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Abstract. This is the last of a series of papers on the Glauber dynamics of spin systems in
74 with Kac potentials. It deals with phase separation, studying the evolution of an initial state
which is a Bernoulli measure with zero average while the temperature of the Glauber dynamics
is below the critical value. The state with 0 magnetization is then thermodynamically unstable
and we prove that it is so also dynamically. In fact the stable phases, that have magnetization
+mg, develop into non-trivial patterns after times proportional toyog, y ! the range of the

Kac interaction. We characterize the typical spin configurations, both during the separation and
when this is completed. In particular, we study the magnetization pattern at the boundaries of
the clusters and the development of the interfaces.

AMS classification scheme numbers: 60K35, 82A05

1. Introduction

This is the third and last paper of a series devoted to the Glauber dynamics of spin systems
in Z¢ interacting with Kac potentials. Here we study phase separation by considering the
system initially in an equilibrium state at infinite temperature with 0 magnetization density,
i.e. a Bernoulli measure with zero averages. We then let the system evolve with the Glauber
dynamics at a temperature which is below the critical one (of the Lebowitz—Penrose theory,
a statistical mechanics model for the van der Waals phase diagram, see [8]). The set-up
is meant to model a quenching experiment where the system is rapidly cooled down to a
temperature below the critical one, which is then kept fixed. At this temperature the phase
with 0 magnetization is thermodynamically unstable, but stationary for the ‘mesoscopic
dynamics’, i.e. the limit evolution whep — 0, recall that the interaction range of the Kac
potential isy ~! and that in the mesoscopic limit times are not scaled witlsee again [8]
for a discussion on the physical meaning of this and the other possible scaling limits.

The problem of phase separation is to determine whether and in the affirmative when
and how, for eachy > 0, the true, stable phases develop. We give here a first, rough
answer and in section 2 more precise and detailed statements which are proved afterwards.
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(i) There is a sharp and non-random phase separation time (even though the phenomenon is
due to a random fluctuation)More precisely there are two times,ands*, both dependent

on y, such that in [0z.] the magnetization is still infinitesimal as — 0, while at time

t* the phases are fully developed. is proportional to logr—* by a constant fixed by the
temperature and the interactiort. is ‘very close’ toz., in the sense that* — ¢.)/logy ~*
vanishes ag — 0. Thus in the macro-time-scale lpg?, ¢. ands* cannot be distinguished

(asy — 0) hence the time when the phases separate is deterministic and sharp.

(i) A non-trivial spatial structure At time r* the space is divided into ‘large clusters’
where the magnetization is alternatively equalt@ g, the equilibrium magnetization at the
given inverse temperatuge (of the dynamics) in the Lebowitz—Penrose theory. The typical
diameter of a cluster ig ~*[log y ~1]¥/?, in lattice units.

(i) Existence of an interface There is a universal magnetization pattefiis) at the
boundaries between adjacent clusters of different phasaslength parameter on a line
normal to the boundary measured in units of the interaction lengils) solves the non-
local mean-field equation

m(s) = tanh{BJ x mi(s)} ETooﬁz(s) =+my (1.1)

whereJ is related to the spin—spin interaction and is defined in the next section. Existence
and uniqueness (modulo translations) for (1.1) are proven in [12]. Thus the magnetization
pattern along the normal to the boundary between phases is the same for all clusters.

(iv) Random geometry of the clustefBhe boundaries of the clusters at timieare the 0’s of
a distinguished Gaussian process. Its qualitative features, like the percolation probabilities,
are to some extent known [19].

(v) Predictability of the spatial patternsThe actual positions of the clusters at timeare
completely determined by the spin configuration at any earlier time, except time 0, when
times are measured in the macroscopic scale/tdg (The statement becomes true with
probability one in the limit agy — 0).

After time r* the clusters should move by mean curvatursd), in the time-scale
logy ! and when the space dimensiondis> 2. The conditional tense is for the sake of
precision, as there is a proof of such a statement for the motion of a single cluster, [8, 22],
and the presence of the others should not change its behaviour, but there is no explicit proof
in the literature. ThewvBc is consistent with theory and experimental observations [16],
according to which the typical cluster size should grow lik& and this follows from the
fact that themBc is invariant under the diffusive scaling. At very long times, however,
when the clusters are very large and the interface correspondingly flat, this moves very
slowly by mean curvature so that the random fluctuations due to the intrinsic randomness
of the microscopic evolution become competitive; at even longer times tunnelling effects
with the appearence of new clusters of the opposite phase will no longer be negligible.

In d = 1 there is navBC and we expect no significant change in the time-scalertdg
At times exgb[logy ~11%?} for someb > 0, the boundaries of the clusters will move
significantly because of the mechanism described by [4, 15], for the Ginzburg—Landau
equation that should apply to our case as well, (the velocity of the boundary depends
on the exponential lengths of the neighbouring clusters which, according to (ii) above,
are proportional to [logr—']*2, in units of interaction lengths). Thus shorter clusters
disappear first and after due time the clusters which have survived are so long and the
above mechanism so slow that fluctuations become competitive. Fluctuations are relevant
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at times of the order of 1, transposing to this context results for the Ginzburg—Landau
equation with noise [1, 2, 18]. These questions are currently under investigation as well
as a characterization of the distribution of the clusters’ lengths at times of the prder
when fluctuations take over. The true asymptotic limit> oo with y fixed (and small),
is described by the Gibbs distribution (which is the only invariant measure for the Glauber
dynamics). Typical Gibbs spin configurations have clusters of Ierf‘qtﬁ,e: > 0, thus a
lot of phenomena have to occur aftérbefore reaching the true Gibbsian equilibrium. The
mentioned properties of the Gibbs measure and their other features may be found in [5].
The spinodal decomposition has already been studied for the Glal{berasaki process
which has been introduced in [6] to model reaction—diffusion equations: macroscopically
finite volumes have been considered in [13], macroscopically infinite volumes in [14] (for
d = 1) and [20] € = 2, 3). Our results are both in qualitative and quantitative agreement
with these papers, provided the parameters which determine the models are properly related.
In section 2 we recall the definition of the model, state the main results and outline the
proofs. In section 3 we study the process in the time interval Jovhen the magnetization
density, while growing, remains an infinitesimally small function/gfproving the theorems
stated in section 2.3. In section 4 we study the geometry of the interfaces (proving the
theorems stated in section 2.4) and we report the proofs of some local central limit estimates
used throughout the paper. In section 5 we study the development of the interfaces for the
discretized ions non-local evolution equation and we describe the phase separation for the
spin dynamics, thus proving the theorems stated in section 2.5.

2. Definitions and results

This section is divided into five subsections. In the first two we recall and adapt to the
present case definitions from [8]. In the third one we analyse the system in the time
interval [0, z.], in the fourth one the structure of the interfaces and in the fifth one the full
development of the phases in the time interval#].

2.1. Basic definitions

We start with the definition of the Glauber dynamics with Kac potential.

Definition 2.1.1a. The Glauber dynamics.
For anyy € (0O, 1] the Glauber dynamics is the Markov process with state spadel}zd
and generatorL, which acts on the cylinder functions$ as

Lyfe)=) cx o)f(c)—fl@©)]  oeZ (2.1)
xezZ4
o” is obtained fromy by flipping the spin at, i.e.
o*(y) = o(y) !f y#X 2.2)
—o(x) if y=x
@ Bo()hy, (x,0) 1
& (0 = i g = S[1—o)tanhBh, (x,0)] (2.3)
hy(x,0) = (Jy00)x) = Y J,(x,y)0() (2.4)
yeZd y+#x

whereJ, (x, y) is the Kac potential:
T, y) =y TyIx —yD. (2.5)
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We supposel > 0, J € C*, J(Jr]) = O for all » > 1 and, denoting by the inverse
temperature, we assume that

B>Bait=1 e dr J(Ir]) = 1. (2.6)
We also assume thdt(|r|) is a non-increasing function (this assumption is essential only in
the proof of proposition 5.1.4).
We finally fix the initial measurg as the Bernoulli measure ofr1, 1}Zd with O
averages, i.eE,, (o (x)) = 0 for all x € Z4, and we denote by the law of the process at
timer starting frompo.

Recall that the Lebowitz—Penrose inverse critical temperafigrq is equal to 1 in
our system. The relevant quantity in what follows is the magnetization density. After
definition 2.1.5 of [8] we set

Definition 2.1.1b. Block spins.
For any functionf on Z? we let

Apeo () = > o 2.7)
| y,x,bo| Y€By.x g
Byawy=1{y:ly—x| <y} 0<by<1. (2.8)

The block spin magnetization at time> 0 is the expression in (2.7) with = o (-, t), the
spin configuration at time.

As explained in [8], there are different time and space scales each one relevant for its
corresponding phenomena.

Definition 2.1.2. Space and time-scales.
The microscopic scale i&, t), x € Z¢ andt > 0, i.e. spaces measured in lattice units and
times proportionally to the spin flip unit.

The mesoscopic scale (g r) with ¢t > 0 and

r=yx reR?.

Time is unchanged while space is measured in interaction range units, thus it is shrunk by
y with respect to the micro-scale.
The macroscopic scale g, ) with

£=hr T =% (2.9)

A= (logy H~Y2. (2.10)

It is determined by the time when the phase separation occurs and by the size of the clusters
of each phase.
We finally define the ‘critical timeZ, in meso andc, in macro units as

T, = — a=p-1>0 o =172 (2.12)
20

and

t* =t1. 4 (loglogy 12 = 7.272 + (log»~?)2. (2.12)
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2.2. The mesoscopic regime

The mesoscopic behaviour of the model is described by a deterministic non-local equation.
In [8] it has been proven that the block spin magnetizatjmlx(o(~, t)), equations (2.7),
(2.8), withx = [y~1r], converges (in probability) ag — 0, tom(r, t), where

aa—}:l(r, t)=—m(r,t)+ tanh{ﬂ(J *m)(r, t)} (2.13)

(Jxm)(r,t) = /dr’](|r —r'Dm(r’, 1) (2.14)

under suitable assumptions on the initial datum. In our eaée0) = 0 hence, in the
mesoscopic regimen(r,r) = 0. To observe the phase separation we then need a more
accurate analysis which takes into account deviations from the limit behaviour (2.13).

Also at the level of the mesoscopic equation, however, phase separation may still be
observed, such as when we replace the initial limit magnetization0) = 0 by the
actual spin configurationsu (r, 0) — o ([y~r]). The result yields a qualitatively but not
guantitatively correct picture, as we shall see. The analysis at this point takes advantage of
several similarities with the reaction—diffusion (Allen—Cahn) equation. To see the relation
with the Allen—Cahn equation, we add and subtract to the right-hand side of (2.13) the term
tanhgm, giving

%’? = R(m) + D(m) (2.15)
where

R(@m) = —m + tanhBm (2.16)

D(m) = tanhB(J » m) — tanhfm . (2.17)
The equation (2.15) has to be compared to the Allen—Cahn equation

amg D _ %DAm(r, H—V(mern) D= /dr J(rhr2 (2.18)

with D(m) playing the role of the diffusive term in (2.18) andV’'(m) = R(@m). V(m) is
then a symmetric double-well potential whose minima #ireg,

meg =tanf‘{ﬂmﬂ} (219)

namely the equilibrium magnetizations of the Lebowitz—Penrose theory. Notice: tead
is also stationary, the stability properties are determined by

R'(©0) <0 if <1 R'(0)=0 if =1 (2.20)
R0 >0 R'(£mg) <0 B >1. (2.21)
It is convenient to proceed with the lattice analogue of (2.13):

Definition 2.2.1. The discretized equation.
For anyy > 0 we denote byn, (x, 1), x € Z¢, t > 0, the solution of

W = —m, (x. 1) + t@anhB(J, o m,)(x, )} (2.22)
(Jy om,)(x,1) = Z Jy (x, y)my, (y, 1) . (2.23)
S

We denote by, (x, t|o) the (unique) solution of (2.22) with
my(x,0l0) =0(x). (2.24)
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For any givenry > O, we also definen, , (x, t|o) as the solution of (2.22) far > ¢ with
m)/,to(-xﬂ t0|0') = U(X) . (225)

In the next subsection we study the statistical solutions of (2.22), namely the random
variables {m, , (-, t|o)} solutions of (2.22) with the random initial datum having
distribution uo. Loosely speaking therefore, each initial datum has a weight, given by
o, that it carries unchanged at all the later times, when it evolves according to (2.22).
Collecting all such weights, we reconstruct, at any tima probability measure, which is
the distribution of the variablefgn, ., (-, |o)} and it is called a ‘statistical solution of (2.22)'.

2.3. Evolution in the time interval [@,]

We start with a heuristic analysis of the statistical solutions of (2.22). The initial datum,

in (2.24), is obviously not close ta = 0 in a L,, norm. But one may argue from (2.22)
that the relevant quantity in the evolution (8, o m, ) rather tharvn,. We then introduce

the variableu, (x, t) = J, om, (x, t), u, (-, 0) = (J, oo). By the independence of the spins
and a central limit theorem estimate, one finds out that the typical valugs ofo) are of

the order ofy4/2. We thus expect that a good approximation to the true solution is obtained
by solving the linearized equation around= 0, namely,

w =—u,(x,1) +B(Jy, ouy)(x,1) = ayu,(x,1) + B(J, ouy)(x, 1) — ﬂfy,ouy(x, 1)
(2.26)

where

ay =pJyo—1 andj,o=> J,0,y). (2.27)
To write the solution to (2.26) explicitly, w;a set
Definition 2.3.1. Let
pl(x,y) = pl0,x—y) (2.28)
p’(0,x) =€ io (i t!)n ) Z 1 Jy (0, x1) -+ Jyy (Xp_1, X) ¢ =pJo0. (2.29)
We also set
qi(r, ') =q: 0, r —1') =1 q;(r — 1) (2.30)

q:(r) = e ht Z % / drq... drn_ll_[ J(|ri —ri_1)) rm=r, ro=0. (2.312)
n=1 't i=1

Observe that because> 1, ¢,(r) is a smoothC> function. Fort large the contribution
of n = 0 is negligible so that in this case and for— 0, g, approximates! and this will
be proven in section 4.3.

Going back to (2.26), we have

w, (x, 1) = &' (p ou,)(x,0) (pl ouy)(x,0) =Y pl (x, »)uy (3, 0). (2.32)

If u,(y,0) = y¥?2 identically, thenu,(-,7) would be finite atz., the critical time of
definition 2.1.2. The action o/ (x,-) in (2.32) on the trueu, (y,0) is essentially to
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average it over regions whose diameter is of the orderdk/z. In fact, each jump covers
a distance of the order—1, the mean number of jumps goes likand the jumps have an
independent identical symmetric distribution. The averageyof{/]¢ independent spins
goes typically like {~1/7]=%/2, hence, at,, u, is still infinitesimal, i.e. is of the order
144 = A4/2 andu, (x, t) varies significantly only wher varies over distances of the order
y L/, i.e. the macro-scaléy) L.

The approximation provided by the statistical solution gives the correct result, namely
that the magnetization is infinitesimal untit

Theorem 2.3.2.For any£ € R?, and anyr € [0, 7] let
My (€ 1) = Ay g0 ( 2720 x =[Aty k). (2.33)
Then for anybg < 1, sufficiently close to 1, for anyy> 0 and anyR > 0

)I/iLnO P! (sup sug IM, 5 (E, T)] > 8) =0. (2.34)

<t [§IS
Furthermore, for any integet > 1 any R > 0, settingR, = R(xy)7 1,
lim sup

Y0 £ £x,
[xi <Ry

EZ(,(HG(% /\_Zf)>‘ =0 forall 0<7<r7. (2.35)
i=1

The statistical solution of (2.22) provide a more accurate description of the system
except for an initial time layer when they have the same order as the fluctuations.
In section 3 we will prove the following theorem:

Theororem 2.3.3. There is§ > 0 and given anyg < 1, sufficiently close to 1, any > O,
R > 0 and anyrg € (0, 7.), there arec and y, so that the following holds. For any < v
there isG© c {—1, 1}*' so that

P’ (0(. 2 %10) € GP) > 1—e (2.36)
and for anyo € ¥ and anyz < 7 < 7.

SUP [ 52 (x, A 2T]0)| < c[A4/2y T2 4 e—““—fo)] (2.37)
Ay|xISR

wherem,, ;2 is defined in definition 2.1.1. Moreover,

qux,%o( SUP Ay 1 b (0 (- A72T) —my jo20 (-, A 72T 0)| > yH”d/Z) <e (2.38)
Aylx|<R

whereP? , is the law of the process which starts fremat time:.

By equation (2.37), the order of magnitudef is the same as predicted by the linear
theory. By equation (2.38}, is a good approximation to the block spin averages since the
error is much smaller than the magnituderof itself. The above arguments cannot be used
pastz. as the solution will become finite so that the linear evolution is no longer a good
approximation. However, the spatial pattern of the decomposition are already encoded in
the typical configurations at any time= 1=z, t < 7., T # 0 as we shall see.
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2.4. Interfaces
We begin by describing the interfaces in macroscopic variables.

Definition 2.4.1. The set/.
The seti/ consists of all the functions(£), £ € RY, with valuestmyg, such that the
discontinuity set of u intersects any spherical region into finitely many connected regular
surfaces of codimension 1 and at finite distance from each other.

An interface is a connected componenthf If it is a closed surface, the region in its
interior is called a cluster of the phase, [—], if in that region the value ofi(§) is +mg,
(respectively—my).

We will obtain elements of ¢/ starting from the functions:,, (x, t|o’), as we are going
to see.

Definition 2.4.2. The functior¢, .
Giventgandt, 0 < 10 < T < 7., for anyo € {—1, }%', anyr € RY and anyy > 0, we
define

L, (rlo) = )ﬁd/zyf(f"*’)"‘/ adr’ g -2(¢,—r)(r — r/)my,rzfo([r'yfl], A 7%z|o) (2.39)
whereg, (r) is defined in (2.30), (2.31) and,, , in (2.25).

Recall thatg, (r) is a smooth function so that, € C*. Actually it is convenient to
have, expressed in macro-variables:

0, (Elo) =€, (x710). (2.40)

Let A be an open bounded set Rf and C"(A) be the space of functions which have
n bounded derivatives im\, equipped with the sup norm for the function and its first
derivatives. We then define for amythe probability?, ,, on C"(A) which is the image
via the map (2.39) of;-2,,. Observe tha®, ,, is supported on the intersection oveof

all c*(A).

Theorem 2.4.3. For any e > 0, there isyp such that the following holds. For ajt < yo
there is a setG{) c {-1, 1}%" such thatu, 2, (GP) > 1 — € and foro € GV the
functionu (&) := mg sign {Ey(§|o)} (set equal tang whenéy = 0) belongs to the sdtf.
Furthermore, for any: and any bounded regular set, the probabilities(C"(A), Py, z,)
converge to(C"(A), P) whereP is the law of the Gaussian process with 0 average and
covariance

E(X®XEN) =(1+ ! @ - forany & ¢ eR?  (2.41)

= « ) (zdBD)I? y s '

D= /er(|r|)r2. (2.42)

The relation between the interface described by the funatign of theorem 2.4.3 and
the actual spin configuration is established in the next subsection.

2.5. Evolution in the time intervak], #*]

We will prove that for anyrg < 7. there is a set of good configurations which has large
probability and such that if we start from a good configuration at taméry, then the
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block spin magnetization at any later timess [toA~2,¢*] is close tom,, ., defined in
definition 2.2.1.

Theorem 2.5.1.For anye > 0, bg < 1, sufficiently close to 1R > 0, 0 < 79 < 7. there is

o such that the following holds. For ajt < y, there is a set})(?) C {—1, %' such that
]P’ZO(J(~, 2 %10) € Q;z)) >1-—¢

and ifo e g;2> then there is$ > 0 such that

sup P:,;\2m<{ sup Ay,x,bo(o(" t) - my,)ﬁzro('s t|0)) > )’6}> <E€. (243)

T A2t [x|<R(y)~t

We are then left with the study of the solutions of (2.22) with a random valagtime
0L ~2. Theorem 2.5.3 below states that , - (y, t*|o) is close tomg signé(ykxkr) if x
is sufficiently far from the interface (see definition 2.4.1). The values.of, close to the
interfaces are also known. We describe them by means of the following definition.

Definition 2.5.2. The instanton.
The instanton is an antisymmetric and non-identically zero solution of the one-dimensional
equation (1.1) with

J(s) =/ dr J ((s* +r®)Y?). (2.44)
Rd-1

It is proven in [12] that the instanton exists (providgd> 1) and that it is unique in the
class of functions that are asymptotically strictly positive, (negativey,-asoo, (s — —o0)
and that vanish at the origin. Moreover it is strictly increasing and with asymptotic values
at oo equal to+mg, to which it converges exponentially fast.

Finally, for any unit vecton in RY, m(r) := m(rv) solves the equation

m(r) = tanh{B(J » m(r)} forall reR?. (2.45)

In [12] it is also proven that in/ = 1, the manifold of translations of the instanton
is globally stable in the same class of functions where the uniqueness of the instanton is
proven.

Theorem 2.5.3.For anye > 0, L > 0and0 < 19 < 7. there isyp such that the following
holds. For ally < y, there is a seG® c {1, 1}%* such that
P’ (0( 2 %10) € GY) > 1—e (2.46)

and the following holds.
There is a positive functioR,, y < yp so that

lim R, =0 lim 2R, = 0.
y—0 y—0

Foranyo € G,
w, (§) :=mg signl(&|o) e U .

Let thenX be the interface of, and|d(&, )| the distance of from X. Then
|my,)fzro(x’ l‘*|O') - My()/)»x)| <€ (247)

for all y < yo and all x| < L(y)~! and such thatd(x1y, £)| > R,.
Moreover, for anyéy € X, |&]| < L, let v be the unit vector normal t& at & and
pointing toward the region wheme(£) = mg. Then for ally < yy,

|my,x—2f0([(§o)»_1 +vs)y Y, t*|0) — n‘1(s)| <e€ forall |s| < Ryk_l (2.48)
wherem is the instanton solution, see definition 2.5.2.
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3. The early stage of the decomposition

In this section we study the process until time= 12z, (see equation (2.11)). In particular,

in section 3.1 we introduce the main definitions and notation. In section 3.2 we study the
statistical solutions of (2.22). In section 3.3 we prove bounds orwthections and in
section 3.4 that the process evolves deterministically according to (2.22) if it starts at some
‘positive time’ from a spin configuration in a ‘nice set’. In section 3.5 we prove that this
‘nice set’ has a probability that goes to 1 ps— 0. At the end of the section we prove
theorems 2.3.2 and 2.3.3, as a corollary of the previous analysis.

3.1. The time grid and the seminorms
In this subsection we state the main definitions and notation.

Definition 3.1.1. The time grid.
Givena € (0, t.) we denote by the smallest integer such th&Vv + 1)a > .. We also set

tha = nar=? A 2=logyt. (3.1)

Definition 3.1.2. The seminorms. We defipe R — R, and, givery > 0, ¢, : R — R,
as

WE) =@+ gD 0<b< ¢y (x) = P(Ayx). (32
We also set, foh > 0O,

Ruy =y A1 —hr8] (3.3)

Pny (X) = ¢, ()1(1x| < Ry) (3:4)

and, fora € (0, t.), with N as in definition 3.1.1, we then define for any- 0, n < N + 1,
h>n,andf:Z% - R

1/ lhnpae = Ty~ sup{gn, ([ (4 0 HE}- (3.5)
We finally set

T (x,y) =€ ; (ﬂ:;)n J)(x, y) (3.6)

c=Blo=1+a, J'=J,0...0J, n-times. 3.7
See equation (2.27) for notation, and define,#a@nd . as above,
1 Mo = 72y 72 sup{gn, (0|7 0 ()]} (3.8)
Fyac(h,n, €)= {f 12 - [=L 1[I flnnyac < C: W flhnya < C}. (3.9)

For notational simplicity in the sequel also denotes a function df’ with values in
Recalling the definition op}, (2.28) and (2.29), we have
p?;(x,y)zn”(x,y) if x#y.

In section 4 we will prove the following:
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Lemma 3.1.3.
For all &, k, m positive there is: so that for ally > 0

sup Y~ pl(0,x) <cyt (3.10)
1820 |x|>ha8

sup(L+ yAle) ™ >l )@+ yAlyh" <c. (3.11)
1<2t. y

We will next use lemma 3.1.3 to establish a relation between|thd¢ and ||| - |||
seminorms. We first introduce the parametgroften used in the following:

¢y (x) ¢y(x)2i|
= su Y, )| 1+ + J, (v, < 00. 3.12
“ y,x,t<p2h X): P (x y)[ ¢y ()’) XZ: y(y Z) ¢y (Z)Z ( )
which is finite because of (3.11).
Lemma 3.1.4.

Leta € (0, t.), N as in definition 3.1.1f > 0,0<n < N,h € (n,n+ 1), k > 0. Then
there isc so that for ally > Oand allo : Z¢ — [—1, 1],

ol y.a < {Bacry A2 2o luny.ac + v} (3.13)
and, fort,, <t < tng,
Gy (0)|(PL,, 00)(x) — €T e(x)| < &y P Baci o llnyar + ' (3.14)

Finally, for t,, <t < t., calling ¢ the integer such that,, < ¢ < t+1)., for all y small
enough (how small depending aiy,

Ony ()| (pl, 00)(x) — e T (x)| < 2e1 €'y A2 |10 [ lnnya
+1g,, <2 € Vo=t @19 41278 Bac1 D720 o yae + CVE (3.15)

Proof. Let |x| < Ry, then

(r” oo)(x) =€ Z (Bra) Z JE(x, 2)(Jy 0 0)(2)
(kLT
[kd/Zy—aan+d/2]—1¢h’y(x)|(7.[V ° o)(x)| < [)\d/Zy—aan+d/2]—lc*taqsh,y(x) Z p[}/a (x,2)
[z|Z R,y
F(Bta)bny () Y P Dbuy @Y A0 nmyae -

[2I<Ru,y

The first term on the right-hand side is bounded using (3.10), then using (3.12) we derive
(3.13). The proof of (3.14) is completely analogous and it is omitted.
We write

q
(pt):z,,l, oo)(x) =€ (l—fna)o-(x) + Z @ ¢ (ti-va—tna) Z pzy—t,-ﬂ (x, V)’ 00)(y)
i=n+1 y

_‘r_e—c*(fqa_tnu) |: Z pt):[qa (X, y)O'(y) — e—c*(t—lqu)o'(x)] .
Y

We use that exr, ((r — t,,) — c*(t — 1)} = exp{—(t —1,4)}. Observing thafe, —o| < cy
and using (3.14) we obtain (3.15), the proof of the lemma is then completed. O
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3.2. Solutions of (2.22) far < ¢,

The main result in this subsection concerns the functiepg, (x, t|o). Recall that they
solve (2.22) forr > 1o with the conditionm,, . (x, tolo) = o (x) for all x € Z“.

Theorem 3.2.0. For anya € (0, .), any ¢ that satisfies (3.21) below and ady positive
there isc so that the following holds. For alt < N, N as in definition 3.1.1, alk > »n, all
y>0all |x]| <Ry, alloceF,,(n,n,C)andallt,, <t <ty,

|y, (6. 1]0) — €7 (pT 0 0) ()] < (€Y, 07 (3.16)
while for g, 41, < < 2,
|1y 0, (2, 1]0) — €0 (pY 0 o) (x)| < €y (132p, (x) 7). (3.17)
Finally, as a consequence of (3.15), fgf <t < ¢,
| (p) 0 0) ()| < ] @y a2, (x) Tt 4 )

+e1y 7, ()M <r<tina ) (3.18)
and foranyn +1<q < N,h > q:

|||m;/,l,m('» tqa|0)|||h,q,y,a <c. (319)

As an application of theorem 3.2.0, ley € [0,7.) and settg = A 2z. Then
my(x,tlo), to < t <t satisfies (2.37) if givem andn so thatna = 1o, there is¢
so that (3.21) below holds and

gl gtoyd/2=t ot forall 0<t<1, (3.20)

is satisfied; moreovegy should be inF, , . (n,n, C).

In such a case in fact the third term in (3.18) is bounded by the second one and (2.37)
follows from (3.16) and (3.18).

To find @« and¢ for which (3.20) holds, we observe that, by the definitioncof

—atg,,d/2 a(t.—10)

14 14
Then equation (3.20) is implied by

=Y

yﬂt(‘fe*l'o) g y (a+1)a+¢

which is satisfied ifa and¢ are small enough.
When proving theorem 2.3.3 we will choo§§’> C F, 4. and show that the probability
of the latter goes to 1 ag — 0.

Hereafter we require that, givane (0, 7.) and N as in definition 3.1.1; should be
restricted to

. d
0 <2 <min {a, >~ aaN} . (3.21)
The definition is non-empty becaugg¢2 > aaN > 0 since

aaN < 1. andy?/?7o% = 1.

Before beginning the proof of theorem 3.2.0 we state some basic properties of the
evolution (2.22) that will be extensively used throughout the paper.
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Lemma 3.2.1.

() Barrier lemma. Given any > 0 there arec and ¢’ so that the following holds. Given
anyy > 0andT > 0, letu, (x, t) andv, (x, t) be two solutions of (2.22) far> 0 such
that

luy (x,0)] < 1 v, (x,0)] <1 forall «x (3.22)

uy (x,0) =v,(x,0) forall |x| <cy iT. (3.23)
Then

luy (0, T) — v, (0, T)| < ' e’ (3.24)

(if) Monotonicity. Ifu, (x, ) and v, (x,t) are solutions of (2.22) and, (x, 0) > v, (x, 0)
for all x, thenu,, (x,1) > v, (x,?) for all x and allz > 0.

(iii) If u, (x, t) is a solution of (2.22) and,, (x, 0) < 1 for all x, thenu, (x,t) < 1for all x
and allt > 0.

(iv) Let §, ¢ and ¢’ be as (1) and: and v be two solutions of (2.22) which verify (3.22).

Suppose that
uy (x,0) = v, (x,0) for all x such that|x| < cT)/_l (3.25)
then
u, (0,T) > v,(0,T) — ' e (3.26)
(v) The statements (i)—(iv) are valid also for the equation in the continuum (2.13).

Proof. The proof of (v), that is the statements (i)—(iv) for the continuum equation (2.13)

are given in [12]. The proofs of (i)—(iv) for (2.22) are completely analogous, in particular

(i) and (iv) follows from (i) and (ii). For completeness we report below the proof of (i).
Denote by

Dy, (x,t) = |uy(x,1) — v, (x,1)]
then, from (2.22) and the fact thatoshgz)=2 < 1 for all z it follows that

D, (x,1) < Dy(x,O)—i—/ ds{D, (x,s) + B(J, o D)) (x,s)}.
0

Calling
dy(x,t) =€"'D,(x,1)

we then have

d,(x,1) < d,(x,0) +f ds B(Jy 0dy)(x,5) < Y
0

n

B"

n!

(I o dy)(x,0)

where for any functiory,
(o)) = Y Ty, x1) ... Jy (1, Xn)g(x,) -

We now use two facts: the first one is thag (x, 0) = 0 for |x| < cy™iT, andD, (x,0) < 2
elsewhere, the second is that(x, y) = 0 if |x —y| > y~1. Then there are and¢’ so that

T7, o)
D,0.T)<2) %J@/e—”. O

nzcT
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Giventy > 0,0 : Z¢ — [-1,1], y > 0, we define
Tty 1%, 110) = > T, (X, Y)my (3. o) (3.27)
>

and state the following lemma:

Lemma 3.2.2.

For anya € (0, t.), ¢ that satisfies (3.219) < n < N and anyC > 0, k > 0, h > n there
are yp > 0 andc so that for ally < yp, all 0 : Z? — [—1, 1] such that||o lln,y.ac < C
and allt,, <1t < tyg:

y Py (O iy, (x, t0)| < Ber €10 lnnyae + ¥ (3.28)
wherec; is defined in (3.12) ang: in (3.27) withzg = 1,,. Moreover, ifo’ satisfies the same
bound ass:

Y oy (0| 1, (X, tlo) = iy, (3, tlo)| < Ber € Nl0 = 0 llnnyar + ¥ (3.29)

Proof. As a shorthand we usé(x, t) for m, , (x, t|o), then

‘Li; — i+ J, o tanh(Bin) (3.30)

We use (1) of lemma 3.2.1 (valid also for (3.30)) to conclude that the soluiiion ),
t > t,q, Of (3.30) with initial condition

”;l(xv tha) = (X, 1) 1(]x] < Rn,y) (331)
verifies the following. For any there isc, so that for allt,, <t < ty, and allh > n
[ x, ) —mx, )] < ar” forall |x| < Ry, . (3.32)

It will suffice to prove (3.28) fonn.
After some simple algebra,

dm((;;, n _ aym(x, t) + BI(J, o m)(x, 1) — J, oin(x, )] + (J, 0 O)(x, 1) (3.33)

with o, defined in (2.27) and
O(x, 1) =tanNBm(x, 1)} — Bm(x, ).

(3.34)
We observe that
0 < x —tanhx < x2 and alsor — tanhx < x3/3 (3.35)
and we use the inequality
|tanhx — x| < x2. (3.36)

After writing (3.33) in integral form, we get

t
i (x, )] < & (pl o M) (x, tha) + f ds €= (p! o0 J, o |pml?)(x,s). (3.37)

Iha

Let
S(t) = [y “ P supgy (0l (x, )] (3.38)

¢y(x) if x| < Rn,y

3.39
oy (Ry.) otherwise.. (3.39)

¢;, () = I
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Then we have

t
S(t) < eI IAS(t,,) + | ds eIy mEreantd/2g2g (R, )TIBS(s)? (3.40)

tha

where

* * 2
A= s Y o s s a0

, (3.41)
x,1<te Ty ¢;y(y) x, 1<ty ¢2y(2)

We next show that
A< C1 B <. (342)

First of all we observe that fox| < R, ,

L 6 e
t ) + t B P — <
l_v%.;j’ RN U%y” ) Ry S

because we can bound the last factor by compugingt y, since|y| > R, , and¢, is a
decreasing function.
For |x| > R,, we have

> pl (e, yy 2 Ber) > o<1

IyI<Ro, &0 ER,

using again the monotonicity ef, and the fact thap _, pY(x,y) =1.
In an analogous way we prove the boundsBnWe then get from (3.40):

t
S(t) < @)1 S(t,g) + BRery STty 710 [ g @ (179 §()2 (3.43)

tha

By the definition ofm and (3.31),S(t.a) = o llu.n,y.a.c. NOW Suppose that there is a
firsttime T, t,, < T < tyq, When

S(T) = 27" er]|o lunya - (3.44)
From equations (3.43) we then get
S(T) < & Ty ||0]nny.ac

T
+ﬂ2617/7§7aan+d/2)\‘715b / ds éxy(Tfs) [2 €V(37t”[l)cl”0 ”n.n,y,a,{]z )

tha

The last term can be bounded by (recall that by hypothdsi$, , ;... < C),

T
T = Bleyy Tt BT e T Ay Oherl|o lnnyae | ds €707

tha
The factor
y—;'faaner/Z)\fle e (T=ta) yfcfaan+d/2kfl5b ey (tNa—tna)
vanishes wheny — 0, becausdga, — «| < cy for some constant, and because
satisfies (3.21). Then therejg > 0, which depends o@, so that, fory < yq,
T < e T et|lo]|nyac - (3.45)

We have thus reached a contradiction with the definitiod” pfvhich therefore implies
that

S(t) <27 et |10 llnnyae forall t,, <t <ty,. (3.46)
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Recalling thate, — «| < cy for a suitable constant, we have, for ally small enough,
2 (1=t L 3 gl tha <t <tyg. (3.47)

We have thus completed the proof of (3.28).
To prove (3.29) we denote [’ the expression in (3.34) with replaced byn’ (defined
asm, but starting fromm,, ,,(x, t[c")). We then have (using that tahh < x2),

B’ (x,1)
1O, 1) — O (x,1)| = ’ / dz tanif z| < i (x, 1)* — i(x, 1)*|8%/3
Bri(x,t)
< B3 (x, 1) — mx, (i (x, 1) + 1 (x, 1)?) . (3.48)
Analogously to (3.38), we define
D(t) = [y~ 2 supgy |, (x) | (x, 1) — i (x, 1)) (3.49)

and we obtain for a suitable constant

t
D(1) < )¢y D(tye) + c[y¥? 5 a2h1 [ ds e~ D(s) . (3.50)

tha
Since the square bracket is infinitesimaljas—> 0, from (3.50) and (3.32) we get (3.29)
and the lemma is proved. O

Corollary 3.2.3. With the same notation as in lemma 3.2.2 and calling
L,(x,t) =my,, (x,tlo) —my,, (x,tlo")
we have for allr,, <1 < fni1)a
By (| Ly (x, 1) = €L (x, 1a)| < By 25 (Be1€Nl0 = 0l yar +c¥*) . (3.51)
Moreover, foralln <g < N, h > q,

”my,t,m ('» tqa |0) “h,q,y,a,{ < 3Cl||0 ”n,n,y,a,{ + C)/k . (352)

Proof. We write

Ly(x,t) =€ "L (x,t,,) + [ dse " [tanhBr(x, s)} — tanh{pr’ (x, 5)}] .

tha
We then use lemma 3.2.2 and in this way we prove (3.51). Equation (3.52) follows directly
from (3.28). O

Lemma 3.2.4.Using the same notation and hypothesis as in lemma 3.2.2, there is a constant
¢’ so that for allz,,, <t < tyg

_ _ 2
Gny () |my 4, (x, tl0) — €7 (Pl 0 0) ()| < ¢ (2e1 € Y0 nnyae + V)
(3.53)

Proof. Let ® be as in (3.34) and let(x, r) stand form,, , (x, t|o). Then
t
m(x,t) = € (pl oo)(x) +/ ds € (pl 0O, ) (x).
Ina

Let |x| < Ry, and letn < 1’ < h, then, by (3.36), withn as in (3.27),
(Pl 0 OGN < D> plyGe, PIBy, P+ Y plyx,y).

[VISRy [¥1> Ry
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The lemma then follows from lemma 3.2.2 and (3.10). O

Remarks. Using lemmas 3.2.4 and 3.1.3 we obtain the proof of the statements in
theorem 3.2.0 relative to < ty,. In particular, (3.16) follows from (3.53) while the
proof of (3.19) follows from (3.53) observing that, by lemma 3.1.3, sipcen,

[R4/2y et d2) g, (o) Y Y (x, y) €@l (pl o o) ()] < eyt
-

ey () Y P (V)b (1)

[YISRny

X¢h,y(y) Zﬂy(y’ Z)[)\.d/nyaaner/z],lo_(Z)

and then using again lemma 3.1.3.

We conclude this subsection by studying the evolution in the time interyal], thus
completing the proof of theorem 3.2.0.

Using the notation of lemma 3.2.2, we define

M, (x, 1) = gt Z Pl G )My (3, thalo) tve <t < 1o (3.54)
y

We then have:

Proposition 3.2.5. Let tg € (0, 7.) anda be any number such thay = na, n € Z,, and
(N —n)a > a(t. — Na), N as in definition 3.1.1. Let satisfy (3.21). Then for an¢g > 0
andh > n there isc so that for allo € F, , ;(n,n,C), all ty, <t <t and all |x| < Ry, «

M, (x, )] < AP ey 2, ()7 (3.55)
’my,,m, (x,t|lo) — M, (x, t)‘ < [eadZ ey, ()13 (3.56)
Iy 4 (X, tel0) — My (x, 1) < [A92195 1 Q) (x]0)?) (3.57)
where
Q, (x|o) = sup sup (e« |M, (y, s)|} t7=t.—(nx7?)2. (3.58)

Yly—=xI<UNA=2)2 17 <5<t

Remarks. Letn < i’ < h, then by lemma 3.1.3 for an there isc so that
c/)h,y(x)\My(x, 1) — eamfz,m)(ply_r’m o G)(x)’ < eyt +¢h.y(x)eay<tsza>
XYl @ DMy, (3, tvalo)

‘ylth’.y
a—lha Y
—gr et (p¥ 0 0)(x)].

By equation (3.56) and lemma 3.2.4 this proves (3.17). Since equation (3.16) has already
been proved and (3.18) follows directly from (3.15), proposition 3.2.5 completes the proof
of theorem 3.2.0.

The bounds (3.55) and (3.56) are optimal except close to the interface where the
magnetization is atypically small. In lemma 4.2.5 and proposition 4.2.6, where we study
the structure of the interfaces, we will in fact need the stronger estimate (3.57).

Proof. We write m, (x,t) for m,, (x,tlo) and setn < h; < hp < hz < h. Since
(N —n)a > a(t, — Na), there are5 > 0 andc so that

@ (tva—tua) < ceOttNayd/2+5 )
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Then by (3.53) and (3.15) there dsso that
Bnyy Ny (3, tna)| < c @y /2372 (3.59)

equation (3.55) then easily follows using lemma 3.1.3 to bound the sum|pverRy, ,.
We call f,(x,r) the solution of (2.22) forr > ty, and such thatf,(x,ty.) =
my, (x, tyqlo) for all x| < Ry, ,, while, elsewhere,

| fy (X, tha)| < c @hay@/2)4/2) =180

Then by (3.59) the above inequality holds everywhere. On the other hand, by the barrier
lemma, see (i) in lemma 3.2.1, for aky> 0 there isc; so that

Im, (x, 1) — £, (x, )] < axy* (3.60)

for all |x| < Ry,,, and allty, <t < t(n41)a-
We then definefyi(x, t) as the solutions of (2.22) far> ty, and such that, for alt,

f;t(x’ INag) = ickd/nyozaN+d/2)\716b — o d/2-160 plte—ta) (3.61)
Then fyi(x, 1) = fyi(t) for all ¢+ > ty,, they are thus independent of We can then easily
integrate (2.22) obtaining

t
[ ) = e £y, + f ds & tanhB J, o f;f (s)
INa

and using (3.36) there is so that
|fF(x, )] < ead/Z 1 gretemn tna <t < 1. (3.62)

Recall that by definition 3.1.2/2 > 16b. By the monotonicity properties of (2.22), see
(i) in lemma 3211, (1) < fr(x,1) < f;f(t), hence

|fy e D) < cadP® et f ()| < exPT (3.63)
From equation (3.60) and (3.63) there is a constasb that
Im, (x, )] < A2t gratiemn forall |x| <Ry, and ty,<t<t. (3.64)
We have
t
m,(x,t) — M, (x,t) = / ds € (p’_ 0 @)(x, s) (3.65)
INa
where
Ox,s) = tanh{ﬂ Z J, (x, y)m, (y, s)} - B Z J, (x, y)m, (y,s). (3.66)
y y

By equation (3.35)

s 3 3
my (z,8) = My (z,9)| < / ds’ e"‘y“‘—”% Sl @] D] G zDimy @ s
INa i=1

(3.67)
Let |z| < Ry,,y, then by (3.64) for anyk there isc so that
J3,
Imy (z,8) — M, (z,9)| < c{yk + j e[ e““rs)xd/“%]S} . (3.68)
Y



Glauber evolution with Kac potentials 71

Going back to (3.65), settinfx| < Rj,,, we bound the last factor in (3.65) using (3.68)
and we get

[(pl_s 0 ©)(x,5)| < mex y)]_[{ZJ(yz)IM CAOEAI Rhg,n}

+c//[e—a(t,—v))hd/2 16h]5+cy (369)
From equation (3.65) we then have for a suitable constant
Imy, (x, 1) — My (x,1)| < AP 15 4L R (3.70)

where
3

R=% dse"‘v“—“)Zp,( S (x, y)]"[ZJ(y )My i, $)10(zi| < Rigy) . (3.71)

INa i=1 z
Let § be as in lemma 4.3.5 supposing (without loss of generality) §hatl. We then set
1
©®) _ 2,2
1) =t — InA .
c 25( )

Then, using (3.55),
&

3 3 t.
R g % / ds eozy(1573)730@(t,»fs))LS(d/Zfle) + 137 f efaxy(tcfs)gy(x'U)S
INa

’3 (Inx 2)2 gty (te=tva) 3 sup Z Z pl(0,2)J,(z, ). (3.72)

1<te—t 7 ylyl>(na-?)?

By lemma 4.3.5
sup Z pl 0, y) < ¢ g 1222 —1=5—1)]
1<t yly|>(nA-2)2-1
< ce (™24 (3.73)
We have thus completed the bound®rwhich, inserted into (3.70), yields (3.57), therefore
the proposition is proved. O

3.3. Bounds on the-functions

In this subsection we prove that spin configurations and solutions of (2.22) are close in the
sense of expectations. More precisely for any spin configuratjamy:* > 0, anyr > ¢+,

any integerk > 1, any subsek of k elements inZ¢ (we call ij the collection of such
subsets), we define

v (x,tlo, tt) = Ut+<l_[[0(x 1) —my + (x, t|a)]) (3.74)

whereE! . is the expectation of the process starting fronat time:™.
The main result in this subsection is:

Theorem 3.3.0.There area* > «, a* > 0, § > 0 and, for any integek > 1, ¢ sothat

sup sup [v” (x, t|o, 0)| < c[y¥/2e']* forall ¢ <1t,. (3.75)

o XGde
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Moreover, for alla > 0 small enough, allh > 0, all ¢ as in (3.21), allC > 0, all
integersk > 1 and all integers) < n < N, (N as in definition 3.1.1) there existsso that

|07 (X, 1 + tualo, taa)| < c[(L+ CyP)y 2 e ]r 0<1<t, (3.76)
forall o € F, . (n,n, C) and all subsets of k elements ifx € Z? : |x| < Ry }-

Remarks. In the course of the proof of theorem 3.3.0 we will compute the leading term
of the asymptotic expansion ef asy — 0. This result is heeded in section 4 to prove
theorem 2.4.3.
Both bounds, (3.75) and (3.76), grow exponentially with time, the rate in (3.78) is
that is improved tar in (3.76) after restricting the initial configuration #, , . (n, n, C).
When k = 1 the v-function is just the difference between, , (x,t|c) and the
expectation ob (x, t). The former at = #,,41), has a factor growing as“e+»«, according
to theorem 3.2.0, while the-function, according to (3.76), only grows liké&'e We thus
see that spin configurations and statistical solutions are much closer to each other than their
order of magnitude, provided that is small enough and > 0. This latter reflects the
statement in section 2 that after an initial time layer (here represented,tifie process is
essentially deterministic.

We use the technique based on the analysis ofuthenctions, developped in [9]. We
recall in the definition below the main objects of our analysis and we refer to [13] for a
more general discussion on the use of theinctions in hydrodynamical and kinetic limits.

Definition 3.3.1. The w functions.
For anyo, W (x1, x2, t|0), x1 # X2, t > t,, iS defined as the solution of

aw” (x1, x2, t]o)

dt Z kt(-xlv )’)Wy (y’ X2, t|0) + Z kt(ys XZ)WV (-xlv )’7 t|0) + Kf(xls x2)

y#X2 y#X1
(3.77)

WY (x1, X2, telo) =0 forall x; # x2 (3.78)
where, writingm,, (x, t) for m,,,,, (x, t|o),

ki (x1, x2) = BJy (x1, x2){ COSTZ{B(J, o m,)(x1, 1)} + COSNZ{B(J, om,)(x2, 1)}}  (3.79)
ki(x, y) = =Ly + COSH{B(J, 0 my)(x, )} BJy (x, y) (3.80)

with 1,_, being the Kronecker symbol. Notice that, wa, k, depends omwr .

Analogously we definex, y, r) as the solution of (3.77), (3.78) with(x, y) and
k¢ (x, y) corresponding ton, (x, t) = 0.

Finally, given anyk and anyx € Z/%* we let

k
WY tloy = Y []wW .. tlo) x = (X1, ..., Xn) (3.81)
{1, j2)ses G, Ji)} €=1
where the sum is over all the partitio&, j1), ..., (ix, jx)} of {1,..., 2k} into k disjoint
pairs. We complete the definition o'Wy setting it equal to 0 whejx| is odd. Analogously
we defineW? (x, t) starting fromw? (x, t).

In [9] it is proven that the main contribution t¢° comes fromw?”, the result is recalled
in proposition 3.3.3 below. We first study the behaviour of wiefunctions.

Lemma 3.3.2.Leta € (0, t.) and ¢ satisfy (3.21). Then the following holds.
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(i) There ares > 0 andc so that foranyn < N andh > n

WY (x1, X2, turpjalo)] < e[l 4 C2p Ty 7204 (3.82)
forallo € F, 4, (n,n,C) and all
X1 ;é X2 . |x,~| < Rh’y i=12. (383)

(i) Same bounds as in (1) hold for’wy, x», r). Moreover, for any positive’ < d
there isa > O sufficiently small so that the following holds. There is a function
®(|r|) € L1(RY, Ry), such that for allr < t,,

WY (X1, X2, 1) — / ds € ((p! x p!) 0 2BJ,)(x1, x2)| < (y) ¥ @y lx1 — x2l)
0
(3.84)

wherep! x p! denotes the product probability of with itself, thus being the transition
probability of two independent random walks, each with transition probakifity

Proof. We start by proving (i). We set
(Jy oWN1(x, tlo) = Y J, (1, yOW (v, X2, 1l0)  x = (x1, %2). (3.85)
y1
Analogously we defingJ, o w"),(x, t|o).
Notice that ifx; andx; are suitably close, then the sum on the right-hand side of (3.85)
contains terms of the form” (x, x, t|o) not yet defined. We do it now by setting

%Wy(x, x,tlo) = ZZk,(x, nw” (x, ylo) +28J,(x, x) COSh_Z,B{(Jy omy)(x, t|a)} .
YF#X

For x € Z?? we have, in analogy with (3.33),

aw? 2 )
o = 20, W + BJ, (x1, x2) Zl:[cosf‘{ﬂ(Jy om,)(xi, 1)}~
2
+8 ) [y oW — J, oW ] + R, (3.86)
i=1
where
R]/ (&7 t) = _/3‘]]/ (xlv xz)[Wy(xl, X1, th') + Wy (x29 X2, Z‘|O—)]
+ Y [cost?{(J, o my)(x1. 1)} — 1], (e, y)w? (v, x1l0)
y#x2
+ Y [costr?((J, o my)(x2, )} — 1], (x2. y)w” (3, x2|0) . (3.87)
Y#EXL

We then have

W (x, tlo) = [ ds€ I ((pl_; x pl_y) o[¢, + R,1)(x)

(3.88)

2
¢y (1, 2, 8) = BJ, (y1, y2) ) COSIT2{(Jy 0m,) (i, 9)}
i=1
where (p!_, x p!_,) denotes the product probability of . with itself, thus being the
transition probability of two independent random walks, each with transition probability

Y
Pr—s-
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In section 4.3 we shall prove that there is a constéhtso that for allr < ¢,

(€8]
sup |((p! x p!) o BJ,)®)| < ——

EEL—— 3.89
xeZ®2 a+ t)d/ZV ( )

On the other hand, i is small enough then by (2.26) of [9], there afé and¢ < d so
that

W (x, to)| < @yt (3.90)

forall t,,, <t <141, and allx € Z‘f, (but the result easily extends to all= (x, x), if a
is small enough). To bound the last two terms in (3.87) we use (3.46), (see equations (3.38),
(3.31), (3.32) for notation), to conclude that|iff < Ry ,, n < k' < h, then

| cosh?{B(J, om,)(xi, )} — 1| < c®[2Be1C eofr<’*fw>/\*1"3y*5*0“"1“’/2]2 (3.92)
wherec® is such that

|cosh?Bx — 1] < ¢®x2.
From equation (3.88) we have that fof| < Ry, i =1, 2,

W (x, tlo)| < 11+ I2 (3.92)

where

t
I]_ = ds eZ“V(’_”

Tna

t
L= / ds ezay([_s)Zﬂyd_g{ sup|J, (x1, x2)|c® + @ [2ﬁ01CA_16y_z_““(”l”d/z]zc(z)
fha

X1,X2

2

d
A+ —s)i” &5

+ sup sup p/ (x,y)J,0c?}. (3.94)
IXI<Ry, |yI>R),,

We setr = 1,41y, In (3.92) and start by the first integral: calling

1 49-2
tha = tha + 301

we have
tntDa 1 [ 1
ds ez‘)‘v tn+1a—S5) < ds ezay(f(n+1)a_s)
/r A+ tiva — 92 ), (a/2).72)/2
HntDa 1 2yl
+ ds eszV(t(,,H)l,fs) < 2d/2 + erla
/ T2, |7 (a/227%)2

< E[y72ota)\d + yfaa] )
The first term on the right-hand side of (3.92) is thus bounded by the right-hand side

of (3.82), for a suitable value of the constant
The first term on the right-hand side of (3.94) is bounded by

1
Z—V*Z“V"zﬂydw||ooc<2>y”’*f
oy

hence it is also bounded by the right-hand side of (3.82). The second term on the right-hand
side of (3.94) is bounded by

1 —2a,a — _2r—aa 24—
2/351/ 20, 20(3)[2/3C1C)\. 16)/ 2 N+d/2] yd ¢
14

which is also bounded in agreement with (3.82).
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Finally by lemma 3.1.3 also the last term in (3.94) is bounded by the right-hand side of
(3.82), for a suitable,, hence the proof of (i) is completed.

Proof of (2). In this case we have (compare with (3.86) and (3.87))

dw” 2 .
g = 2W 28T, (0 x) + B Y [y o Wi — Ty W]
i=1
—BJ, (x1, x2)[W (x1, x1, 1) + W (x2, x2, 1)] . (3.95)
Using arguments similar to those used previuosly, it is not difficult to prove (3.84). The
prove of the lemma is thus completed. |

We define for any > 0 and anyx € Z%

v (x, 1) = Eﬁo(]_[o(x, t)) (3.96)

XEX
whereE],, is the expectation of the process starting framat time 0.

Proposition 3.3.3.For any¢’ > 0 there isa > 0 sufficiently small such that for all integer
k there isc; so that for allz € [0, #,]

sup  (p) " D (x, )] < ey sup (yA) P (x, 1) — WY (x, )] < axp®
xez &+ xez2d

(3.97)

wherev? (x, t) is defined in (3.96) andV” (x, r) in definition 3.3.1. The same inequalities
hold for v” (x, tlo, t,,) and WY (x, t|o) with ¢ € [tyq, tny1a] @Ndo € F, 4 (n,n, C), the
parameters as in theorem 3.3.0.

Proof. The proof of (3.97) follows from theorem 2.6, lemmas 4.1 and 4.2 of [9]. We omit
the details. O

Proof of theorem 3.3.0. The inequality (3.75) is proven in theorem 2.2 of [9]. From
proposition 3.3.3 and lemma 3.3.2 it is not difficult to prove (3.76). Notice that from (3.75)
it follows that, for anyz’ > 0 there isa sufficiently small such that for alt there isc¢; so

that for allx € ZY

sup  sup’ (x, tlo)| < ey 0% (3.98)

t€[twa tn11a]l ©

O

3.4. The process until time

In this subsection we improve the relation between spin trajectories and statistical solutions
of (2.22) in two ways: by proving that the (empirical averages of the) two are close in
probability and by extending the analysis to intervals longer than

More precisely, given > 0, we set

K,,=maxe 'y 2 1 (3.99)

and, givena € (0, z.), we calln, the integem such that,_1), <t < t,,. Then, givenbg
andh positive we set

Rt,)/.,h = Rn,,y - h)/_l (3100)
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and define forf : Z¢ — R

rabon(f) = sup K,,——
Ayt I<Rey |By |

f(y)‘ B,,={ly—x|<y™. (3.101)
\GB

The main result in this subsection is

Theorem 3.4.0. For any 7o € (0, 7.) there is§ > 0 so that the following holds. For all
a > 0small enough and such thag = na, n € Z, and, giver, for all ¢ andby = (1—bg)
both positive and small enough, for &l| C, k positive there i so that for ally > 0 and
allo e Fy,:(n,n,C)

Pg,tuoa < sup A;,I,a,bo,h (G(', 1) — My tuga (- t|0)) > VB) < CJ/k (3-102)

g SESEN42)a

whereN is as in definition 3.1.1.

Remarks. In equation (3.102)¢ (-, t) andmy,,,,oa(~, t|o) are close to each other over times
that exceed.. The proof exploits (3.75) that holds for arbitrary initial spin configurations
that may not be small in the sense of the seminorms of definition 3.1.2.

In the next subsection we will show that the probability/f, . (n, n, C) goes to 1 as
y — 0: such a result, together with theorem 3.4.0 and theorem 3.2.0, will then complete
the proof of theorem 2.3.3.

Lemma 3.4.1. For anya € (0, 7.) sufficiently small the following holds. L&t be as in
definition 3.1.1 and < n < N. Leté§ and¢ be both positive and

§<¢— (" —a)a+aan. (3.103)
Then for anyk > 0 there isc so that for all spin configurations
P, (107G tarna) = My 1, G i nal O lnsinttyar > ¥°) < ey®. (3.104)

Moreover, for anyC, k, any¢ > 0 small enough and an§ < 8’ < ¢, there isc so that for
a-” ||U||n,n,y.a,§ < C!

PZ,I,,H(Ila('a z‘(n-kl)u) - my,r,,l,(" t(n+1)a|G)||n+l,11+1,y,a,{ > )/6,) < CJ/k . (3105)
Proof. Let

6’()6) = G(xv t(nJrl)a) - m]/(-x9 t(n+1)a|0) . (3106)
Setting

€e=8—C¢—aan+1)+d/2>0 (3.107)
and using the Chebishev inequality we have, for any positive intéger

Py, (I, 05) ()| > y) <y~ ) [1‘[ T, (x, yi ] r (GOD) -6 (y20)) . (3.108)
yezzit L i=1

By distinguishing the sets € Zi"‘ from the others, we obtain, using (3.75),
g maX{C()/, E)y(d72e)£; [ea'ayd/Zfe]Zl}

wherec(y, £) is a bounded function of its arguments (that may be bounded in terms of the
sup of J(|r|) and of a combinatorial factor). Then theredis> 0 so that, for a suitable
constantc

gt,m(l(J 06)(x)| > y) ey’ (3.109)
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Then

]P)z;.t,,,, (||O'(7 t(n+1)a) - my('s t(n+1)a|O-)||n+l,n+1,y,a,§ > 7/8>
<[2Rys1y +11° sup B, (I(J, 05)(0)] > ¥).
|x‘<Rn+1.y

By equation (3.109) and the arbitrarity 6fwe then obtain (3.104).
The same proof works as for (3.105) provided we use (3.76) instead of (3.75), the
lemma is therefore proved. O

Corollary 3.4.2.
For any tg € (0, 7.) and for anya > 0 such thatrg = noa, ng € Z, and so small that

O<d<atg— (@*—a)a (3.110)

the following holds. Let < § be as in (3.21). Then for ang,, there areC,, no <n < N,
and for anyk, ¢ so that for ally > 0 and for all [0 [|1.n0,y,a,c < Cig.

]P)Z.t,loa(”a('v tna)”n,n,y,a,{ > Cn) < CJ/k (3111)

]P)Z.t,loa (||O‘(, tna) - my.f,loa('a tna|0)||n,n,y,a,{ > )/6) < CVk . (3112)
If, moreover,|||o|||ngngy.a < Cny, fOrany0<h <1

P 1o (0o 1) € Fyar(n+h,n, Cp)) = 1—cy*. (3.113)

Proof. By lemma 3.4.1, letting as in (3.110), we have for > ng

]P)Z;,t,,oa (”O’(, tna) - my,t(,,_l)a ('» l,1a|0'(', t(nfl)a)”n,n,y,a,{‘ > VS) < C)/k . (3114)
We call
n—no—1 )
Hny)= Y (Bc)'2y’+@Bc)"™Cyy  H(no.y) = Cy,
i=0

and, using (3.114), we will show, by induction anthat
Py 1o (106G t0) lnnyac < H(n,p)) 21— (n = no)ey* (3.115)

that implies (3.111). To prove (3.115) we first observe that by (3.52), for sithall enough,
we have that in the sdt|o (-, t(—1a) ln-1.0-1y.0c < H@n —1,y)}

||my,z(,,,1)[, ('7 tna|0('s t(nfl)a)) ”n,n,y,a,{ < 3C]_||O'(', t(nfl)a)”nfl,nfl,y,a,{ + VS
so that, by (3.114), the left-hand side of (3.115pi”, (A) — cy* where

O.lnga
A= {2y 4+ 3c1llo . ty—pa) ln-1n-1.y.00 < H, )}

M {llo ¢ ta-va)lln-ta-1yac < Hn =1, p)}.
By the choice ofH (n, y),

A={loC, th-v)lli-1n-1y.ac < Hm —1,9)}.

By the induction hypothesis we then get (3.115) and (3.111) is therefore proven.
To prove (3.112) we use the relation

”my,z(n,l)ﬂ (s thalo (-, t(n—l)a) - myfz,,ot,(" Tha |G)||n,11,y,a.§

< 3callo G tn—1)a) — My 1,0, Cs ln—1al O ln—1n-1,,a.c + T (3.116)
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which follows from (3.53) fory small enough and when the right-hand side is bounded
uniformly in . We then have, by an argument analogous to the previous one:

n—ng—1
PZ,,,LOL,<IIG(~JW)—my,:,,ou(utnalcr)lln,n,y,a,; > 3 (301)’2y5> < (n—no)ey®  (3.117)
i—0

which proves (3.112).
By equation (3.112) and recalling (3.13), theré’is- 0 so that, for ally small enough,
P71, (110 C 1) lnthny.a < Ca)
= Pg,t,,ol, (|||m7/,l,,0a('a t11a|0)|||n+11,n,y,a <G, — Vsl) - C)/k .

By equation (329)! iﬂ”m)/,ty,ou('v t(n—l)a|a)|||n—1,n—l,y,a < C, then

Buy ()M g, (%, taalo) | < €7 (p) 0y, , . tn—1)al0)) ()| .y (X)
¢/ (2e1 €7y im0 G t—2al ) ity + €7’ (3.118)
which implies
1y 10, o tnalO) nanya < My, Co -2l In-10-1,7.a + -
Thus
P, (17, G tal Ol nnya < Co = ¥
> Y, (1m0, G tvalo)ln-tnya < Co—¥* = ).

Defining C, = C,_1 + ¢” and iterating the above procedure we then prove (3.113), thus
completing the proof of the corollary. O

Proof of theorem 3.4.0.1t is enough to prove (3.102) separately whgn< ¢ < f,41)a,
n < N, and whenry, <t < tnvy2,. We begin with the former and, given < N, we
considert,, <t < f+1), and write

o(x, 1) — My b, (x,tlo) =[o(x, 1) —my,, (x, tlo (., t,,a))] +L,(x,1) (3.119)
L,(x,t) =my,, (x, tlo (-, t,,a)) —my,, (x,flo). (3.120)
By equation (3.51)
A;,l‘,a,bo,h(LV(" t)) < A)*/,t,a,bo,h (U(‘v tna) - my,tnoz,('v tnala))
+CV7C llo (-, tha) — my,t,,oa(" tna|6)||n,n,y,a,§ + Cyk .

We choose; < §, § satisfying (3.110), so that, by (3.112),

Pg,m“( <Sup A;Jﬂ,bo»h(l‘y(" t)) < Va)
tha <

[<l(n+1)a

) k
2 ]P)Z,t,loa (A;/,tm,a,bo,h (G(" tna) - my,tno,, ('s tna|a)) < 2)/ ) —Ccy .

Recalling (3.119) and using an inductive argument, we reduce the proof for showing that
for anyng <n < N:

]PZ,,HOH(Z sup A}, upon(0C ) —my (2o (L tg))) > ya) <cyk. (3.121)

gtgt(n#rl)u
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To prove (3.121) we will use the following criterion. Given > 0 and: > O, let
Sy =1, 1% - R, depend only on less than°, ko > 0, spins of the configuratioa
and suppose also that theresis> 0 so that for ally > 0 small enough

sup  sup|fy.(at) = fru(o)| < v™. (3.122)

oe{-1,1)% xeZ?

Lemma 3.4.3. Let f,, be as above. Suppose that there &e= (0, o), an intervalT, in
[0, y ], for somek; > 0, and, for anyk, ¢ so that, denoting by” the law of the process
in 7, with some, unspecified, initial condition

SUPP? (fy (o (1) = y™) < eyt (3.123)

teT),

Then for anyk there isc; so that

PV<SU|0fy,t(a(~, n) > yz‘”) <yt (3.124)

teT,

We omit the proof of this elementary lemma and refer to the proof of proposition 4.6
in [8] for a similar statement. For the reader convenience we give however a short outline
of the proof.

Outline of the proof. We divide the time interval [0, ] into equal subintervals that are
sufficiently short. They are such that the probability of the followingsé$ smaller than
c}y*, for any givenk. B is the set where in some of the subintervals at least two spins flip,
among those on whiclf,, depends. By our assumptions we can make the number of such
subintervals grow only like some power pf 1. Here we have also used that the spin flip
intensity is bounded.

Then with large probability we may reduce to trajectories where there is at most one
‘relevant’ spin flip in each subinterval. Recalling (3.122) and sifice: 8o, the proof of
(3.124) follows from the assumption (3.123). ]

We take
Fra =A% apon(0Co ) —my (. tlo)]
andT, = [t,a, tmt+1a). The variation off, , due to a spin flip is bounded by
zy—d/Zy(m[c(d)y—bod]—l

where the square bracket is the volumeByf,. Choosingb, close enough to 1, there is
80 > 0 so that

2y 2y fe(dyy Tt <y

The spins on whichf, ; depends are contained Ry, ,, with M fixed and large enough.
Thus we can takéy = 2d, (for y small enough). To prove (3.121) we thus need to check
(3.123) with PY = P}, . Givent € [t tn+1a], We have

Pl 1 (A pane (0o 1) = my (o 10)] > ¥°)
< sup c(R )Py, (JAyx(o(ot) —my,, C tlo))| > K 1v°).  (3.125)

n+1,y V.t
-’CGRM,y

We bound the probability using the Chebishev inequality with powem@d obtain the
bound:

c[Ky 1y 71 max{[y /2 e =% | B, |7 (3.126)
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wherec is a suitable constant. This term is bounded by
C/ max{efutt,myfﬁ]Zk; [yd/Zfomaery(dbo)/Z]Zk} (3127)

(the second term is obtained by computikig, at: = 1,, that gives an upper bound. We
thus see that given any > 0, by choosing > 0 small enough and, close enough to 1
we may bound (3.127) a¢ e 8% with B > 0. This concludes the proof of (3.121).

To complete the proof of theorem 3.4.0 we need to consider the time intggval t <
tv+2a- We use again (3.119) and 3.120 with= N. We have

Ly(x’ tNa) = G('9 tNa) - my,tnol, (x, Z‘Nu|ot) |.X| g RN+h,y . (3128)

We have already proven that this term is bounded byith probability larger than & cy*.
In section 4 of [8] it is proven that if (3.128) holds then there aleh’ and§’ positive so
that for [x| < Ryiw

sup A (Ly(',t)) < e—otthy—d/Z-hS/

*
y.t.a,bo,h
INaSESE(N+2)a

— éx(t[.—tNa)yé/ < eat(,yé’ < y(ﬁ”

with §” > 0 for @ small enough.

It thus remain to consider the first term on the right-hand side of (3.119),awithv.
This is dealt with exactly like when < N, provided 2 < a*, a* as in theorem 3.3.0. We
have thus completed the proof of theorem 3.4.0. d

3.5. Probability estimates on the seminorms

In this subsection we will prove the following:

Theorem 3.5.0.For anya € (0, z.), any0 < n < N, N as in definition 3.1.1, an¢ > 1
and anyk > 0 there isc so that

P! ({0 tna) € Fyac(n,n,C)}) > 1—cC™*. (3.129)

By theorems 3.2.0 and 3.4.0,df € F, , (1,1, C), then it is also inF, , . (n,n, C’),
1 < n < N, with probability larger than & cy*, if C’ is suitably large. The whole problem
is therefore the proof of (3.129) with = 1. The special role played by the value= 1
has already been remarked after theorem 3.4.0.

We will easily see that (3.129) holds when= 0 and indeed we will show that it is
possible to replace the measurgby one supported by the single configurationprovided
o €F,.:0,0,C), for someC.

Let
X(x) =@V oa)(x,1,) G(x,ty) =0(x,t,) —my(x, t4|0) (3.130)
and consider the process starting fremat time 0, (callP} its law). We suppose that
o€F,..(00C) (3.131)
with C independent of/. Calling
r = )Ld/Zy—aa+d/2 (3.132)
we have

Lemma 3.5.2. For anyk there isc so that foranyC > 0,u > 1and allo € F, , (0, C)
PY(1X ()| > uT) < e[L 4 C%*y*u™* forall xez?. (3.133)
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Proof. As in the proof of lemma 3.4.1 we get
20 20
Py (1X(x)] > ul') < @)™ )~ [ T (x, y»}ﬂ%(]‘[&(x, y»)
yezdt -i=1 i=1
< @) max{c(y, Oy™; [e{1+ Cy°IT1%} (3.134)

which proves the lemma. |

The bound (3.133) is inadequate to bouiid|||,1,, because of the sup involved in
the definition of the seminorm. When the process starts at tjjme: > 1, then we gain
a factory?t, 8 > 0, see equation (3.109), by which we control the sup over regions with
y~* sites, for arbitraryk, after choosing large enough. Here we do not have any extra
power ofy from the estimate (3.133), and we cannot repeat the previous proof. We then
use an argument from [14, 20].

Let

L,=0y*t Z8 ={Lyx, xeZ'} (3.135)
then, by (3.133), for alb € F, , (0,0, C)

]Pg( supy; , ()| X (x)| > uF) < Z L(Lylx] < Ry )PL(| X (Lyx)| > Tu(L+ |x])°)
x€Z4 xeZd
<Y L+ Yt @+ (3.136)

xeZ4

(recall thaty, , (x) =0 if [x| > Ry, ). Fork large enough the series converges, hence
Pg( supyy, (Ix]) | X (x)] > Fu) <[l + CFyolu* (3.137)
x€eZd

with ¢ a suitable constant.
To have the sup also overe Z¢ \ Z<, we use (3.137) and an estimate on the variation

of & in cubes of sideL,. For anyx = (x1,...,x,) € Z‘yf let
Ar={yeZ': x;<yi<xi+L,, i=1...,d}. (3.138)

We will control the variations o6 in A, by a Sobolev-like inequality, with an integral
norm involvings and its ‘derivatives’.

We explain the idea in the continuum with true derivatives. Detz, R € RY, be
the parallelepiped ilR? with extreme points 0 an®; i.e. the set of points such that
0 < r; < R;, we are supposing that alt; > 0. Let f € C4(RY) and denote by

J) 3|J\f . .
fHW= J=01....joCE1={1,...,4d}. (3.139)
9y - ),
We define(r;, 0) as the element’ € R? such that = r; for all i € J and O otherwise.
We then set

Ay ={(@y,0):(r;,0) € Igr} (3.140)
and we haveR = (R4, ..., R;) below,
fRY=fO) = > /dr, 1((ry, 00 € Ay f(ry, 00 (3.141)
P£JCI

equation (3.141) can be proven.
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Proof of (3.141). The proof is by induction od, being obviously true forl = 1. We then
suppose it true forl — 1 and prove it ford. We write

We then use the induction assumption on the functions:

g(R1, ..., Rs_1) = f(Ry,..., Ry_1,0) and, given
7, h(Ry, ..., Ri-1) = fUD(Ry, ..., Ry_1,7)

and obtain (3.141). |
The identity (3.141) holds in the discrete case a well. fet), x € Z4¢, and first define
O =0 +e) = fO] e =0 j=1....d (3.142)

and then "), by an iterative procedure.llg,, (x;,0) and A, are defined as in the
continuous case. We set

/dxff((xf, 0) =L, > f((x.0). (3.143)
We then have, withy, = (y; +1, i=1,..., d),
o0 = FO = 3 [ de2005.0 € 405050 (3.144)
G£ICT

We will bound the integrals on the right-hand side by using the Cauchy Schwartz inequality.
We thus set for € Z¢:

Ny (fP =) f dy; 1((3. 0 € A; )Y (v, O] (3.145)
G£ICI

where the setA;(x) is the setA; corresponding to the cub&,. From equation (3.144)
we then have

suplf(y) — fF()I < eNy .« (f) (3.146)

YEA
wherec? bounds the ‘integrals’ oveA ; (x) of dx;, for all J. We next prove the following:
Lemma 3.5.3. With the above notation, given aity > 0 and anyk > 0O there isc so that
for any o satisfying (3.131)

Pg( supg, (|x DN, (X () > ur> <[l + C%yPu* (3.147)

xeZd
forall u > 1, (X (x) being defined in (3.130)).

Proof. The basic ingredient of the proof is the following estimaterdhwhich is proven
in lemma 4.3.7: letr” (x) = n7 (0, x), then

@) (x) < Q) P(rylx)) (3.148)

where P(|x|) satisfies

/dr P(r]) < o0 SUpP(|r]) < oco.
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As in lemma 3.5.2, we have

4
PY (Ny (X(9)) > ul') < D)™ ) ]_[/dzji (. 0) € Ay (x))

Jr..Je i=1

14
x Y [l_[(ﬂy)u’)()’z —x) (@) (yaig1 — x;)}Eg (6 ...6(v20))
— |}

i=1
(3.149)

wherey = (y1, ..., y2) andx; = (z/;, 0). As before the leading term is whene ij( and
since the integral is finite, recall the definition (3.143), we obtain an estimate as in (3.133).
We then conclude the proof of the lemma, proceeding like in the proof of (3.137), we omit
the detalils. O

In the next lemma we complete the bounds on the seminorms.

Lemma 3.5.4.For anyk > 0 there isc so that for allu > 1:

o(Fyar(0,0,u)) > 1—cu™* (3.150)
and for alle € F, , (0, C) andy small enough
P2 (1116 111y > u) < [+ C¥yu*. (3.151)

More precisely
P’ (lllollluiy.a > 3cu) < c[L+C*Y°lu™*  PY(lollLiyac > 4c1C) < eyt (3.152)

Proof. Equation (3.151) is an obvious corollary of (3.133) and (3.147). The first inequality
in (3.152) follows from (3.151) and (3.19). The second inequality in (3.152) follows from
(3.105) and (3.52).

In the proof of (3.150) the bound ofv |0, is easy and it is omitted. To bound the
probability that|||o||lo0, > # we use the same procedure as in lemmas 3.5.2 and 3.5.3.
The bounds on thes andv functions are not necessary here because we know the measure
explicitly (o), which is a product measure. Except for such a simplifying feature the proof
is unchanged and it is omitted. O

We conclude this subsection by proving a bound needed in section 4, namely (4.26).

Lemma 3.5.5.For anya € (0, 7.) small enough there i& > 0and foralln < g < N, all
¢ > 0 small enough, alC and all k there isc so that for allo € F, ,(n,n, C)

P, (1o Gy tga) — my G tgalo)lggpa > D) < ek (3.153)

Proof. Equation (3.153) follows from (3.112) and (3.13). |

3.6. Proof of theorems 2.3.2 and 2.3.3

Proof of theorem 2.3.2. To prove (2.34) we take > O small enough and distinguish
T < a from t > a. In the former case we use the Chebishev inequality as in the proof
of lemma 3.4.1. and then proposition 3.3.3. The proof whea a is a consequence of
theorem 2.3.3 that we will prove at the end of the section.

We fix a € (0, .) small enough and le¥v be as in definition 3.1.1. We want to prove
that for anyk > 1,

k
Eﬁ[)(ncr(x,-, t)>‘ =0 (3.154)
i=1

lim sup 1y <Ry,1,. i=1....k) SUP
V_)O§€Zi‘ 1<te
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which proves (2.35).
Recalling proposition 3.3.3 and lemma 3.3.2 part (2), thege=s0 and for anyk ¢ so
that

sup sup
ieZi“ 1<t2q

Eﬁo(l—[“(% f)>‘ = sup sup|v” (x, N] < cp®™ (3.155)

xXex xeZY 1<t2a

which proves (3.154) with the sup limited to< 7o,.
Fort > ty,, letn > 1 be such that;, 1), <t < f4424, then

EY, ( l_[ o(x, t)) ’ = |EY, (EZ(_!,M),,M ( l_[ o(x, t)))

Xex
(0C\twa) € Fyac(n,n,C)) + supsup sup [v”(x, t]o, 1,)]
ﬁezik o 1, <t<ty

<1-®,

k—1
+k2 sup sup sup my,, (x, tlo (-, ta))l -
0 (tna)€Fy a0 (1,1,C) lnt)a <ISEn+2a 1X|<Ruv1y

(3.156)

To derive (3.156) we have writtem(x, t) = ¢ (x) + m, (x) wheres (x) is a shorthand
form of o (x, 1) — m, (x) andm,, (x) stands fom,,, (x, o (-, t,4)). Then

k k k—1 i k
[TlEG)+mye] =6+ [H5(X£)]my(xt+1)|: I1 o(x,-)} :
i=1 i=1 i=1 Le=1 j=i+2
The first term gives”. The otherk terms are bounded as on the right-hand side of (3.156),
recalling that bothe andm,, are bounded by 1.
In equation (3.156) we take the lim sup as— 0, then, by (3.97), the contribution of
the term withv” vanishes. Also the term witl,, in (3.156) vanishes ag — 0, by (3.16)
and (3.18). We thus have

limsup sup
y—>0 12, <I<INg
By equations (3.113), (3.150) and (3.151) the right-hand side vanishes if wigetoo.
For iy, <t < t. we proceed as before, with= N — 1 and use proposition 3.2.5 to show
thatm,, (x, t|o (-, 1,,)) vanishes ag — 0, we omit the details. O

El’:o(HU(x, t))' < Ilim sup|[1 — P};O(o(~, tha) € Fyac(n,n, C))] .

XEX y—0

Proof of theorem 2.3.3.We takea small enough and such thaf = na, n € Z,.. GivenC
large enough we choose

g](/o) = Fy,a,{(nv n, C)

then (2.36) follows from theorem 3.5.0.
Equation (2.37) is proved in the remarks following theorem 3.2.0. Finally
equation (2.38) is proved by theorem 3.4.0. O

4. The geometry of the interfaces

This is an intermediate section between the previous one where we studied the process
until time ¢. and the next one where we will extend the analysis through tim&ve have

seen in section 3 that if a configuratienat timet,, < t. is in F, ,.(n,n, C), then the
magnetization in the time intervat,[, ¢.] is infinitesimal asy — 0, see theorem 2.3.2.

To prove that at time* the magnetization is instead finite and the clusters mentioned in
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section 2 have developed, we need to show that the magnetization at,tinsenot too
small. Since the seF, ,.(n,n, C) is defined in terms of upper bounds, we need new
conditions to control the magnetization from below. This lower bound cannot be uniform
in space away from 0, because in such a case the magnetization, being continuous (as it is
defined in terms of averages) would have a definite sign in the whole space, while regions
that are far apart are certainly uncorrelated. Thus the magnetization will be 0 somewhere
and the main goal of this section is to characterize the region where this happens. Before
outlining the specific contents of this section we recall some definitions and notation.

Given g € (0, 7.), we seta (the time-grid parameter of definition 3.1.1) so that

na = 1o n a positive integer (4.2)

Let N be as in definition 3.1.1, and recall that

d
Na <1, = % tva = Nar™2 <t, =t 22 =1 logyt. (4.2)
o
Hereafter
o is a configuration at time,, = o1 2. (4.3)

We will use the bound (3.18) far= ty,. We then require: so small that

e—(tNl,—t,,(,) < e“’N“yd/zkd/z. (4.4)
Recalling thaty?/2e*= = 1, equation (4.4) is valid if

8 :=(N —n)a —a(t, — Na) > 0. (4.5)

We also recall thatm,,, (x,tlo) is the solution of (2.22) forr > 1t,, with
My tna (-x» tna|a) = O'()C) and

L, (rlo) = A 74/? g lte=na) / ar' g, 1, (r — r’)m%ro([y_lr’], tNalo) reR? (4.6)
whereg, (r) is defined in (2.31). We finally recall

0, (¢lo) = 6,0 Elo). (4.7)
Given anyL > 0, we denote by

$(0,A71L) c R? the sphere of centre 0 and radius'L . (4.8)

We divide this section in three subsections. In section 4.1 we prove@thabnverges
to a Gaussian process, theorem 2.4.3. In section 4.2 we prove that the zé;oexrefclose
to the zeros ofn, (-, t.|o). This result will be used in section 5.1 to characterize the
development of the interfaces associated:{g, (-, t*|o’). In section 4.3 we prove a central
limit estimate forp! (see equation (2.29)) and its convergencg,to

4.1. The central limit theorem
We will prove the central limit theorem in the Sobolev spaces defined below.

Definition 4.1.1. The spacesH), Py ).
The spaceH,”. is the Sobolev space of functions &f, with m generalized derivatives all
in Lo(R?, d¢)-local. For eachy > 0 and o as in (4.1), we denote by, ,, the probability

on H,}. induced bnyM_2 via the map which associates to a configuratwrthe function
¢, (¢|o) defined in (4.7).



86 A De Masi et al

By a Sobolev inequality, convergence ii" implies convergence in a bounded region
of the sup norms of the firgin — d) derivatives, see [24], so that the above result yields a
control of all derivatives o, in the limit y — 0. This will be used in section 4.2.

In the next proposition we prove the convergenceﬁpfto the Gaussian process of
theorem 2.4.3.

4.1.2 Proposition.Let0 < 19 < 7. andéy be as in (4.7). Denote by the Gaussian process
in Hj. with zero average and covariance kernel

CE &)= <1+ 1>< « )d/z e—a(E—)?/(@pD) 4.9)
’ o )\ 7pDd .

Then,
(,PV,TO’ Hlnoqc) - (P HIIZC) as Yy — 0. (410)
Proof. We first prove tightness and then that any limit process is equeﬁtdi,’;’c). We

thus start by proving tightness.
In section 4.3, see (4.151), we prove that for afy> 0 and any muItindeX,

[ = (i1, ia) ij>0 foral j= d || = Zz, (4.11)
there is a constant so that
_in10'qs, (r) A4 _
A1 = A"%(t, — Na). 4.12
| ar | ¢ 1+ ()\-|r|M) (T a) ( )

We next take thd-derivative of both sides of (4.6) and use (4.12) on the right-hand side.
If, for someC > 0,0 € F, ,.(n,n, C) (see equation (3.9) for notation) then from (3.17) it
follows that there is’ so that for any- € R?,

my,, [y "M, tnalo) — €O (ph o o) ([y 7))

< ¢/ @Mayd2(1 4 )\ |p/ )by —aNatd/2=¢ (4.13)
and from (3.18) and (4.5)
e (et (pr Ly D) S APy N2 4 e L4 272 (4.14)
We then have
B’Ey(rkf) d

‘;;m

A
< )\'—d/zea(tc_tNa)/d 4 C— 1 ! > R
' 1+ Qr— r’I)M[ (il )

+)\‘d/2 _aaN+d/2(1+)\.|r,|)b{l+)\‘_d/z+C/J/6}]

By letting M be large enough and recalling that < L1 ~%, we see that the above derivative
is bounded uniformly iny. Since this is the derivative qffy (because of the prefactar!!)
we have concluded the proof that the probabity., in H/”. is tight, for any positiven.

loc

We shall consider hereafter so large that the consideration below apply.

or!

Identification of the limit laws.Let (P, H}?.) be any limit law. This is identified by the

marginals of P,, on the variableg{(£1]0), ... (& o)}, k > 1, thought of as functions
In Hllgc

We denote bye’ = o(-,1,), the configuration at time, and byo = o(,t,) the
configuration at time,,. If, for someC > 0,0 € F, ,(n, n, C), then, by (4.13), there are

§ > 0 andc so that

SUP |my (x, tyglo) — €= (pl o o)(x)| < cemeleTNdyd (4.15)

[x|<RN.,

~Ina
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We have

eay(tNaz_lrm)(pz}:va o0o)(x) — eay(tN“_r“)(pt)jVafta o O'/)(x) — eay(tNa_tnu)(pt);vait’m o gy)(x)

~Ina

(4.16)
where
gy (x) = o(x) — &t (p! | oo’)(x). (4.17)
Similarly to (4.15), ife’ € F,, (1,1, C),
sup gy (x) =G ()| <ée Tyt G (x) =0 (x) —my, (¥, falo”) . (4.18)

[x|<Rw.y

We will then use the following fact.
Recalling the definition op! (x, y) given in (2.28) and defining, (x, y) analogously
to (3.6), that is

y _ e BD
m)(x.y)=e Z ) (4.19)

n=1

we have

e‘xy (tNa—1na)

|a(x)| eay(lzvu ~tna) e ¢ *(tNa—tha) <2e (tNa—1na)

Z Pyt (X, ¥) = nt][/\/u—t,,(,(xvy))&(y)‘

Y

<

< 2@ liein (4.20)

In the second inequality on the right-hand side of (4.20) we have used*thal = «,,
(see equation (2.27))¢ — o, | < ¢y, and in the third one (4.5).

From equations (4.15), (4.16), (4.18) and (4.20) it then follows thab'if €
F,.:(1,1,C)ando € F,,.(n,n, C), then there is a constan} so that

SUp |my (x, tyglo) — €@ (pl 06"y (x)| < cj e Ty 4 2%
[x|<Rn,,

Heina—ha)  gyp (), 0&) (). (4.22)

[x|<Ry,,

—lna

Defining & as in (4.18), we letj be the following set (in the space of trajectories of the
spin configurations),

gz{ sup |G/, 06)(0)|

[x|<RN.y,

< ety N0’ € F, (1,1, C)} N{o € Fyar(n,n,C)}. (4.22)

We next prove that for an§y” > 0 small enough,

T .

Ilcl”ilorlf IlryTLugf P, (@) =1. (4.23)
We are going to prove that each of the three sets whose intersection defimese full

probability in the limit asC — oo andy — 0.
For the first one we use the following inequality:

|Gl e 0 @) < 2y 26, (1) H16 |nny + cv* (4.24)
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We then get fory small enough and takingl” > §”,

5 —t(tle—tna) 1, 8" 5 8"
H”Zo( sup |(), . 06)x)| < ey >>on(|||o|||n,n,y <y?)

[x|<Rny

o
=E (B, (I116Cy tna) = 1y, o tnalo D Nanya < ¥°7))-

(4.25)
We then choosé ands* as in lemma 3.5.5 to conclude that &t < §*,
B (L5, wn0Ph, (110G tua) = My, Cotnalo Wl nnya < ¥°)) = 1—cy*. (4.26)
From theorem 3.5.0 and (4.26) the probability on the right-hand side of (4.25) goes to 1 as

y — 0.
By theorem 3.5.0 the probability of the second and third s&i goes to 1 ag” — oo
uniformly in . We have thus completed the proof of (4.23). .
From equation (4.21) it follows that if a spin trajectory isgn then there are; andé
so that
SUP [my (x, tyalo) — €N (p? _ 067)(x)] < cje Uyt (4.27)
[x|<Rn.,
This (recalling thafo, — «| < cy) implies that if the trajectoryo (-, ), ¢t > 0} belongs to
G, then there i so that foré = yix and|x| < Ry.1.,,

1, (€, o) — €01 42(Q 0 6")(§)] < c5y° (4.28)
where
0, y) = / O gy 1 O — ) p o Ly ), ). (4.29)
We denote by
2
_ d —d/2 X
G, (x,7) = (Ay)(2nBDr) exp{ ZI,BD} (4.30)

where D is defined in (2.42). We have

e

by (Elo) — TN "G (& = dyy, T — a)o' ()
y

> €+ cgy‘g)

<PV (éx(trtu))\‘d/z
N T o

-¢)

+[1 =P (9)]. (4.31)

By equation (4.23) the square brackets goes to 0, so that it only remains to bound the first
term on the right-hand side of (4.31). By the Chebichev inequality we have

Py (00PN [Gy (6 — Ay, T —a) — Qy (€. )]0’ ()] > €) <A+ B (4.32)
y

Y16, E —ryy. e —a) — Oy (€. Mo’ ()

where
A= (e 22N G (6 —dyy. e —a) — Oy E VP (4.33)
y
and
B = e 2(eltet)) /22 Z |Gy (& —Ayy, te —a) — Qy (&, )]
y#Z
x|Gy (¢ —ryz,te —a) — Qy (&, DIEL (0(y, t)o (2, 1)) - (4.34)
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In equation (4.130) below we prove that there ar@nd¢, so that for allx, y € Z¢,

1Pl (8, ) = 8oy @i — g (e yp)l <y AP Gyl = D) (4.35)
where the functionP is uniformly bounded and, for alt,
>0 POyly) <c. (4.36)
S

From this we have for = yx,

‘Qy(”y y) — Vd‘]trta (r,yy) — e / dr/‘]tfmu (r, r/)l{[Vflr’]=v}

<yTAIP (M —yyl). (4.37)

At the end of section 4.3, we will prove that for all> O there isP (that, without loss of
generality, we can suppose equal to the previous one) so that

S PR S CTo i
2O = oy p{_ZrﬂD} S

AP . (4.38)

Calling

P(r,y) = f dr’ 1{[y1,/]=_\,}<,\d+lp()\|r —r')
e A? exp{_(w _r’|)2}>
(2npDr)?/? 2tBD
we have, from (4.37), for = yx
Gy (r —dyy, te—a) = Q7 (r, )| < AT+ yTODPGUr —yyD + P(ry) . (4.39)
For y small we havey4t¢1? < y91?+1 and, for a suitable constant

2supP(|r) < ¢ (4.40)
supP(r y) < Op) [n + e vne] (4.41)
Z B, y) < (e 4 3. (4.42)

From equatlons (4.36) and (4.40)—(4.42) we get (taking the square of the right-hand side of
(4.39) and using the inequality: + b)? < 2(a® + b?))
A< 6—2[ea(rc,—z(,)A—d/2]22(c/cydkd+1+ (Ay)d[yc'*(N—l)u +A]2(c/)2) (4.43)

which vanishes wher — 0 because &y 9= 1.
In order to estimateB, we use proposition 3.3.3 and lemma 3.3.2. Then theré =
that for all y # z

(€T EY (0 (y, ta)o (2. 1)) < . (4.44)
Therefore, using (4.40)—(4.42) we have
B < c”e’z[Z)»c + (S NDe L 02 < eA2. (4.45)

From equations (4.32), (4.43) and (4.45), we then have that the probability on the left-hand
side of (4.31) vanishes in the limjt — 0. Hence any limit point is the same as that of the
variables{?, (&1|0) ... ¢, (&lo)}, where

- iy (Ay)? AYy)?
_ olte—ty) 4 —d/2
b Elo) = & o BD (e — a)) 7 Z p{ 2. —a)BD } s (4.48)
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To complete the proof of the proposition we thus are left with the proof that

k k
iiLnOEZ()(ny (si|a)) = E(]‘[ E(g,)) (4.47)
i=1 i=1

whereE is the expectation with respect to the lavof the mean zero Gaussian process
with covariance defined in (4.9) arfdé;) are the canonical variables for this process.

To prove (4.47) we use (2) of lemma 3.3.2 and (3.97) of proposition 3.3.3. We first
observe that, using (4.30), (4.46) can be written as

b Elo) =€ Y () %G, (6 —hyy, te —@)a (1) (4.48)
5
We first compute (4.47) fok = 2. This gives
2
EZO(HZV (§i|0')) = l1(61, &) + 12(81, 62) (4.49)
i=1

where (see the definition (3.96)),
I1(51, &) = &2 Z )Gy (E1 — Ayy1, e — @)Gy (E2 — Ay Y2, To — a)v’(y, ta)

ez
(4.50)
Iy(£1, &) = e 2 Z()»V)fdcy(é:l =AYy, e —a)G, (52— Ayy, 1. —a). (4.51)
5
Notice that there is a constantso that
sup| 261, £2)| < cy®. (4.52)
£1.6

In order to estimatd; we write v¥ (y, t,) = w”(y, t,) +[v"(y, 1) — w¥(y,1,)] and we use
(3.97) withk = 1. We are then left with the estimate of the right-hand side of (4.50) with
wY (v, t,) in place ofv” (y, t,). For this last one we use (3.84) with< 2oa and therefore
we get that there are > 0 ands > 0 so that for allé; andé,,

|I1(81, &) — [1(61, 62)| < ¢y’ (4.53)
where, see (3.84),

L&) = ) Gy (&1 —Ayyr, e — a)Gy (62 — Ayy2, T — a)
yerZ

ta
X (hy) / ds &2 (07 x p) 0 281,)(y1, y2) - (4.54)
0

From equation (4.128) below and (4.38) there is a constamt that for allx, y € Z¢ and
all s € [0.¢,]

|pY (x,¥) = G, Ay (x — ¥), A%9)| < |p? (x,y) — y9qs(y (x — )|

+ygs (v (x = ¥) — G, Ay (x — ), 225)| < ey 1) [y© +A].
(4.55)

Using equation (4.55) there i so that
t, 1y

‘w)‘“’ / ds e 2@ (p? x pl) 0 2BJ,) (31, y2) — / ds € 2"V Kz (y1, y2) | < T2
0 0

(4.56)
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where
Kios(y1.y2) = W)™ D Gy (y (1 — 22, 429)Gy, Oy (v2 — 22, A%5)2B (21, 22) . (4.57)

71,22

There is a constarit’ so that
sup| Kz, (y1, y2) — Ka(y1, y2)| < &'A forall s €[0,1]. (4.58)

y1,¥2

Using the fact that (see equation (3.7))
28 Jy(z1,22) = 2By* Y Sy (vIz]) = 287, (0) = 2(a, + 1)
22 Z

from (4.57), (4.58) and the fact that, — «| < cy, we get
‘szx(yl, y2) — 20+ D(ay) ™ Z G,(Ay(y1—2),a)G,(Ay(y2—2),@)| < c"A. (4.59)
4

Since
Y Gy —ryy, 1 —a)G, Oy (y —2),a) = Gy (€ — Ay, )
y

from (4.54), (4.56), (4.59) and the fact that= d/2«, we then get

. a1 —d
)[I[)no NL(51,8) = lano T(M/) ZZ: Gy(61—2ryz, 1)Gy (62— Ayz, T)

={1+ 1 ol/? e—vt(é’l—éz)z/dﬂD (4.60)

B o ) (mBDd)?/2 ' '
The proof of (4.47) for anyk > 2 uses similar arguments together with both inequalities
in (3.97). We omit the details. |

4.2. The interfaces

The motivation for definitions 4.2.1 and 4.2.3 below is technical, it will become clear in
section 5.

Definition 4.2.1. We denote byC; and ¢] the parameters which, in (3.23) and (3.24),
respectively, correspond = 1. Given anyk > 0 we define

A= A (1) U A (1) U Agy(k) (4.61)
where
AL (D) ={r:4,('|o) > 3xlogr=? forall + :|r—7r'| < Cillogr=?)?}. (4.62)
A’ (1) is defined with the reversed inequality. Then, given/anye set

1 .
Apy(k) = {r : there arerg, 6 € (k’ k) and a unit vectow

such that (4.64), (4.65) below hgld (4.63)
Ir — rol < 2C1(loga=2)2 (4.64)
1€, (r'|o) — Or(r —ro)v| < e, forall ' :|r' —rol <5Ci(logr=?)? (4.65)

wheree, is defined as follows. ld =1
€, = kat8% (4.66)
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b > 0 is the parameter entering in the definition of the seminorms, see definition 3.1.2. In
d>2

€, = kr(logr=2)5. (4.67)

Proposition 4.2.2.For any L > 0
liminf liminf P ({S©,A7'L) c 4}) =1 (4.68)

k— 00 y—0
with the same notation as in definition 4.2.1.

Proof. Let G(L, k) be the following set inH,”

e m > d + 3, (we want the elements of
G(L, k) to be inC?)

. 1
G(L.b) = {g e Hyj.: inf [Ig()]+1V()] > | and sup|Vg(r)| < k}. (4.69)

rir|<L
Then in [21] it has been proven that for afy> 0
lim P(G(L. k) =1. (4.70)

From proposition 4.1.2 it then follows that there is a sequepakecreasing to 0 as — oo,
and, for anyk, there isyy so that for ally < v

Pyo(GL, k) 21— ¢ (4.71)

Assuming that/, (-|o) € G(L, k) (wherel, is defined in (4.7)) we now prove that for
sufficiently smallS(0, »=*L) c A, and from this and (4.71) the proposition will follow.
In what follows we omit the dependence onof the functionst, and?, .
Given anyr € S(0, A71L), eitherr ¢ A’ (1) U A_(1) or the following holds. There is

ar such that
7 —r| < C1(logr2)? and 1€, (M| < 3xlogr=2. (4.72)

If ¢,(F) = 0, then, sincd, (A7) = 0 andé, € G(L, k), we have from (4.69) that

A 1

0 =VEL,GR) > (4.73)
and so for any’ such thatlr’ — 7| < 5C1(logr2)?

1€, (") — OA(r" — F)v| < A[MA(BC1(logr~3)?)?/2] < he, (4.74)
where

324
M= sup ' r () ) (4.75)
Ir—AF|<5C1a(logr—2)2 or;dr;

Therefore (4.64) and (4.65) hold and that implies Aj (k).
If instead ¢, (7) > 0, or £, (7) < 0, then we want to prove that there is@ suitably
close tor so that (4.64) and (4.65) hold. To be definite we assém@) > 0. From

equation (4.72) and the fact thé1(~|a) € G(L, k) it follows that
Ve, (AF)| > % - guogrz. (4.76)

Let r(¢) be the solution of the following equation:
==V, (r () r) =7 (4.77)
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then

— = —[VE, (r(1))]? (4.78)

o) thatéy decreases along the curve (4.77). Observe that this, together with the fact that
¢,(-lo) € G(L, k), implies that

dé,, (r (1))
t

IVE, (r(t)] > % -~ g’x log 2 (4.79)

up to the firstt when Ey becomes equal to 0. At this time, callzif and letr (o) = Aro,

we havel, (Arg) = 0, andV#, (Aro) > 1/k. To evaluatery and |7 — ro|, we observe that
from (4.78), (4.79) and (4.76) it follows that

. . fo . 1 2
gx logr™2 = £, (AF) — £, (Aro) = / dr [VE, (r()]? > z0<k — gx IogA‘2> ) (4.80)
0

From equation (4.77), recalling that, by (4.69), the gradient is bounded e have, for
any A smaller than some value), which depends ok,

3 1 3 -2
|Arg — AF| < fok < kéx Iogkz(k -5 |og,\2> < Cia(logr=2)2. (4.81)

By equation (4.81)|r — ro| < |r — 7| + |F — ro| < 2C1(logr~2)? so that (4.64) holds. We
define® andv so that

Vi, (Aro) = 6v. (4.82)
An argument analogous to the one given for proving (4.74) shows that (4.65) holds. This,
in turns, implies that € Aj(k), thus concluding the proof of the proposition. O

We next prove the analogue of proposition 4.2.2 for the functign,, . To this purpose
we need to define the sets analogously to definition 4.2.1.

Definition 4.2.3. Let C; and ¢} be as in definition 4.2.1. Furthermore jf is a function on
Z%, (or onRY), we definef, as the function oryZ? such thatf, (yx) = f(x). Then for
any functionf as above and any number> 0, we introduce

Ao, f.y) ={reyZ’: f,¢) = A*2logr~2, for all ¥’ € yZ such that
Ir —r'| < Crw(logr=?)?} (4.83)
and set
A-(, fy)=Av(o, —f. 7).
Givenna as in (4.1) we set
Ar(w) = Ar(w, my,,, (-, t]0), v) . (4.84)
Given f, f, andC, as above, for an¥ > 1 we define

1 .
Aok, f,y)={re yZ% : there arerg, 6 € (k k) and a unit vecton

such that (4.85)—(4.86) below hgld
lro — r| < 2C1(logr—2)? (4.85)
|f, (') — 02142 — royv| < AMH%¢, forall +':|r' —ro| < 5Ci(logr=?)?
(4.86)
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wheree, is defined in (4.66) and (4.67).
We call
Ao(k) = Aok, my 1, (-, 1cl0), ¥) .
Lemma 4.24. LetL > Oand C > O, assume thab € F,,.(n,n,C) and that
x| < L(yM)7L, yx € A, (D), thenyx € A, (D) for all y small enough.
Proof. We will show that if¢, (yx|o) > (3/2)A logA~2, then, fora small enough
My . (X, t|or) = AM9/2 log =2

and this will prove the lemma.
We recall the definition (3.54) o/, :

M, (x,t.) = gty (te—tya) Z Pz):—rm (x, y)my . (¥, tnalo) . (4.87)
5

We then use (3.56) which gives, recalling that|x| < L,
Im,, (x, te]o) — My, (x, teo)| < A% [1+ L]” < A3/, (4.88)

We next estimate the difference betwetfy and¢,. We will prove below that there 8
so that

|)fd/2My(x, 1) — Ey()/x, tC|U)| < A ~4/2 glte=ing) ey —a)(te—tna)

| Y Pl i Iy, (3. alo) | + Ay
S
<oy, 81:=1.— Na (4.89)
where
Ay =172 N iy (39 tvalo) | Dy (x, Y) (4.90)
with
Dy (x,y) = |P/ _1y,(x,y) — / dr’ Ly 1=y r—1y, (Y X, 7| (4.91)

The proof of (4.89) easily follows from estimates below, used to bodpdand it is
omitted. By equations (4.13) and (4.14) (recall equation (4.5)) we derive the following
bound onm,, (v, tng|o):

7otNa+d/2] —

sup A2y (y tvalo)| = sup [A4%y Yy, (0, thalo)]

IYI<Rw,y IYI<Ry,y
cey’a™® )10 a1 (4.92)
We then have
A, < e Z D, (x,y)+ A2 grlteming Z D,(x,y). (4.93)

[YISRwN,y [YI>Rn.y

We use (4.128) to bound the first sum on the right-hand side of (4.93):
c/)\'—leh Z Dy(.x, y) < él(V{)\—].Gh +e_c"(tr—tjva)) < él,}/fl

[YISRwN,y
for suitable¢; and¢; > 0. For the second sum on the right-hand side of (4.93) we use
(4.129):

A —4/2 gtlte=ta) Z D,(x,y) < 2412 glte=tna) 9 |V Ry —LI g lte—1na) < Czygz
[yI>Ry,,
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wherec, and¢, > 0 are suitably chosen.
Collecting the above estimates, we conclude that theré ared; > 0 so that

A PM, (x, ) — £, (vx, telo) | < [EA1Py% + 8y ™ + oy ] < eyt (4.94)

From equation (4.88) and (4.94), recalling that by hypothésig x|o) > 3/21logAr~2, we

have that for ally small enough

my (X, 1e]0) = 2920, (yx, o) — 2003/% — )42y 8 > 3)14d/210g) -2 _ 15 1+d/2 |gg 2
(4.95)

From this the lemma follows. O

The analogous result holds ferx € A’ (1), it only remains to consider the case where
yx € Ay(1). The proof is similar to that of lemma 4.2.4, but we have to modify the bound
(4.30) since the priori estimate given in (3.55) is too rough. We do that in the following
lemma.

Lemma 4.2.5.Let C > 0 and assume that € F, ,;(n,n, C), then, for anyL > O, there
is ¢ so that

sup |M, (x, 1) — @, (x|o)| < A ¥/?(logr2)® (4.96)
aylxI<L

whereM, and 2, are defined in (3.54) and (3.58), respectively.

Proof. The proof is based on the fact th@t, is a sup ofM, over a ‘small’ spacetime
interval. Sincep? is smooth, more precisely it is close to a differentiable function (as
proven in the next section), then the difference on the left-hand side of (4.96) is bounded
by a factor proportional to the derivative &1, i.e. toA4/2*1, times the size of the space
interval, actually slightly larger than that to take into account errors.

In fact, from lemma 4.3.4

sup M, (x,t|o) — Q,(x|o)| < sup sup €7 VM, (x,s|o) — M, (y,s|o)]

Ay lx|<L X, YES* 17 L5 <ty
(4.97)
where
§* = {x : lyx] <AL+ (logr~2)%). (4.98)
We then use (3.54), lemma 4.3.6, (4.13) and (4.14) to baungd, (-, tx.|0). From this we
obtain (4.96), we omit the details. |

Proposition 4.2.6. LetL > 0, C > 0, k > 1 and assume thed € F,,.(n,n,C). Let
Ix|] < (Ay)"IL and yx € Ay(k), then there ist’ (independent of/) so thatyx € Ag(k")
with the same parametets v andrg.

Proof. By the definition ofAj(k), there arer, |yx — ro| < 2c1(logr=2)2, 6 € (k=1 k) and
v so that for all|r — ro| < 5c1(logi=2)?,

[€, (rlo) —0r(r —ro)v| < Ae, (4.99)
wheree, is defined in (4.66) fod = 1 and in (4.67) ford > 2. As in the proof of
lemma 4.2.4 we write for alb so that|yy — ro| < 5c1(logr=2)?,

[1y100 (9 el0) = 0252 (yy — ro)| < [My (3, 1) =y, (v 160 |
FARARM, (v, 1) = £, (yylo)| + 2721E, (yylo) — 0alyy —ro)v] .
(4.100)
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For the second term on the right-hand side of (4.100), we use (4.94), while for the third
term we use (4.99). We then have that

|m)/atnu (ya tclU) - —9)\1+d/2(yy _ I"O)U’ < )\'d/26y2 + )\1+d/2€]/

+|My (v, 1) — myy,, (v, telo)] .
(4.101)

Using equations (3.57) and (4.96) we have, for a suitable con&tant
My (3, 16) = 1y 1, (3, 16l0) | < (RS2 [IM, (v, 1] + A5 2(log a2’} . (4.102)
We call

W, () = [My (v, 1) = my,, (v, 2clo)| (4.103)
In equation (4.88) we have proven that
W, (y) < 223, (4.104)
From equation (4.102), using (4.101), we then have
W, () < & {A380 4 (W, () + 10232 (py — ropl + W, () + E14/2¢

FAM2e 4 314210 123} (4.105)

We next bound the terms in the square bracket on the right-hand side of (4.105). By
equation (4.104) and the fact thiaty — ro| < 5c1(logAr~—2)?, there is a constant so that

29, (y) + 1042 (yy — ro)v| < 4ed¥? + kM /?Be1(log A ) < cokd T2 (loga?)?.
(4.106)

We have used that < k and that 3/2 > 1+ d/2.
Then, using the definition (4.66) fet,, we bound the other terms in the square bracket
on the right-hand side of (4.105) as

eadzyt g AMd2e 1) H42(1oga?)3 < keaat T2 (log 1 72)3 (4.107)

wherecs is a suitable constant. From equations (4.105), (4.106) and (4.107) it follows that
there isc4 so that

W, (3) < ca(A2278% 4 3)3+3/2(10g 1 72)?) . (4.108)
Using equations (4.101), (4.103) and (4.108) we then get
My, (3, telo) = O 2 (yy — ro)v] < a[25/7278% + 1223732 (log 172)%]
_i_é)\d/ny + )\’1+d/26y
< )Ll+d/2[c4k2d—l—80b —|—C4k3kd+2(logk_2)9+ék_ly2 —i—e,,].
(4.109)

Then, from (4.109), for a suitable constant
[y 40 Vs 1l0) = 022 (yy — ro)v| <K' /k 242, (4.110)

which proves the proposition. O
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4.3. The random walk with jump intensify (x, y)

In this subsection we study a single random walkfnwhich jumps with intensity, (x, y),
proving that it behaves essentially as a jump proceRonith jump intensityJ (|r—#'|) dr’,
provided we make the correspondence> r = yx. From that the properties stated in the
previous sections easily follow. Our analysis is based on classical arguments in central limit
theorems, but due to the specificity of our problem with mixed limits> 0 andr — oo,
we have not been able to refer to the literature.

We use the shorthand

pl (x) = p{ (0, x) (4.111)
y > 0,1 < t*. We then set
Pl =Y & pl(x) —n<k<n i=1,...d. (4.112)
Thus
1 e et o (Bt 1)
Y(x) = dk e kv gy C T 4.113
o= o | > (4.113)
Ju=> Y50y, ¢ =plo. (4.114)
y

As usual in central limit theorems, we distinguish different regions of valugs Wfe start
from ‘large k’s’, i.e. |ki| > ¥y, b > 0, we will be interested irb small enough. As
J, (0, y) = J(lyyl), with J a smooth function, the valueg| > y give small contribution,
as we are going to prove. Létx) be a function orZ with compact support and call

1P =y M -16+D] 190 =y PG -1 +D].  (4.115)
Integration by parts on the lattice yields:
Lemma 4.3.1.Letk # 0, then, for anyn > 1,

) n ik " ;
Seim = (1) (1ew) T, (4.116)
y Y

Proof. Since (4.116) is obviously true for = 0 the proof follows by induction on. O
Going back to (4.113) we define fére (0, 1)

1 i e (B
V> ikx c*t Y,
x) = 7/ dk e € 4,117
Pr (27T)d |ki|>y Lt ; n! ( )
where the integral is extended to afk for which there exists € {1,...,d} such that

lk;| > y1~?. We shall hereafter use such a shorthand notation without further mention. We
first estimatep;”~, the contribution of the other values bfandn will be analysed later.

Lemma 4.3.2. Given anyb > 0, (see (4.117)) for any integet there isc so that for allx
andy >0

Y] < eyt (4.118)
Proof. SinceJy(O, y) > O, ,3|jyk| < ﬂfy.o = C*, recalling that|k1| <m,i= 1, e d, we
get
d .
Pl @1< dky 1 e, 0.5
' (2m) lka|>y 2=t YZZ;(I | 21: ’ |
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Keepingys, ..., yq fixed, we setl (y1) = J, (0, y), with y; the first coordinate of. For
any ¢, [19(y)| is bounded uniformly iny, hence, using (4.116) we derive (4.118). O

We write
pl ) = p! %) + pl =) + I () (4.119)
where
pl o) = 8, 0" (4.120)
- - . td, )"
pl=(x) = @2m)™ f dke ety Bty (4.121)
[ki|<y1? n>1 n!

where, in agreement with the previous notation, the above integral is extended to the set
{lki| < y¥?}, foralli =1,...,d. Inthe next lemma we boung! ~(x): our bound is
‘good’ only wheny'~%t — 0, as in our case where< clogy 1, for somec. For larger
values of: we need a more accurate analysis.

Lemma 4.3.3.For anyb € (0, 1) there isc so that

- d : . 1J (k)" B
() — (21;)‘1 . dk e-1rx gt Z w < pdgery b ghety™ (4.122)
i<y~ n>1 '
where
J (k) =fdre””J(|r|). (4.123)
Proof. After the change of variables — yk, (4.121) becomes
d 7 n
V,< 14 —ikx n—c*t (ﬁt‘lysyk)
= dke "™ e — 4,124
o= ) ; . (4.124)

There isc so that for alllk| < y=*
|j(k) - jy,)/k| < C)/l_h (4125)
and, for anyn > 1,

[F " = J2 | < n(1dy0l + ey ?) eyt (4.126)
The left-hand side of (4.122) is then bounded by
Vd dk e—c*t (IBtcyl—h) ec"l-&-ﬁtcyl”’
2r)? Ji<pr '
The lemma is therefore proven. O

The following theorem just summarizes the results in (4.118) and (4.122):

Theorem 4.3.4.For anyb € (0, 1) there are¢ > 0 and¢ so that for allx and all ¢ < ¢*

* d . . tj k n
Pl —e o 2o [ aetre BB oyt aaa)
ki <y~ n>1 :
prx) —e 80— yiq(yx)| < eyt (4.128)

whereg, (+) is defined in definition 2.3.1.
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Remarks. As already mentioned, (4.127) is proven by (4.118) and (4.122); to prove (4.128)
we have used that (4.118) holds also whiwk) replaces/,, .

We next prove bounds op! (x), the first one is trivial, it does not require what done
so far:

Lemma 4.3.5. There are§ > 0 andc¢ so that for all¢ and ¢

Y pm<ee [ drgn <ceh, (4.129)
r|=

Iyl>y=%¢

Proof. Since the random walk jumps at mostjy?, the left-hand side in the first inequality
in (4.129) is bounded by

e_(;'z Z (c*tl)n
n:

n>0t

from which the first inequality follows; the second one is proven similarly. O

Remarks. Using lemma 4.3.5 we can improve (4.128), proving the following estimate used
previously. There i > 0 and for anym, ¢’, we have that for alk and allz < ¢*,
e Oy)?
Y(x) —e 80— y! <elyf——1— 4.130

P! (x) o—viayx)| <cy 1% Gy )" (4.130)
In fact for |x| < Cr*, equation (4.130) is implied by (4.128) within (4.130) smaller than
the parameter in (4.128). For|x| > Ct*, we use (4.129). We then get the following
condition onc’:

)yt < sup eI Gy e

[x[=Ct*
Recalling that* > z.logy 1, by choosingC large enough, we see that the above condition
can be satisfied with a finit¢ uniformly in y, hence concluding the proof of (4.130).
Many of the bounds of section 3 are a straight consequence of lemma 4.3.5. The bounds

in (3.12), however, require some more care.

Lemma 4.3.6.For anym > 0 there isc so that for allx and all ¢ < ¢*
A+ yAlxD™ Y pl (v =)@+ yAly)" < c. (4.131)
5

Proof. Equation (4.131) is easily proven for< 1, so that we suppose, hereafter in this
proof, thatt > 1. If a, b andm are all positive

(@+b)" < 2"@" +b") (4.132)
so that, callingA the left-hand side of (4.131),
A2+ 22" Ay M) ™ Y pl (v = D" [Ix]" + |y = xI"]. (4.133)

Y
We thus reduce the proof of (4.131) to proving thatis bounded, where

Api= 0" Y plyI". (4.134)

Sincer < cA~2, for somec, using (4.129), foiL large enough angt small,
AL<2+ (0" Y. plOII" =12+ A, (4.135)

1<hylyl<AiL
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with A, being defined by the last equality. We have excluded the valuygs < 1 to avoid
the divergence in (4.138) below fori|y| — 0. By equation (4.127)

As < Ag+oy™ o Y yI” (4.136)
Aylyl<a—iL
d - . tJ (k)"
As ::‘ Y df dk " > ety e*ffzu . (4.137)
(2m) kil<y = 1<y Aly|<A-1L n>1 n

The second term on the right-hand side of (4.136) is bounded by
C)/d+; (ya)" (L)/_l)»_z)l7l+d — CV§K_171_2dLm+d

which vanishes ag — 0 for any fixedL, because.”? = logy ~2. It thus remains to show
that A3 is bounded.
Let m’ be an even integer larger than+ d + 2, then, integrating by parts with respect
to e ¥, we get
d

y , o . (BtI (k)"
Az < dk A" QylyD"™ = N ey et Yy
(Zﬂ)d ki | <y =* léyA;Kk_lL IEZI,,,r akl ; n!
(4.138)
where
d
T = {I =(1,...,1q) GZd . l.j >0, Jj= 1"”’d;2ij =m’} (4139)
j=1
and the coefficients; are such that
d .
" ="y Y =[]y y=01...v) (4.140)
1L, j=1
(recall thatm’ is an even integer);
al ail 81}1
(4.141)

okl T ok Ak
Observe that
e =
cj— = \val .
1€, ok’

Recalling thatm’ > d + 2, the sum overy is finite. This is like the Riemann sum of
the corresponding integral, if we had the volume elem@m)?, but we only havey< in
(4.138). We are then reduced to prove that there is a constsmtthat

| a! . (Bt (k)"
[ a2 gty
[ki|<y~?

k! n!
forall 7 € Z,,. .
SinceVJ(0) = 0 (J depends onr|) and|J (k)| < 1 for k #£ 0, (by the positivity ofJ),
for any§ > 0 there isco > 0 so that
|J (k)] < J(0) — cok? k| <6. (4.143)
Furthermore, by the smoothness .bf.), for anyn > 1 there isc so that|J (k)| < clk|™,
hence, given any > 0 there ise = ¢(§) > 0 so that

JRI< IO —e k>3, (4.144)

<c (4.142)
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(Later in this section, we will also need the following: thereds> 0 so that for alls small
enough,e(8) = €82.) Finally, there are function$l’,(k) so that, for alln,

9! L
Wj(k)” Z Jky"Pglkyn(n—1)...(n — p+1) (4.145)
(the terms withp > n are therefore 0). The funcUomSIﬁ(k) are proportional to products

of derivatives of/ (k), their only property we are going to use is that there are coefficients
¢p,m Such that

k| (2p—m')+

W n+ = maX{I’l, 0} . (4.146)

|67 ()| < cpm
To derive (4.146) we use the decay propertiesfch) and its derivatives, hence the
denominator in (4.146). The expone(®p — m),. bounds from below the number of
factorsa.J (k) /dk:, i € {1,....d}, present inp! (k). Since fork small,d.J (k)/dk; goes like
k;, we obtain the numerator in (4.146), we omit the details and give (4.146).
Using equation (4.145) we have

Ty & j
. w =Y ol (kB eI, (4.147)
>1 ' p=1

>

We fix § > 0 and then split the integral in (4.142) oviét < § and |k| > §. The latter is
bounded, using (4.144) and (4.146), by

ame / dk 1(1k| > 8, [ki| < ¥ ) D 1k (k) |(Br)? @ P+ O ey (4.148)
p=1

which vanishes becaus€ > d. In deriving (4.148) we have used that
BIO =ct+pt(JO) =00 |Bt(J(0) = Jp0)| < cyr?

for somec > 0.
The integral in (4.142) extended tb| < § is bounded, using (4.147) and (4.146), by

’

)\m'fd / dk Z(,Bt)pcp,m’ |k|(217*m,)+ efcokzﬂtfc"tJrﬁJ(O)t
kl<s

p=1
m'/2 m’
< c ka/—dtp—d/2 +¢ Z )Lm’—dtp—(p—m’/Z)—d/Z
p=1 p=m’'/2+1

< " ()Ltl/Z)m’—d

(recall that since the beginning of the proof we have restricted ourselves:th). Since
AtY? is bounded, the proof of the lemma is completed. O

Remark. Observe that when proving lemma 4.3.6, we have actually shown that for any
a > 0 and anym there isc so that

c(yr)?

— forall x #0. 4.149
@+ y Al * (4.149)

pi(x) <

We next turn to the proof of (3.148). The proof is essentially similar to that of
lemma 4.3.6, but we give a few details, for the reader’s convenience.
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Lemma 4.3.7.Let ¥ (x) = w7 (0, x) be as in (3.6) (wittu > 0); let m" be an even integer
larger thand + 2. Then, for any multindex, (see (4.140) for notation) there isso that for
all x

o ot
1+ (ylxp™
The discrete derivative on the left-hand side of (4.150) is defined in (3.139). Analogously if

7 > 0, there isc so that

51 S+
axl CIA-Z(”)‘ < T o Gy (4.151)

< (4.150)

al
™

Proof. The proof of (4.151) is completely analogous to that of (4.150) and we omit it. We
shorthandt = 1, = ax~2. By (4.129), recallingp}: (x) =a"(x), x #0,

JTV(X) <c efy\x|+8t

hence (4.150) fofx| > y~*LA~2, with L large enough. We shall then restrict, hereafter in
this proof, to|x| < y 1A 72L.
We recall that
1 e e (B )"
14 — ikx \PEy k)
¥ (x) = (zn)d/dke Yo

n=1

If we estimatedr? (x) using (4.127), the error on the right-hand side would give a divergent
bound for the left-hand side of (4.150), we thus need a more accurate analysis. We go back
to the decomposition (4.119). Using lemma 4.3.2 we have that forbanyO and anyk
there isc so that for allx
1
el = ol < et (4.152)
Sx!

By equation (4.152) it is therefore sufficient to bound the derivative/of and for
that we use the representation (4.124). Using the bound

51
sxl
we get, proceeding as in the proof of lemma 4.3.3,

i ‘ 8" . 17 (k)"
‘IP’M(X)‘ ; dk [ e'kw} ey PR

Sx 2m)4 J i<y Sx! Si n!

g-ikyx < Ayl k| <y~

< /Ay iy d=bd gy 10 gherr'™ (4.153)
The right-hand side is bounded by a constant times
A—\I\y—b|1|yd—bd—h+lk—2 < yd+§ ¢>0

if b is chosen small enough, i.e(JI|+d + 1) < 1.

Extending the second term on the left-hand side of (4.153) to a function @fR?,
we can replace the discrete derivative by integrals of ‘continuous derivatives’. We have an
extra factor(ry)~!"!, so that we are left with the estimate of

d

14 | 3 ik 2 :
- X A—c*t

(J (k) pt)"
B=—"—— —_— 4.154
@) Jigi<p w1 ! ( )

n:
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We distinguish whethejyAx| < 1 or > 1 and consider explicitly the latter case, where the
argument has extra difficulties. Let' > d + 2 be an even integer, then

d I
. e 4 —17,1 d g ikyx
B = (—iyx A dk 271k v
0 g [ 8 B e

I'el,,

m

ey WA (4.155)

|
n=1 n:

see (4.138) and (4.140) for notation. Recalling thatx| > 1, the first factor in (4.155)

plays the role ofP in (3.148).
It remains to prove that there isso that for anyl’ € Z,,

oy —dtm ) ooty T KB
Byi=A /|k.<ybd“ e {k Ty S < e (4.156)

= n!
(the factora=¢ comes from having reconstructed the volume elem@mt)? present in
(3.148), we only had/? in (4.155)). The proof of (4.156) is now very similar to that of
lemma 4.3.5, see (4.145)—(4.149). ét< I andl” < I, then we need to show that there
is ¢ (independent of, I’, I”) so that

-1 7 n
0 - Z (J (k) B1)

8k11_1u nl

<c. (4.157)

By = x4 / dic 2=
kil<y ="

n>1

By equation (4.147) we then have, callidg= |1’ — I"|,

e ~
B, < A7 / b dk AT Z |y (k) (Br)? 17O~ (4.158)
ki |<y~ p=1

Using equation (4.144) and recalling that= a1 =2, the integral overk| > § is bounded
and vanishingly small a8 — 0. We use (4. 146) and (4.143) to bound the integral over
|k] < 8, which is then bounded by

A7d+mu|1|/‘ dk k”’ﬁ| ”21: | |k|2p7\1/71”|(18t)p ecokzﬁt—c‘t+ﬂf(0)z
ki |<8 p=1
<< Z g —dm =\ = |I=1"]/2~d/2+p
p<II'=1"]/2
+c" g = =1 =1"1/2=d /2, =p+|I'=1"1/24p
p>1'=1"/2

Recalling that ~Y/2 = a—/?), we have that the last expression is bounded by a constant
and the lemma is proven. O

Proof of (4.38). The proof is essentially that of the local central limit theorem, (after having
explicited the dependence gnby using theorem 4.3.4). For the reader’s convenience, we
give some details.

We call

T =1, —tyg = A %(z. — Na). (4.159)
Recall that
1 —ikr —/SJ(O)T (lgTJ(k))n
qT(r):W/dkel Z

n>1
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We call g7 (r| < 8) the integral extended tik| < § and we choosé = §; = T-1/279,
with 0 < ¢ < 3. We then have

1

qT(r| <3) — v dk eikr T =1 (0) < 8 e PIOT (4.160)
@2 J i<y

By a Taylor expansion we have for a suitable constant
| (k) — J(0) + IDK?| < ck® forall |k| <&7. (4.161)

We also have

‘ / dk efikr[efﬂT(f(O)ff(k)) _ e*ﬂTDkZ/z]
k| <87

gf dkefﬂTDk2/2|1_ ec,sTk3|
[k|<87

< / dk efﬂTDkz/chlTk?)' g f dk T*d/z efﬁDkz/ZC/Tfl/2|k|3
[k|<dr [kI<T¢

< (/dkeﬁDk2/2|k3|)c/Td/21/2 < C//T—d/Zfl/Z' (4162)
From equations (4.160), (4.161) and (4.162)
1 i 2
< 8p) — di e \kr =BT Dk?/2
qr(rl < 8r) 7(271)0,/

< 5% e—ﬁJ(O)T +C//T—d/2—1/2+/ dk e—ﬂTDkZ/z
|k|=87

e e (4.163)

Calling gr(r| > §&r) the contribution togy coming from the integral extended to
|k| > 87, we have

arlrl = 5] < [ pridw@TIO- O
|k|>d7

< f BT1J (k)| &7/ < / BT|J (k)| e 7T /2 (4.164)
|k|>d7

whereeq is defined below (4.144).
We have thus proven (4.38) for|T—Y2 < 1. For|r| > cT, c sufficiently large, we can
use (4.129), we are thus left with/2 < |r| < ¢T. We can repeat the previous analysis for
all terms except for (4.162) where we need a few extra considerations. We rewrite (4.161)
as

J(k) = [J () — 1Dk = k3T (k) (4.165)
with J (k) a C™ function with fast decay. The left hand side of (4.162) is equal to

A= / dk g k7 @ PTDI/2[ fTII () _ 7). (4.166)
Ik|<sr
Let m’ be an even integer, then
A< |r|—m’ / [Vm' e—ikr]e—ﬁTDkz/Z[eﬂTk3f(k) — 1] (4.167)
Ik|<8r

where the gradients is with respectio Integration by parts yields

A< |r|7m'/k |V (e FTOR2[fTI0 _q))| 4 R (4.168)
=
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where the remaindeR is a sum of integrals extended i = é7: since8$T — 0 because
¢ < 1 the remainder is bounded by

R < cehPTH2 (4.169)

for a suitable constant (we omit the details). By the change of variables> 7Y%k, we
obtain from (4.168)

A< |rT71/2|7m/T7d/2/ dk |Vm/{e—ﬁDk2/2[eﬂT’1/2k3J~(kT’1/2) . 1]}| )
[kI<T*®

Recalling the definition of”, see (4.159)7 ~%/2 is proportional tox, it is then easy to see

that

A < c(Ar])™™ A+t

for a suitable constant, we omit the details.
As has already been said, the estimates of the other terms which contribytecém
be treated as whejr| < 171, the proof of (4.38) is thus completed. O

5. The development of the interfaces

In this section we study the process in the time interyakf]. We will see that the statistical
solutionsm,, (-, t*|o), to = 27219, 10 € (0, 7.), describe, with large probability, clusters

of fully developed phases, separated from each other by interfaces. This result is proven
wheno is in a set ofgﬁ c {—1,1}%, see theorem 2.5.3. Since in the linpit— 0, the
empirical spin averages (see (2.43)) are with large probability close to the same averages
of m,, (-, -lo), see theorem 3.4.0, this will complete the proof of theorem 2.5.1.

The problem of the development of the interfaces is a well known problem irobe
literature, de Mottoni and Schatzman [7], and Chen [3] have solved it for the Allen—Cahn
equation (2.18). We extend the results obtained by de Mottoni—-Schatzman and Chen to an
evolution defined by (2.13), which is a result interesting in its own right. We actually prove
it for the evolution (2.22), but the extension to (2.13) is then straightforward.

Analysis of the statistical solutions in the time interjral t*]

Let o € (0,7.) anda > O be such thata = 19, n a positive integer. LeC > 0, and
o € F,,:(n, n,C). We then consider the function, ,, (x, t|o) defined in definition 2.2.1.
From proposition 4.2.2, lemma 4.2.4 and proposition 4.2.6, we know that folan\0,

Lo .o —1
liminf Ilryn_lrgf P7 (SO, 27'L) C Ap) =1

where the setd;, C R? is determined by the behaviour of,, (-, tlo):
A=A, (HUA_(D) U Ag(k) (5.2)

with AL (1) and Aq(k) defined in definition 4.2.3. The points iA. are called thesasy
ones in fact, in a suitably large neighbourhood of each of them, the funeiipp, (-, 7.|o)
is bounded away from 0. Using of the barrier lemma (see lemma 3.2.1) we will see
that m, (-, t*|o) goes toxmg, asy — 0. In a neighbourhood of the points in
Ao(k) my ;. (-, t.|o) is not bounded away from 0, and we will prove that in these points
my, 1, (-, t*]o) approaches the instanton solution (see definition 2.5.2).

To understand the definitions in the sequel let us imagine for simplicity that
m,.. (x,t|0) is replaced by a function(r), with r = yx. Assume, moreover, that
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v(r) = A%u(ar), with u a smooth function and then ignore thats a discrete variable,
letting r € RY. We then denote by(r, 1) the solution to (2.13) with inital datum(r).
Givenk > 0, r is then called areasy pointf

for all #' such thatr — r'| < C1(logr~?)? eitherv(r’) > Af orv(r’) < =2 (5.2)

whereC; is defined in definition 4.2.2.

Using the barrier lemma we will prove convergencevdf, 1*) to +mg wheneverr is
aneasy pointfor any choice ok. There are, however, in general, also points which are not
easy, as for instance in a small neighbourhood of a pgirstuch thatv(rg) = 0. Assume
for notational simplicity that/ = 1 and suppose that (Arg) # 0. Then

r =ro+ 2C1(logr=2)2

is already areasy pointat least forA small enough and sufficiently large.
In fact if |Ar — Arg| < & for somes > 0, then

v(r) = A2 () (r — ro) .

Therefore for all~’ such thatr — r'| < C1(logi=2)?, we have thatir’ — Arg| < 8, if A is
small enough. So if we take > d/2 + 1 (due to the presence of the teqingi—2)? the
equality is also allowed), (5.2) holds hencés aneasy point

We are then left with the points — ro| < 2C1(logx=2)2. We have a separate argument
which allows to control the solution #t — ro| < e(logi~2)? with € > 0 small enough. We
can then use the barrier lemma for the points at distaneerg| > e(logx~2)? up to time
eC1(logr—2)?, this time interval is long enough to reach equilibrium, thus completing the
analysis of all points such that — ro| < 2C1(logir=2)2.

Lemma 5.1.2. There ares’ and ¢ so that for allw and all yx € AL (w),

|11, (%, 16 + 0(l0gA"2)?|0) F mp| < @708+ (5.3)

Proof. Given anyw and anyyx € A, (w) we define

my(y, t|o) it |y —x| <y Ciw(logr?)?
&) =

By the hypothesis on, we then have

A2 10g a2 elsewhere .

gy (») = A2 10g a2 for all .

We letg, (-, 1) the solution to (2.22) with initial daturg, .
Denote byz, (¢), t > 0 the solution of

dzy
dr
Then, by the monotonicity property of (2.22) (see (2) of lemma 3.2.1), foy all
g (v, 0(10927%?) > z, (@(l0gr~??) .
Moreover,z, converges exponentially tas ., the positive solution of

= —z, +tanhgJ, oz, 2,(0) = A¥/210g 172,

mg, = tan”ﬂjy’omﬂ’y} .
Since|fy,o — 1] < 'y (see (2.6)), there is so that|mg —mg | < cy. Therefore there are
¢ > 0 andc; > 0 such that for ally

72)20)

g, (v, w(10g172)2) > my — cp et 109%
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We have used that = exp(—1~2) so that giverz w there is some’ so that

—212
lmg —mpg,| <c g ¢(0gr™w

On the other hang, (y) < 1, for all y and agairz,, (¢) starting fromz, (0) = 1, converges
exponentially fast tong ,,, so that the bound (5.3) is proven fgy in the place ofn,. By
the barrier lemma we have

72)2(1)

my 1, (%, te + 0 (10gA~2)2|0) — g, (x, 0 (logr~2)?)| < ¢ e7109*

equation (5.3) is therefore proved. The proof whene A_(w) is completely analogous,
hence the lemma is proven. O

We next consider the third sgly. Notice that ifr € Ap then (4.86) hold. This inequality
can be rewritten as follows:

012y x — (ro+ €,0)]v <myy, (3, 1]0)) < O [yx — (rg — €,1)]v (5.4)

for all x such thatjyx — ro| < 5C1(logx=2)2.
¢, therefore has the meaning of the displacement alongecessary for bounding
(locally) m,, ,,, in terms of a linear function.

Proposition 5.1.3. There isc so that for anyk > 1, if yy € Aq(k), andrg and v are the
corresponding parameters as in (4.85), then

Im, .., (x, t*|o0) — m((yx — ro)v)| < ce, forall  fx:|yx —rol < 2C1(logr=2)?
(5.5)

wherem is the instanton, defined in definition 2.5.2, andis given by (4.66) and (4.67),
respectively, whed = 1 andd > 1.

Proof. We first prove a lower bound, then an upper bound which, together, yield (5.5). We
start from the lower bound and divide the proof into several parts.

Step 1(Reduction tod = 1). Leti(z,t), z € R, t > 0, solve (2.13) ind = 1 with J
replaced by/, i.e.

on(z, R -,
”(;t D _ ite.n) +tanhB( % i)z, 1) (5.6)
where
J(z]) = dr J (|22 + r3|¥?) (5.7)
Rd-1
and with initial condition
or+d2; if |z| < 4Ci(logr—2)?
lo(z) = { OA1F9/24C,(log r~?)? if  z>4Ci(logr2)? (5.8)
—011424C, (logr=2)2 if  z < —4Ci(logr=2)2.

Let x, ro, v andC; be as in (5.5), then
my, ., (x,t*o) =iz, t* —t.) — ¢y’ — ) g (l0g27%? z=(yx—ry)-v (5.9)

whererg = rg + (¢, + y)v and¢, ¢; and¢ > 0 are coefficients which will be specified in
the course of the proof.

Proof of step 1. We refer to theorem 2.1.8 of [8] for the proof of the following statement:
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Statement 1
There are¢ > 0, ¢ anda > 0 so small that the following holds. H(r,t), » € R and
m,(x, 1), x € Z* solve respectively (2.13) and (2.22) foe 0 and

m(r, 0) = my([y_lr], 0) for all r

then
Im(r, t) —m, ([y *r],0)| < éy* for all » and for all + < alogar™t. (5.10)
We define

uo(r) = my ([y ~'rl, telo). (5.11)
We then denote by (r, 1), t > t., the solution to (2.13) with

u(r,t.) = uo(r). (5.12)
From equation (5.10) it then follows that

My, (X, 1%]0) = u(yx, 1) = &yt . (5.13)

We therefore need a lower bound @@, *). Letrg, 0 andv be the parameters corresponding
to yy € Ag(k). We then have, by the definition ofy(k), see equation (5.4),

uo(r) = O 2lr — (ro + €, )]y for all : |r — ro| < 5C1(loga~?)? (5.14)
where
€, =€ +v. (5.15)
We define
A2y if |rv] < 4Ci(logr=2)2
io(r) = § OA24C, (logr=?)? if  rv>4C;(loga2)? (5.16)
—oA1424C, (loga—2)2 if  rv < —4Ci(logr2)2
and we denote byi(r, r) the solution to (2.13) withi(r, 0) = uo(r). We let
o =Tro+ €,V (5.17)
and we observe that
lro — 1] < €, < C1(logr=?)?. (5.18)
Then from (5.14), (5.16) and (5.18) it follows that
uo(r) = dig(r —rg) forall r:|r—rjl <4Ci(logr=2)?. (5.19)

We next apply (4) of lemma 3.2.1, with= 1 and7 = (logx2)? = t* —t, as we are going
to explain.
Let r be such that

Ir — ro] < 2C1(logr=2)2

and consider’ € S(r, C1(logr=2)?), i.e. the sphere of center and radiusCi(log1=2)?,
then from (5.18) we have

Ir' — gl <|r' —r|+|r —ro| + |ro — r§| < 4C1(logr=?)?
so that for allr’ € S(r, C1(logr=2)?), uo(r’) = iio(r' — rg), then from (3.26), we have that

u(r', iy z a(r' —ry, t* — 1) — ¢} g (l0gr%? (5.20)
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We are therefore reduced to the analysisiof r). We let
I =rv

and we observe thaly is a function ofz alone. Therefore, givedg(z) as in (5.8), we
denote byii(z, #) the solution to (5.6). It is not difficult to see thatr - v, r) considered as
a function ofr € R¢ andr > 0, solves (2.13) (in its original version, withand J), hence,
by uniqueness,

i) =00 v, 1). (5.21)

This concludes the proof of step 1.

We are now reduced to a one-dimensional problem with the antisymmetric monotonically
non-decreasing initial daturdy.

We are going to use the following properties proven in [12]

Statement 2.

Let f(z, 0), z € R, be any antisymmetric function non-negativefge 0 and not identically
0. Let f(z,1), t > 0, solve (5.6) with initial datuny (z, 0). Then the following holds.

() f(z,t) is antisymmetric for alt > Oand f(z,7) > Oforall z > 0andr > 0.

(ii) There arec and¢’, which depend ory (-, 0), such that for allz > 0

suplf(z, 1) —m(z)| < c'e . (5.22)

Because of (ii) of statement 2, we know thigt;, r) converges exponentially fast to.
This result, however, does not help us directly, because the rate of convergence (i.e. the
constantc in (5.22)) does depend on the initial datum, which, in our case, depends on
Therefore the convergence o may, in principle, occur much later than in (5.5). To solve
this problem we use the barrier lemma and lemma 5.1.2 to provejitatr)| grows to
finite values (bounded away from 0 independently.pexcept for a ‘short space interval’
of length (e logr=2)?, € > 0.

Step 2 Letu(z, 1), t = 0, be the solution of (5.6) with(z, 0) = ig(z) given in (5.8). Then
u(z, t) is antisymmetric and monotonically non-decreasing. Furthermore, give, let

7/ = 2¢Cy(logr=2)? ' =e(t*—1,) (5.23)
then
0 for ze€(07
fi(z, 1) > ¢ (5.24)
mg/2 for z>7.

To prove (5.24) we go back B¢ and, recalling (5.21), we easily check that
ZveAi(e i, 1), y)

for y small enough, cf definition 4.2.3. The inequality (5.24) then follows from lemma 5.1.2,
hence step 2 is completed.

We then definev(z, t), t > ¢/, as the solution of (5.6) with(z, ¢') an antisymmetric
function of z equal to the right-hand side of (5.24) for> 0. Notice thati(z, t') > v(z, )
for all z > 0 and that the reverse inequality holds for< O, therefore we cannot use,
at least directly, the monotonicity properties of (5.6) to conclude #tiats) > v(z, t) for
t >/, not even whery > 0. Nonetheless this happens to be true/ ifs a monotonic
non-increasing function.
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Step 3 u4(z,t) > v(z,t) forall z > 0 and allr > ¢'.
Step 3 is a corollary of the following:

Statement 3.
Let f(z,t) andg(z, t) be two antisymmetric functions which solve (5.6). Then

f(z,0) > g(z,0), forall z > 0, implies that f(z,t) > g(z,1), forall z > 0 andr > 0.

Proof of statement 3. Since f(z, t) is antisymmetric, the functiory (z, ¢t) restricted to
& > 0 still obeys a closed equation. To make it explicit, we rewrite the non-local term in
(5.6) forz > 0 as

fRdz’fuZ’—sz(z’):/ dz’f(lz’—zl)f(z’)—/ dz' J (12 +z1) f (&)

0 0
Sincez’ +z > |7/ —z|, if z > 0andz’ > 0,

K(z,2)=J(z —z) = J(zZ +z)) =0

because/ is monotonic non-increasing.
We then have that for > 0

d
a—{ = —f +tanhBK * f}. (5.25)
Since K is non-negative, equation (5.25) has the same monotonicity property as (5.6),

statement 3 is thus proven.

We are now in better shape than after step 1, since we ‘only’ need a lower bound
on v(z,t) for z > 0. Recall thatv solves thed = 1 problem for: > ¢ and that it
is antisymmetric and no longer infinitesimal with asv(z,t") > mg/2 for all z > z'.
Unfortunately, we are still far from the end, sine&, +') = 0 in the ‘long space interval’
0 < z < 7/ with 7 = e(logA=2)?. We cannot use lemma 5.1.2 in, [0], because in that
interval v(-, t’) = 0. We will exploit at this point the other mechanism of growth: the
‘infection’. We shall see that the positive valueswht z > 7’ spread with finite velocity,
and they invade the positive real axis in a time proportional’ to

We are going to use the following:

Statement 4. Lef(z,¢) andg(z, t), t > 0, be two solutions of (5.6). Assume that
() f(z,0) is antisymmetric and non-negative for> 0
(ii) there isM > 1 such thatg(z + M, 0) is an antisymmetric function af non-negative for
z+ M >0.
(ii)) f(z,0) > g(z,0) forz >0
Thenf(z,t) > g(z,¢t) forall z > 0and allt > 0.

Proof. First of all observe that from (i) of statement 2 and the translation invariance of
(5.6), it follows thatg(z + M, t) is antisymmetric for alk > 0.
Let W(z, t) solve the equation:

WED _ g g« c2m i>0) (5.20)

To specifyy we need to impose both the initial value and the boundary conditions, namely
W(z,0) for all z andY(z,t) for all z < M and alls > 0. Observe that if we are only
interested in(z, ¢) with z > M, then it is enough to specify the boundary condition in
M — 1< z < M (and the initial datum it > M). We set

W(z,1) =0 foral +>0 andall z <M

WY(z,0 = f(z,0) forall z>M.

(5.27)
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Since f(z,t) > 0 for all z > 0 andr > 0, f(z,t) solves (5.26) with boundary condition
f(z,t) =2 Y(z,t) for M —1 < z < M. Since (5.26) has the same monotonicity properties
as (5.6), we conclude that

f(z,t) > W(z, 1) for all z > 0 and for allr > 0.
On the other hand
g(z,1) <0 forallz e (M — 1, M) and for all > 0
because it is antisymmetric aroutd. Hence by the same monotonicity argument
Wz, 1) > g(z,1) forall z > 0 and for allz > 0.
The statement 4 is therefore proven.
Step 4 There areT > 0andL’ > 0 so that forallz > 0
v(z, ' +T) > vz, 1" +T)
wherev,(z, t' + nT) is antisymmetric and such that
, 0 for 0<z<z -—-L
vi(z, ' +T) = my)2 for 21 (5.28)
To prove step 4 we use (ii) of statement 2. llétand L be such that
m(L') = 5mpg L=2L. (5.29)
We then definav,(z) as

0 if —L<z<L
wi(z +z — L) = { mg/2 if z>L (5.30)
—mpg/2 if z<-L.

Observe thatv; is antisymmetric around’ — L. We then denote bw,(z, 1), t > 0, the
solution to (5.6) with initial datum given by (5.30).
By statement 2, for alt > 0,

w1z +2 —L,1) >2m(z) —c e . (5.31)

Observe that, due to the translational invariance of (5u)z,t) can be obtained by
solving (5.6) with initial datum as on the right-hand side of (5.30) and then translating
it by z/ — L. As the right-hand side of (5.30) does not depend.pthe constants andc¢’

in (5.31) are also independent bf ChoosingT so that

e’ =1myg (5.32)
we have from (5.29), (5.31) with = L" and (5.32)
wi@ — L', T) > smg. (5.33)

ChoosingM =7/ — L', f = v andg = w; in statement 4, we have
vz, t' +1) > wilz, 1) forall z >z — L and forallz.
The proof of step 4 is thus concluded.

By iterating the previous proof we easily get
v(z,t'+nT) > v,(z,t' +nT) 220 (5.34)
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where the functions,(z,t' + nT) are antisymmetric and such that

, 0 for 0<z <z —nlL
va(z, ' +nT) = , , (5.35)
mg/2 for z>z' —nL
for all n < N where
logr—2)2
e, 10917

7 —NL =2L'+1 N < T

(5.36)
We have thus proven that
i(z,t' + NT) > Y(z) forall z>0 (5.37)

wherey(z) is antisymmetric and

P(z) = {0 Tozelali+d (5.38)
smg if z>2L+1.
Since forz > 0,
W(z) < won(z, '+ NT). (5.39)
From the monotonicity property it follows that
i(z, 1) = Y(z,1) forall z>0 forallt>¢+NT (5.40)

wherey(z, r) solves (5.6) with(z, 0) = W(z). Then, since’ is given by (5.23),
(t*—t)— (' +NT) > (log,\—z)z[l —€— eC1£:| > %(Iogx‘z)z

for a suitable choice of. We then have
iz, 1" —1) 2 Pz, ¢* — 1) — (' + NT)) forall z>0. (5.41)
By statement 2 witle and¢’ corresponding tap, we then conclude that
A, 1 — 1) = m¥ (&) — ¢ e c109r™)7/2 forall &>0 (5.42)
and from step 1
m, (x,1*, o) = miE) — eyt — ¢} g (1092727 _ 1 ge(logi=2)?/2 E=(yx —rjv.
(5.43)

We have thus completed the proof of the lower boundzfer O.
An upper bound for, , (x, t*, |o) is easier to prove. Definingo(r) as in (5.11), and
using (5.4), we have that

uo(r) < OX2[r — (rg — €,)]v forall r:|r—ro| <5ci(logr=?)? (5.44)
therefore lettingio(r) be as in (5.16) we have

uo(r) < dig(r — 7o) forall r:|r—ro| < 4cilogr=?)? (5.45)
where

Fo=ro—€,v. (5.46)

The analogue of (5.13) and (5.20) is

my, (x, 1%, o) < éy° +ii(yx — Fo, 1* — 1) + ¢, e 109 (5.47)
Like beforeii(r, t) = ii(z, t) wherer - v = z. By statement 3

u(z, 1) < ¢(z,1) forall z>0 (5.48)
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where¢(z, 1) is the antisymmetric function equal g for all z > 0. By statement 2, there
arec” and¢” so that for allz

bz 1" — 1) — (2)] < e 109A 7 (5.49)
From equations (5.47), (5.48) and (5.49)
My (6, 1%, [0) < 1 (2) + EyF + ¢ @ (097 p (7 e l00r Y (5.50)

equation (5.5) follows from (5.43) and (5.50), thus the proof of proposition 5.1.3 is
concluded. O

5.1. Proof of theorems 2.5.1 and 2.5.3

Proof of theorem 2.5.3.We takea so thattg = na and so small thatN —n)a > a(t.—Na).
We specify the segf’) in theorem 2.5.3 as the intersection Bf , . (n, C), with the set
{£,(-lo) € G(L,k)}, see (4.69). By (4.71), 2.46 is true with this definition@f’.

We specify the parameteR, in theorem 2.5.3 ast, = 2.rCi(logr=2)?, C; as in
definition 4.2.1. We also seti, (£) = my sign i, (¢|o), henceX = (£ : £, (¢|o) = O}.

In the proof of proposition 4.2.2, it is shown that for allsmall enough, i, (-|o) €
G(L, k), thenS(0, A1L) c A (see definition 4.2.1). Let us assumesmall enough, then,
if yx € AL(D), by lemma 4.2.4yx € A, (1) and, by (5.3) (witho = 1), we get (2.47).
Therefore all the points such thatyx € A/, (1) andd( Ay x, X) > R,, verify (2.47).

If yx ¢ A1), then, by (4.72) and (4.81), there i so thatiry € ¥ and
|[Ayx — Argl < R,. By proposition 4.2.6,yx € Ag(k), with same parameters, v and
ro. Then (5.5) gives (2.48), foy small enough). Notice that iyx ¢ A/ (1), and
d(ryx,X) > R,, then (5.5) gives (2.47), becauge(s) goes exponentially fast toig
ass — oo, as proven in [12]. We have thus completed the proof of theorem 2.5.301

Proof of theorem 2.5.1.We choose: so thatrg = na and we seQ;Z) = F, 4(n, C) then
from theorem 3.5.0 we have

P’ (o, 2 %10) € QJ(/Z)) >1—c¢.
Equation (2.43) follows from theorem 3.4.0. O
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