integer such that z0 ` 2n ď 1
λ . Same can be done when z ă 0 and

by simple interpolation argument for any z P rz0 ` n, z0 ` n` 1q. We have, see (8.10),

|ψps, z0 ` nq| ď Aλps, z0 ` nq|pJ̄ ‹z ψqps, z0 ` nq|. (8.11)

We iterate n times (8.11). The support of n fold convolution is the interval rz0, z0 ` 2ns. By (8.9) we
obtain the following estimate

|ψps, z0 ` nq| ď r1´
ε1
2
sn|ppJ̄qn ‹z ψqps, z0 ` nq|

ď r1´
ε1
2
sn}pJ̄qn}2}ψps, ¨q}2 “ r1´

ε1
2
sn}J̄}2 “ e´nαpε0q}J̄}2

(8.12)

where, since ε1 “ ε1pε0q,

αpε0q “ log
1

r1´ ε1
2 s

(8.13)

The thesis follows. �

Proof of Lemma 4.1 Take ξ and ξ1 in N pd0q. Write in local variables ξ “ γpsq ` νpsqr and
ξ1 “ γps1q ` νps1qr1. It is convenient to express the difference

ξ ´ ξ1 “ γpsq ` νpsqr ´ rγps1q ` νps1qr1s

in term of s˚ “ s`s1

2 and r˚ “ r`r1

2 , the middle points between s and s1 and r and r1 respectively. This
allows to get some cancellations. We have

γpsq “ γps˚q ` γ1ps˚qps´ s˚q `
1

2
γ2ps˚qps´ s˚q2 `

1

6
γ3ps̃qps´ s˚q3,

νpsq “ νps˚q ` ν1ps˚qps´ s˚q `
1

2
ν2ps˚qps´ s˚q2 `

1

6
ν3ps̃qps´ s˚q3

where s̃ P ps, s1q and it might change from one occurrence to the other. Similarly expressions hold for

γps1q and νps1q. Since s´ s˚ “ s´s1

2 and s1 ´ s˚ “ s1´s
2 we have

γpsq ´ γps1q “ γ1ps˚qps´ s1q `
1

24
γ3ps̃qps´ s1q3.
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Note that the term
1

2
γ2ps˚qps´ s˚q2 ´

1

2
γ2ps˚qps1 ´ s˚q2 “ 0.

Further

νpsqr ´ νps1qr1 “ νps˚qrr ´ r1s ` ν1ps˚qps´ s1qr˚

`
1

8
ν2ps˚qps´ s1q2pr ´ r1q `

1

24
ν3ps̃qps´ s1q3r˚.

(8.14)

Taking into account that ν1psq “ ´kpsqγ1psq, we have

ξ ´ ξ1 “γ1ps˚qps´ s1qr1´ kps˚qr˚s ` νps˚qpr ´ r1q

`
1

8
ν2ps˚qps´ s1q2pr ´ r1q

`
1

24
ν3ps̃qps´ s1q3r˚ `

1

24
γ3ps̃qps´ s1q3.

(8.15)

Denote by a and b the following vectors

a “ γ1ps˚qps´ s1qr1´ kps˚qr˚s ` νps˚qpr ´ r1q,

b “
1

8
ν2ps˚qps´ s1q2pr ´ r1q `

1

24

“

ν3ps̃qps´ s1q3r˚ ` γ3ps̃qps´ s1q3
‰

.

It is important to notice that for |s´ s1| ď λ and |r ´ r1| ď λ we have |b| ď Cλ3. By Taylor expansion
up to the second order of Jλp¨q we get that there exists c˚ P R2 so that

Jλpξ ´ ξ1q “ Jλpaq ` p∇Jλqpaq ¨ b` 1

2
b ¨ pD2Jλqpc˚q ¨ b, (8.16)

where we denote by p∇Jλqpaq the gradient of Jλ computed in a and by D2Jλpc˚q the matrix of the
second derivatives of Jλp¨q computed at c˚. Notice that }∇Jλ}8 ď Cλ´d´1, since λ´d comes from
the normalization and λ´1 by differentiating one time, }D2Jλ}8 ď Cλ´2´d, since λ´d comes from the
normalization and λ´2 by differentiating twice. When |s´ s1| ď λ and |r ´ r1| ď λ we then obtain

|p∇Jλqpaq ¨ b| ď Cλ2´d

|b ¨ pD2Jλqpc˚q ¨ b| ď Cλ4´d.

Define
Jλps, s1, r, r1q “ Jλpaq “ Jλpps´ s1qr1´ kps˚qr˚s, pr ´ r1qq

Rλ1 ps, s
1, r, r1q “ p∇Jλqpaq ¨ b (8.17)

Rλ2 ps, s
1, r, r1q “

1

2
b ¨ pD2Jλqpc˚q ¨ b. (8.18)

Therefore, see (2.7), we obtain
ż

N pd0q
Jλpξ ´ ξ1qupξ1qdξ1 “

ż

T
Jλps, s1, r, r1qups1, r1qαps1, r1qds1dr1

`

ż

T
Rλ1 ps, s

1, r, r1qups1, r1qαps1, r1qds1dr1

`

ż

T
Rλ2 ps, s

1, r, r1qups1, r1qαps1, r1qds1dr1,

(8.19)

where
ˇ

ˇ

ˇ

ˇ

ż

T
Rλ1 ps, s

1, r, r1qαps1, r1qds1dr1
ˇ

ˇ

ˇ

ˇ

ď Cλ2,

ˇ

ˇ

ˇ

ˇ

ż

T
Rλ2 ps, s

1, r, r1qαps1, r1qds1dr1
ˇ

ˇ

ˇ

ˇ

ď Cλ4.

�
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