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Abstract This is the first of two papers devoted to the study of a non–local evolution equation that
describes the evolution of the local magnetization in a continuum limit of an Ising spin system with
Kawasaki dynamics and Kac potentials. We consider sub–critical temperatures, for which there are two
local equilibria, and begin the proof of a local nonlinear stability result for the minimum free energy
profiles for the magnetization at the interface between regions of these two different local equilibrium;
i.e., the fronts. We shall show in the second paper that an initial perturbation v0 of a front that is
sufficiently small in L2 norm, and sufficiently localized that

∫
x2v0(x)2dx < ∞, yields a solution that

relaxes to another front, selected by a conservation law, in the L1 norm at an algebraic rate that we
explicitly estimate. There we also obtain rates for the relaxation in the L2 norm and the rate of decrease
of the excess free energy. Here we prove a number of estimates essential for this result. Moreover, the
estimates proved here suffices to establish the main result in an important special case.

Introduction
The nonlocal and nonlinear evolution equation that we consider in this paper and in [6] is

∂

∂t
m(x, t) = ∇ ·

(
∇m(x, t)− β(1−m(x, t)2)(J ?∇m)(x, t)

)
(1.1)

where β > 1, ? denotes convolution and J is smooth, spherically symmetric probability density with compact

support.

This equation first appeared in the literature in a paper [20] on the dynamics of Ising systems with a

long–range interaction and so–called “Kawasaki” or “exchange” dynamics. In this physical context, m(x, t)

is the magnetization density at x at time t, viewed on the length scale of the interaction, and β is the inverse

temperature. This introduction is not the place to fully explain the physical origins of the equation (1.1), and

familiarity with them is not needed to understand our results or their proofs. Nonetheless, a few paragraphs

on these origins are likely to provide a useful context.

Consider a lattice Λ which is, say, Zn for some n ≥ 2. At each site on this lattice we have a “spin”

which is a random variable with values in {−1,+1}. There is given a probability density J̃ on IRn, taken

to be spherically symmetric, and the “length scale” of this density, say the square root of its variance, is
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much larger than the lattice spacing. A spin interacts with the “mean field” magnetization of all the spins

around it, where the mean is computed using J̃ , and the interaction is ferromagnetic, so that the energy is

lower if the spin has the same sign as the mean field around it. Once an interaction energy and an inverse

temperature β are specified, there is standard statistical mechanical procedure for specifying the equilibrium

measures on the spin configuration space; these are the so–called Gibbs measures.

It is then natural to study Markov processes in the spin configuration space that are reversible for these

Gibbs measures, and for which these Gibbs measures are invariant. One natural way to do this is to pick a

spin at random, and then to randomly either “flip” it, or to leave it be, with probabilities depending on the

energies of the flipped or unflipped configurations. Such processes were first investigated by Glauber [17].

Stochastic evolutions of this type are referred to as “Glauber dynamics”.

Another, which leads to the equation considered here, is to pick a pair of neighboring spins at random

and then to randomly either exchange their values, or to leave them be, with probabilities depending on the

energies of the exchanged and unexchanged configurations. Stochastic evolutions of this type are referred to

as “Kawasaki dynamics” [3]. The chief difference between the two is that the total magnetization; i.e., the

difference between the number of “plus” spins and “minus” spins, is conserved in the latter and not in the

former.

Now, since we have taken the length scale of the interaction J̃ to be much larger than the lattice spacing,

if one observes the system on the length scale of J̃ , one sees it in a continuum limit. Instead of seeing

individual spins, one sees a magnetization density m(x), which is the local average of the spins near x. Since

the spins have values in {−1,+1}, we have −1 ≤ m(x) ≤ 1. The evolution equation for m(x, t) that one

obtains in this limit is (1.1), with J related to J̃ by the scale change.

While this equation originated in [20], it was not rigorously derived there, where instead, another process

and a different equation were the main focus of study. Later, with x taking values in a torus T n instead of

IRn, (1.1) was derived from the underlying stochastic dynamics in [15]. In any case, our investigation starts

with (1.1), and it is independent of any of these derivations.

First, a fact that is basic to our work is that the equation (1.1) can be written in a gradient flow form.

To do this, we introduce the free energy functional F(m) where

F(m) =

∫
IRn

[f(m(x))− f(mβ)]dx+
1

4

∫
IRn

∫
IRn

J(x− y)[m(x)−m(y)]2dxdy (1.2)

where f(m) is

f(m) = −
1

2
m2 +

1

β

[(
1 +m

2

)
ln

(
1 +m

2

)
+

(
1−m

2

)
ln

(
1−m

2

)]
(1.3)

For β > 1, this potential function f is a symmetric double well potential on [−1, 1]. We denote the positive

minimizer of f on [−1, 1] by mβ . It is easy to see that mβ is the positive solution of the equation

mβ = tanh(βmβ) (1.4)

Then the equation can be written as

∂

∂t
m = ∇ ·

(
σ(m)∇

(
δF

δm

))
(1.5)

where the mobility σ(m) is given by

σ(m) = β(1−m2) (1.6)
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Then, formally one derives

d

dt
F(m(t)) = −

∫ ∣∣∣∣∇( δFδm
)∣∣∣∣2σ(m(t))dx (1.7)

thus F is a Lyapunov function for (1.1).

This suggests that the free energy should want to tend locally to one of the two minimizing values, ±mβ,

and that the interface between a region of +mβ magnetization and a region of −mβ magnetization should

have a “profile” – in the direction orthogonal to the interface – that makes the transition from one local

equilibrium to the other in a way that minimizes the free energy.

There is considerable interest in the motion of these interfaces. Giacomin and Lebowitz [16] have provided

formal arguments showing that on an appropriate length and time scale, in which one sees only the motion

of “sharp” interfaces between regions of constant magnetization ±mβ, the motion of these interfaces should

solve a Helé–Shaw or Mullins–Sekerka free boundary problem. They also consider other scalings leading to

interface motions such as Stefan problems. Formal work on the corresponding problem for the Cahn–Hilliard

equation has been done in [21], while rigorous results have been derived in [1] and [8] . The non conservative

dynamics has been more completely investigated and many of the corresponding problems have been solved

in [11], [12] and [19]. At the end of the introduction we shall go back to this.

To introduce the problem studied in this paper, consider a planar interface with m positive for x1 ≥ 0 and

m negative for x1 ≤ 0, where x1 is the first coordinate of x. Because the free energy is a Lyapunov function,

the interface profiles that we expect to see in the system should, after an initial time interval at least, be

such that they nearly minimize the free energy. To find the minimizer, one needs only consider functions m

of the single variable x1. Replace J by its marginal

J(x1) =

∫
IRn−1

J(x1, x2, . . . , xn)dx2 . . .dxn . (1.8)

and simply use x to denote the single variable x1. Then, it has been shown in [14] that there is a unique

function m̄0(x) such that

F(m̄0) = inf

{
F(m)

∣∣∣∣ sgn(x)m(x) ≥ 0, lim
x→±∞

sgn(x)m(x) > 0

}
(1.9)

Furthermore it is shown that m̄0 is an odd increasing function, and that

0 < m2
β − m̄

2
0(x) ≤ Ce−γ|x|

0 < m̄′0(x) ≤ Ce−γ|x|

0 < |m̄′′0 (x)| ≤ Ce−γ|x|

(1.10)

for positive constants C and γ depending on J and β. The first two of these estimates are proved in [14]

and the third one in [10].

The subscript 0 on the minimizer refers to the fact that the constraint imposed in (1.9) breaks the

translational invariance of the free energy. For any a in IR, define

m̄a(x) = m̄0(x− a) . (1.11)

These functions m̄a are the fronts whose stability is to be investigated here. ClearlyF(m̄a) = F(m̄0), so that

m̄0 belongs to a one parameter family of minimizers of the free energy. There is another family, obtained by
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reflecting the previous one, because the free energy is also reflection invariant. However, these two families

of minimizers are well separated in all of the metrics in which we shall work, and it suffices to consider only

one of them.

Now consider an interface profile m that depends initially only on the single variable x. Clearly, it does

so for all time and satisfies the evolution equation

∂

∂t
m(x, t) =

∂

∂x

(
∂

∂x
m(x, t)− β(1−m(x, t)2)

(
J ?

∂

∂x
m

)
(x, t)

)
(1.12)

This one dimensional equation for the evolution of fronts is the main focus of this paper. It has been shown

in an unpublished paper by De Mottoni e Dal Passo, [9], that the evolution problem for (1.12) has a unique

solution m = m(x, t) with ‖m(·, t)‖∞ ≤ 1, locally Holder continuous in IR× IR+ provided the initial datum

m0 ∈ H1
loc(IR) and ‖m0‖∞ ≤ 1. More complete and detailed information will be presented here and in [7].

The equation (1.12) not only has a Lyapunov function; it has a conservation law as well: For any b,

d

dt

∫ (
m(x, t) − m̄b(x)

)
dx = 0 . (1.13)

Therefore, if one defines a in terms of initial data m0 for (1.12) by∫ (
m(x, 0)− m̄a(x)

)
dx = 0 , (1.14)

one has for the solution ∫ (
m(x, t) − m̄a(x)

)
dx = 0 (1.15)

for all t or at least all t such that m(s) is integrable for all s ≤ t.

Now formally invoking the Lyapunov function and the conservation law, it is easy to guess the result of

solving (1.12) for initial data m0 that is a small perurbation of the front m̄0: The decrease of the excess free

energy should force the solution m(t) to tend to the family of fronts, and the conservation law should select

m̄a as the front it should be converging to, so the result should be that

lim
t→∞

m(x, t) − m̄a(x)

with a given in terms of the initial data m0 through ♣conserve .

The main result obtained here and in [6] is the following

Theorem 1.1 Consider initial data m0(x) for (1.12) such that∫
x2(m0(x) − m̄0(x))2dx ≤ c0 ,

where c0 is any positive constant. Then for any δ > 0 there is a strictly positive constant ε = ε(δ, c0, β, J)

depending only on δ, c0, β and J such that for all inital data m0 with −1 ≤ m0 ≤ 1, and with∫
(m0(x)− m̄0(x))2dx ≤ ε ,

the excess free energy F(m(t)) −F(m0) of the corresponding solution m(t) of (1.12) satisfies

F(m(t))−F(m̄) ≤ c2(1 + c1t)
−(9/13−δ)
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and

‖m(t)− m̄a‖1 ≤ c2(1 + c1t)
−(5/52−δ)

where c1 and c2 are finite constants depending only on δ, c0, J and β and a is given by (1.14).

This paper is devoted to the proof of several key estimates used in the proof of Theorem 1.1. Further

estimates, proved in [6] are needed to complete the proof, which is done there. However, the estimates

established here already suffice to cover an important special case, that we shall discuss at the end of the

introduction.

Unfortunately, it does not seem possible to give a simple rigourous implementation of the heuristic argu-

ment given just before the theorem. There are several reasons for this, and the first of them concerns the

norms involved.

The first thing that one might note about Theorem 1.1 is that the hypotheses concern L2 norms of

m0(x)− m̄0(x) and x
(
m0(x)− m̄0(x)

)
, while the conclusions concern the excess free energy F(m(t))−F(m̄)

and the L1 norm of m(x, t) − m̄a(x).

The following lemma, which is proved in the appendix in a slightly more general form, explains both why

the L2 norm is physically natural in the hypotheses of this theorem, and the relevance of the theorem to

the problem of L2 stability of the fronts. Throughout the rest of the paper, we write ‖f‖2 to denote the L2

norm
(∫
f2(x)dx

)1/2
of a function f , and 〈f, g〉L2 to denote the corresponding innner product.

Lemma 1.2 For any constant κ, there is are constants δ = δ(κ) > 0 and C = C(κ) <∞ such that

1

C
‖m− m̄a‖

2
2 ≤ F(m)−F(m̄a) ≤ C‖m− m̄a‖

2
2

whenever ‖(m− m̄a)′‖2 ≤ κ and ‖m− m̄a‖2 ≤ δ, and m̄a is any front that minimizes ‖m− m̄a‖2.

Note that whenever ‖m− m̄b‖2 <∞ for one value of b, it is finite for all b. Moreover, it clearly holds that

lim
b→±∞

‖m− m̄b‖2 =∞

and thus, since ‖m− m̄b‖2 depends continuously on b, there is a value of a so that

‖m− m̄a‖2 = inf
b∈IR
{‖m− m̄b‖2} .

Moreover, we shall show in section 2 that when ‖m̄a −m‖2 is sufficiently small, this minimum is attained

uniquely at a. Since we shall be working throughout the paper in such a neighborhood, at each time t there

is a priveleged front m̄a(t) such that

‖m(t)− m̄a(t)‖2 = inf
b∈IR
{‖m(t)− m̄b‖2} (1.16)

and a(t) is a well–defined function since the minimum is uniquely attained.

Many of our estimates in these papers concern m(x, t)−m̄a(t), and we now make the following convention:

Whenever some solution m(x, t) of (1.12) is under discussion:

v(x, t) = m(x, t)− m̄a(t)(x) (1.17)

where a(t) is given in (1.16), and moreover

m̄(x) denotes m̄a(t)(x). (1.18)
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Whenever v or m̄ appear in what follows, this convention is being used.

The equation (1.12) has smoothing properties, explained in section 2, that make Lemma 1.2 applicable to

the solutions considered in Theorem 1.2. Hence it follows from the decay of the excess free energy established

in Theorem 1.1 that

‖m(t)− m̄a(t)‖2 ≤
cp2

(c2 + c1t)p

While the L2 norm is physically relevant becuase it essentialy maesures the excess free energy, the L1

norm is physically relevant because of the conservation law. In fact, in order to use the conservation law to

show that

lim
t→∞

a(t) = a (1.19)

we need to show that

lim
t→∞

‖m(·, t)− m̄a(t)‖1 = 0 .

The point is that if one can show that the excess free energy converges to zero, all one can conclude is that

lim
t→∞

‖m(·, t)− m̄a(t)‖2 = 0 .

The free energy functional is translation invariant, and so it gives no information on a(t). Moreover, since

we have the a–priori bound ‖m(·, t)− m̄a(t)‖∞ ≤ 2, we have

‖m(·, t)− m̄a(t)‖
2
2 ≤ 2‖m(·, t)− m̄a(t)‖1

so that L1 norms control L2 norms in this problem, but not vice–versa.

In fact the proofs of the L1 and L2 parts of Theorem 1.1 presented in these papers are highly interdepen-

dent: We shall obtain good L2 control only for times t such sups≤t{ |a(s) } is not too large. To show that

this is the case for all t, we need good L1 control. On the other hand we use L2 control as one ingredient in

obtaining L1 control. Moreover, the L1 control we need is somewhat difficult to obtain in this problem due

to a lack of monotonicity as we explain below.

The first paper [2], on this problem was by Asselah, who proved that for small L2 initial data

lim
t→∞

||m(t)− m̄a(t)||∞ = 0

for some a(t). The proof was based on a compactness argument exploiting (1.7), and gives no information

on the rate of convergence. The results presented here give further information in two ways: First we give

an algebraic rate of convergence and second we prove convergence in the L1 norm, and hence the L2 norm

as well. Moreover, since ||v||2∞ ≤ 2||v||2||v′||2 and we also establish an a–priori bound on ||v′||2, see section

2, our results also imply algebraic convergence in the L∞ norm.

While we know of no other work on this problem for (1.12), there is a recent work on the analogous

problem for a closely related equation. For the Cahn-Hilliard equation Bricmont, Kupianen and Taskinen,

[4] used renormalization group methods to prove algebraic convergence of small perturbations of the fronts

and charaterized the front to which one converges with the condition corresponding to (1.14). The relation

between this equation and the Cahn-Hilliard equation is discussed at the end of the introduction. First

however, we describe our approach to the problem at hand.

Naturally, the dissipation inequality (1.7) plays a fundamental role in the proof of Theorem 1.1. However,

there are significant obstacles in the way of exploiting this dissipation due to other non–dissipative and non–

monotone features of the evolution. These non dissipative features, ultimately due to the non-locality of our

21/july/1998; 4:51 6



equation, prevent applicability of standard methods for estimating decay rates, and force the development

of new methods for the solution of the problem.

This can be understood by looking at the linearized equation. The following paragraphs contain the

definitions of some operators that appear in the linearized equation, but which are also fundamental in the

investigation of the full equation. The most important of these is the second variation Aa of the free energy

at a front m̄a, which is given by

〈u,Aau〉L2 =
d2

ds2
F(m̄a + su)

∣∣∣∣
s=0

(1.20)

Since the free energy is locally minimized at any front m̄a, each Aa is a non-negative operator on L2. One

easily works out that

Aau =
1

β(1− m̄2
a)
u− J ? u (1.21)

Moreover, since F is translation invariant, each of the fronts m̄a satisfies the Euler equation

δF

δm
(m̄a) = arctanh(m̄a)− βJ ? m̄a = 0 (1.22)

Differentiating this with respect to a at a = 0 we obtain:

Aam̄
′
a = 0 (1.23)

and hence m̄′a is in the null space of Aa. In fact, following [13], where a closely related operator is treated,

it can be proven that m̄′a in fact spans the null space of Aa and that there is an α > 0 such that

〈u,Aau〉L2 ≥ α‖u‖22 for all u with 〈u, m̄′a〉L2 = 0 . (1.24)

It is now easy to do the linearization about m̄a(t). Define v(t) by

v(t) = m− m̄a(t) (1.25)

By the definition of a(t) as the value of a that minimizes ‖m(t)− m̄a‖22, one has

〈v, m̄′a(t)〉L2 = 0 (1.26)

which shall play a crucial role in what follows.

To simplify the notation, we will drop the subscripted a(t) whenever a particular solution m(t) is under

consideration, and shall write m̄ in place of m̄a(t) andA in place ofAa(t). That is, we maintain the convention

that m̄ always denotes the closest front to m(t) in L2, and A always denotes the second variation of the free

energy at this front.

Now noting that

∂

∂t
v =

∂

∂t
m−

∂

∂t
m̄

and inserting

δF

δm
(m̄+ v) = Av +O(v2) (1.27)

into (1.12) we obtain the linearized equation:

∂v

∂t
=

∂

∂x

(
σ(m̄)

∂

∂x
Av

)
+ ȧ(t)m̄′ (1.28)
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where ȧ(t) denotes the time derivative of a(t), and, as always, σ the mobility function (1.6).

Since F(m̄+ v) = 1
2 〈v,Av〉L2 +O(v3), the analog of (1.7) for the linearized equation (1.28) is

d

dt
〈v,Av〉L2 = −2

∫
σ(m̄)

[
∂

∂x
Av

]2

dx (1.29)

Notice that by (1.23), ȧ(t) doesn’t appear in (1.29).

Because of the derivatives, the operator in (1.28) has no spectral gap. However this would be no problem

if we had a-priori control of the size L1 norm of a solution. Suppose, for example, it was established that

sup
t>0
‖v(t)‖1 ≤ c0 <∞ (1.30)

Then applying the Nash inequality

‖ψ′‖22 ≥ K‖ψ‖
6
2/‖ψ‖

4
1 , (1.31)

one would have
d

dt
‖A1/2v‖22 ≤ −2Kβ(1−m2

β)‖Av‖62/‖Av‖
4
1

Now A is clearly bounded on L1 so that (1.30) would imply

sup
t>0
‖Av(t)‖1 ≤ c1 <∞

Also, since v is orthogonal to m̄′ as noted above (1.26), one has from (1.24) that

‖Av‖22 ≥ α‖A
1/2v‖22

so that finally we would have

d

dt
‖A1/2v‖22 ≤ −

2Kα3

(c1)4
β(1−m2

β)‖A1/2v‖62

This differential inequality for ‖A1/2v‖22 would then imply that it decays away like t−1/2.

This approach is standard in the study of parabolic equations

∂u

∂t
= ∇ ·

(
a∇u

)
, (1.32)

and it works because for solutions of (1.32),

d

dt

∫
|u(x, t)|dx ≤ 0 (1.33)

so that the analog of (1.30) trivially holds.

However, for neither the full equation nor the linearized equation is the analog of (1.33) true. In fact, the

rate of increase of the L1 norm of a perturbation of a front can be arbitrarily large.

To see this, first we deduce the full non–linear evolution for v by inserting m = m̄ + v into (1.12), and

using (1.23) to eliminate the terms that are inhomogeneous in v. The result is:

∂v

∂t
=
(
σ(m̄)(Av)′

)′
+

β
(
v2J ∗ m̄′

)′
+ β

(
v(v + 2m̄)J ∗ v′

)′
+ ȧ(t)m̄′

(1.34)
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Since the right hand side is a total derivative,

d

dt

∫
IR

v(x, t)dx = 0

as one expects from the conservation law in the underlying stochastic dynamics. Things are not so simple

with the L1 norm. To see the problem in the simplest way, suppose that v is smooth, and that at some time

t, v(x, t) = 0 exactly at x = 0. Then

d

dt

∫
IR

|v(x, t)| dx =

∫
IR

sgn(v(x, t))
d

dt
v(x, t)dx

= −|v′(0, t)|+ β(1− m̄2(0, t))
(
J ? v′(0, t)

)
If for example v(x, t) = cx3, c > 0, on a neighborhood of 0 that is twice as wide as the support of J , one has

d

dt

∫
IR

|v(x, t)| dx ≥ β(1−m2
β)3c

∫
x2J(x)dx .

One can easily construct examples, using more zeros, for which the rate of increase of the L1 norm is an

arbitrarily large multiple of the L2 norm. This makes quite difficult to establish (1.30).

Moreover, there are other problematic non-dissipative features: The non-locality prevents anything except

a small vestige of the maximum principle from applying. Indeed, suppose that m is a solution of (1.12), and

that x0 is some value of x for which m(x0) = ‖m‖∞. Then, with primes denoting derivatives with respect

to x,

∂

∂t
m(x0, t) = m′′(x0, t)− β(1−m2(x0, t))[J ? m

′′(x0, t)] (1.35)

which can have either sign unless (1 −m2(x0, t)) = 0, in which case it is non-positive. Thus, solutions of

(1.12) with initial data m0 satisfying ‖m0‖∞ ≤ 1, will have ‖m(·, t)‖∞ ≤ 1 for all t, but even if ‖m0‖∞ < 1,

there is nothing to prevent ‖m(·, t)‖∞ = 1 from occuring at some later time t.

This is a significant difficulty since the formal Frechet derivative of the free energy is

δF

δm
=

1

β
arctanh(m)− J ? m .

Now, for any m with −1 ≤ m ≤ 1, J ? m is bounded, but arctanh(m) = ±∞ on {x | m(x) = ±1}.

Thus the free energy is not Frechet differentiable on the natural set of functions that is invariant under the

evolution prescribed by (1.12). This means that some care must be taken with the use of the key dissipativity

property (1.7) whose formal derivation depends on this Frechet differentiability. Even worse, however, is that

the mobility (1.6) vanishes where m = ±1, and with it the local contribution to the dissipation in (1.7).

Having described the features that prevent applicability of standard methods, we now describe the strategy

that is developed here. Clearly, we would like to have a substitute for the L1 norm whose possible rate of

growth is more readily estimated. The role of the L1 norm in the Nash inequality (1.31) is to control the

“tails” of ψ and to ensure that these decay strictly faster than they would have to for ψ to merely belong

to L2. Moments also measure tail decay, and their growth is relatively easy to estimate for our evolution.

Thus, a key part of our analysis will be to bound the rate of increase of∫
x2|v(x, t)|2dx
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or actually a closely related quantity as we shall explain. These estimates will then be used together with

the inequality commonly known as the “uncertainty principle” i.e.,

(∫
x2|ψ(x)|2dx

)(∫
|ψ′(x)|2dx

)
≥

1

4

(∫
|ψ(x)|2dx

)2

. (1.36)

The inequality (1.36) is Theorem 226 in [18] where it is attributed to Herman Weyl [22].

To illustrate this method for obtaining decay rates, consider a solution u(x, t) of the heat equation

∂

∂t
u(x, t) = u′′(x, t) .

Define

f(t) =

∫
|u(x, t)|2dx and φ(t) =

∫
x2|u(x, t)|2dx

Then, one easily finds that

d

dt
φ(t) = 2

∫
x2u(x, t)u′′(x, t)dx =

−4

∫
u(x, t)xu′(x, t)dx− 2

∫
|xu′(x, t)|2dx =

−2

∫
|xu′(x, t) + u(x, t)|2dx+ 2

∫
|u(x, t)|2dx ≤

3

2
f(t)

(1.37)

(Here we have used the fact that the operator x d
dx + 1

2 is skew-adjoint to obtain
∫
|xu′(x, t) + u(x, t)|2dx ≥

‖u‖22/4.) Next, applying the uncertainty principle (1.36),

d

dt
f(t) = −2

∫
|u′(x, t)|2dx ≤

−
1

2

(∫
|u′(x, t)|2dx

)2

/

(∫
|xu(x, t)|2dx

)
= −

1

2
f2(t)/φ(t)

Therefore we have a system of differential inequalities

d

dt
f(t) ≤ −A

f(t)2

φ(t)

d

dt
φ(t) ≤ Bf(t)

(1.38)

We prove in section 5 that any solution of the system of differential inequalities (1.38) satisfies the bounds

f(t) ≤ f(0)1−qφ(0)q
(
φ(0)

f(0)
+ (A+B)t

)q
φ(t) ≤ f(0)1−qφ(0)q

(
φ(0)

f(0)
+ (A+B)t

)1−q

where

q =
A

A+B
.
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If we apply this to the heat equation, we get a decay rate like t−1/4.

To apply this to (1.12) we take

f(t) = F(m̄+ v(t))−F(m̄) and φ(t) =

∫
σ(m̄)x2|Av(x, t)|2dx (1.39)

where, as always, σ is the mobility function given in (1.6).

For these choices of f and φ, we prove in section 3 that there is a finite constant A so that the first

inequality of (1.38) holds. A key step in section 3 is to prove that the dissipation rate for the excess free

energy is essentially bounded below by the dissipation for the linearized equation (1.29). This entails delicate

lower bounds on ‖(Av)′‖22. The bound obtained, presented in Theorem 3.2, is one of the main results of this

paper.

In section 4 we show that there is a finite constant B such that the second inequality holds, for all t such

that |a(t)| ≤ 1. As explained earlier, we shall only prove the L1 estimates we need to establish that this

does indeed hold for all t for sufficiently small initial perturbations of a front in [6]. However, there is one

important special case for which the estimates obtained here already suffice: namely antisymmetric initial

data. In that case, a(t) = 0 for all times t. The arguments in sections 3 and 4 depend heavily on properties

of the free energy functional and smoothing properties of (1.12). These are presented in Section 2. Finally

in Section 5 we prove the theorem on solutions of (1.38), Theorem 5.1, and the following result covering

antisymmetric initial data:

Theorem 1.3 There are strictly positive constants ε, p depending only on J and β so that for all inital

data m0 with −1 ≤ m0 ≤ 1, such that∫
x2(m0(x) − m̄0(x))2dx ≤ c0 ,

where c0 is any positive constant and ∫
(m0(x)− m̄0(x))2dx ≤ ε ,

the excess free energy F(m(t)) −F(m0) of corresponding solution m(t) of (1.12) satisfies

F(m(t))−F(m̄) ≤
cp2

(c2 + c1t)p

where c1 and c2 are finite constants depending only on ε, c0, J and β, provided supt>0 |a(t)| ≤ 1.

We close the introduction by breafly discussing some related problems.

If one replaces the Kawasaki dynamics considered here by Glauber dynamics with an appropriate choice

of transition rates, the time evolution for the local magnetization density that one obtains is

∂m(x, t)

∂t
= tanh(βJ ? m)(x, t) −m(x, t), (1.40)

which decreases the same free energy functional, though it does not conserve the magnetization. Existence,

unicity, asymptotic exponential stability for (1.40) have been proved in [13], [14]. Both the Glauber and

the Kawasaki evolutions drive down the same excess free energy functional, and hence, both have the same

front profiles. However, the relaxation to these fronts is much faster in the Glauber case. Since under
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Kawasaki dynamics the total magnetization is conserved, a local excess of magnetization can only be relaxed

by transporting it to an interface or to infinity. This can take an arbitrarily long time for perturbations that

are small in L2, but are nearly constant on large intervals far from the interface. The moment condition on

the initial data in Theorem 1.1 is there on this account. While under Glauber dynamics, such perturbations

would be quickly relaxed by local spin flips, in the case at hand, they must diffuse away. This is why the

algebraic rates of relaxation are all that one can have, and why the time taken to relax depends on the

localization of the initial perturbation, as controlled by the moment condition of Theorem 1.1.

The equation (1.1) is closely related to the Cahn–Hilliard equation, which can also be written in the form

(1.5) for a different free energy, namely

F̃(m) =

∫
IRn

(
|∇m(x)|2 + cF (m(x))

)
dx (1.41)

where F (m) = (m2 − 1)2/4 and c is a constant. However, if we replace J in (1.1) by J (λ) where

J(λ)(x) = λ−nJ(x/λ) ,

then for smooth m,∫
IRn

∫
IRn

J(λ)(x− y)[m(x) −m(y)]2dxdy = λ2var(J)

∫
IRn
|∇m(x)|2dx+O(λ4) ,

where var(J) denote the variance of J . Moreover, the general behavior of the potentials is the same: they

are both simple double wells.

In fact, the relation is close enough that one expects the motion of the interfaces in the sharp interface

scaling limit to be the same for (1.1) and the Cahn–Hilliard equation. Analogous results for (1.40) and

motion by mean curvature have been obtained previously [11], [19].
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2 Smoothing Estimates and Differentiability Properties of the Free Energy

In this section we quote some technical results upon which our analysis in the following sections depends.

These results are proved in full detail in [7], and here we sketch the proofs.

First, throughout the paper, we are concerned with the behavior of the free energy functional F on the

set of profiles

M = { m | ‖m‖∞ ≤ 1 and ‖m− m̄‖2 <∞ } (2.1)

A technical difficulty arises in that F is not Frechet differentiable onM. As explained in the introduction,

the problem arises on the boundaries where

m̄+ v = ±1 .

The formal Frechet derivative of G is

δG

δv
=

1

β
arctanh(m̄+ v)− J ? (m̄+ v) (2.2)

The convolution term satisfies ‖J ? (m̄+ v)‖∞ ≤ 1, but on any set where m̄+ v = ±1 we have

arctanh(m̄+ v) = ±∞ .

Because there is no maximum principle for our evolution equation for values of m other than ±1, there

is nothing to keep solutions from reaching these values even if the initial data m0 satisfies ‖m0‖∞ < 1.

Therefore, some care is required even to show that the free energy funtion is a Lyapunov function for (1.12).

Nonetheless, we have the following result:

Theorem 2.1 For all initial data m0 inM with F(m0) <∞, the corresponding solution m(x, t) of equation

(1.12) satisfies

F(m(0)) = F(m(t)) +

∫ t

0

I(m(s))ds for all t > 0 (2.3)

where

I(m) =

∫
σ(m)

(
∂

∂x

δF

δm

)2

dx (2.4)

In particular, F(m(t)) is monotonically decreasing.

The proof of this theorem, as well as most of the results established here, depends on certain smoothing

properties of the evolution (1.12). The required a–priori smoothing estimates are summarized in the following

theorem:

Theorem 2.2 For any positive numbers δ0, δ1 and κ1 with δ0 < δ1, there are strictly positive constants

ε(δ0, δ1, κ1) and t0(δ0, δ1, κ1), depending only on the indicated quantities, such that whenever m(t) is a

solution of (1.12) with initial data

m(x, 0) = m̄0(x) + v0(x)

for which ‖v0‖2 ≤ ε(δ0, δ1, κ1), one has:

‖v(t0)‖2 ≤ δ0
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and

‖v′(t)‖2 ≤ κ1

for all t > t0 such that ‖v(t)‖2 ≤ δ1. Moreover,

lim
δ1→0

t0(δ0, δ1, κ1) = 0

and for all t such that ‖v(t)‖2 is finite, v(x, t) is C∞ in x, with all of its spatial derivatives square integrable.

Moreover, in case ∫
|xv0(x)|2dd = c0 <∞ ,

then, further by decreasing δ0 if need be, we have that∫
|xv(x, t0)|2dd ≤ 2c0 .

We briefly sketch the proof by applying the method upon which it is based to the heat equation, for which

such a result is easy to prove. The method sketched here is easily adapted to (1.34), as proved in [7].

For a solution u of the heat equation

∂u

∂t
= u′′

one has
d

dt
‖u′(t)‖22 = −2‖u′′(t)‖22 .

Then since

‖u′‖22 = −

∫
u′′(x)u(x)dx ≤ ‖u′′‖2‖u‖2 (2.5)

one has
d

dt
‖u′(t)‖22 = −2

‖u′(t)‖42
‖u(t)‖2

Define y(t) = 1/‖u(t)‖22. Then on any interval [0, T0] on which ‖u(t)‖22 ≤ δ, one has

d

dt
y(t) ≥

1

δ

and hence

y(t) ≥ y(0) +
t

δ
.

Thus, even if ‖u′(0)‖2 =∞, ‖u′(t)‖2 ≤ δ/t.

If one does the same for our equation (1.34), one obtains a bound of the form

d

dt
‖v′(t)‖22 ≤ −‖v

′′(t)‖22 + C(‖v(t)‖22 + ‖v(t)‖52)

where C is a constant depending only on β and J . From this, one derives a differential inequality for ‖v′(t)‖22
which allows one to estimate the time t0 it takes for ‖v′(t)‖22 to decrease to κ1 under the assumption that

‖v(t)‖22 ≤ δ (2.6)
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for some sufficently small – depending on κ1 – value of δ. Now one just needs to know that (2.6) holds on

a time interval long enough for the desired decrease to occur. Of course for the heat equation, if (2.6) holds

initially, it does so for all time. In our case, the following lemma shows that there is an ε > 0 such that if

‖v(0)‖22 < ε, then (2.6) holds on [0, 2t0].

Once one has control on the first derivative, higher order derivatives are controlled by iteration and

induction. For the details, see [7]. Next lemma is established by deriving a differential inequality for ‖v(t)‖22
from (1.34).

Lemma 2.3 Let v be a solution of (1.34). Then there are constants A and B depending only on β and J so

that

‖v(t)‖22 ≤ 3‖v(0)‖22

for all t such that

eAt ≤ B/‖v(0)‖22 .

Finally, since (1.34) contains a term involving ȧ(t), one also needs estimates on this quantity. The following

shall also be used in section 4.

Thorem 2.4 m be a solution of (1.12). Then there is a δ0 > 0 such that whenever

inf
a∈IR
{‖m(t)− m̄a‖2} < δ0 (2.7)

there is a unique value a(t) at which the infimum in (2.7) is attained. Moreover, a(t) is differentiable and

|ȧ(t)| ≤ D‖v(t)‖2 (2.8)

where D is a constant depending only on β and J .

Proof: Let a(t) be any minimizer in (2.7). Clearly there is at least one, and what we must show is that

there is exactly one. Define d(b) = ‖m(t)− m̄b‖22. Taking two derivatives,

d′′(b) = −2

∫
m(x, t)m̄′′b (x)dx = 2

∫
m̄′a(t)m̄

′
b(x)dx− 2

∫
v(x, t)m̄′′b (x)dx .

Hence,

d′′(b) ≥

∫
m̄′a(t)m̄

′
b(x)dx− δ0‖m̄

′′‖2 .

But by continuity,
∫
m̄′a(t)m̄

′
b(x)dx > ‖m̄′‖22/2 on some interval (a(t)− c, a(t) + c) for some c depending only

on β and J . Therefore, choose

δ0 ≤
‖m̄′b‖

2
2

4‖m̄′′b‖2
(2.9)

and it follows that d′′(b) > 0 on (a(t) − c, a(t) + c), and hence there is exactly one critical point of d(b) on

(a(t)− c, a(t) + c). However, if b is any value with

‖m(t)− m̄b‖2 = ‖m(t)− m̄a(t)‖2
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it follows that

‖m̄b − m̄a(t)‖2 ≤ 2‖m(t)− m̄a(t)‖2 ≤ 2δ0 .

But there is a constant K depending only on β and J so that

‖m̄b − m̄a‖2 ≥
(b− a)2

C + (b− a)2

and thus,

(b− a)2

C + (b− a)2
≤ 2δ0 .

Decreasing δ0 if necessary, one can ensure that |b− a| < c. Hence any putative second minimum must occur

within (a(t)− c, a(t) + c) where there is only the single critical point a(t). Hence there is no other minimum.

This proves that a(t) is a well–defined function under the condition (2.7). We now establish a bound on its

derivative.

The starting point is the equation for the minimum:∫
(m(t)− m̄a(t))m̄

′
a(t)dx = 0

which holds for all t. Differentiating in t, one obtains

ȧ(t)
(
‖m̄′a‖

2
2 − 〈v, m̄

′′
a〉L2

)
= −

∫
∂m

∂t
m̄′a .

Thus, under (2.9) we have

|ȧ(t)| ≤2

∣∣∣∣∫ σ(m)

(
δF

δm

)′
m̄′′adx

∣∣∣∣
2

∣∣∣∣∫ (σ(m)m̄′′a
)′ δF
δm

dx

∣∣∣∣
from which the result easily follows.
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3 Dissipation rate of the Free Energy

We know already from Theorem 2.1 that F(m(t)) is monotonically decreasing along the solution of (1.12).

In this section we establish a bound on the rate at which the excess free energyF(m(t))−F(m̄) is decreasing in

term of itself. Essential ingredients are the “ uncertainty principle” (1.36), the a priori smoothness estimates

and the differentiability properties of the functional F(m) given in section 2. The main result of this section

is the following.

51 Theorem 3.1 Let m(·, t) be a solution of (1.12). Then there are δ0 > 0 and κ > 0 so that at all time t for

which ||v′(t)||2 < κ and ||v(t)||2 < δ0 we have that

d

dt

[
F
(
m(t)) −F

(
m̄
)]
≤ −A

[
F
(
m(t))−F

(
m̄
)]2

φ(t)
(3.1)1.03

where A and δ0 depend on β, J, κ.

From Theorem 2.1 we know that the excess free energy is dissipated with rate

I(m) ≡ I(m(·)) =

∫
σ(m(x))

[
∂

∂x

(
1

β
arctanh m(x) − (J ? m)(x)

)]2

dx (3.2)8.1

Next theorem says that in a sufficiently small neighborhood of a front the dissipation of the excess free

energy functional is essentially bounded below by the dissipation for the linearized equation (1.29).

430 Theorem 3.2 Set v = m− m̄ where m̄ is the closest front in L2 to m. Then for any ε > 0 small enough

there are δ(β, J, ε) > 0 and κ(β, J, ε) > 0 such that for ||v′||2 ≤ κ(β, J, ε), ||v||2 ≤ δ(β, J, ε)

I(m) ≥ (1− 3ε)

∫
σ(m̄(x)) [(Av)′(x)]

2
dx (3.3)3.a1

where A is the linear operator defined in (1.21).

The proof of Theorem 3.2 depends on several steps. We start stating and proving two lemmas.

519 Lemma 3.3 Let m = m̄+ v and the mobility σ(m) defined in (1.6). For any N > 0 and ε > 0 there exists

δ1(N, ε, β, J) > 0 such that

(1− ε)σ(m̄) ≤ σ(m) ≤ σ(m̄)(1 + ε) (3.4)3.A8

provided ||v′||2 ≤ N and ||v||2 ≤ δ1(N, ε, β, J).

Proof: Since σ(m) = β(1 −m2), σ(m) = σ(m̄)
[
1 + 1

σ(m̄)β(2m̄+ v)v
]
. One easily obtains the pointwise

bound

|
1

σ(m̄)
β(2m̄+ v)v| ≤ cβ ||v||

1
2
2 N

1
2

[
1 + ||v||

1
2
2 N

1
2

]
≤ ε

provided δ1(N, ε, β, J) ≤ cβ
ε2

N and ||v||2 ≤ δ1(N, ε, β, J), where we denote by cβ a constant changing line to

line depending only on β and J .
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510 Lemma 3.4 Let v ∈ L2(IR), v′ ∈ L2(IR) and
∫
v(x)m̄′(x)dx = 0 then there exists a positive constant γ,

depending on β and J , such that ∫ [
(Av)

′]2
dx ≥ γ||Pv′||22 (3.5)3.1001

where A is the linear operator defined in (1.21) and P is the orthogonal projection on the orthogonal com-

plement of m̄′′.

Proof: We may write

v(x) = v(y) +

∫ x

y

v′(z)dz

We then multiply both terms by m̄′(y), since
∫
v(y)m̄′(y)dy = 0 we have

v(x) =
1

2mβ

∫ ∞
−∞

m̄′(y)

(∫ x

y

v′(z)dz

)
dy (3.6)3.B2

Hence

(Av)′ = Av′ +Kv′

where

Kφ(x) =
1

β

m̄m̄′

(1− m̄2)2

1

mβ

∫ ∞
−∞

m̄′(y)

(∫ x

y

φ(z)dz

)
dy

The operator K is compact on L2. In fact, it is easy to verify that

(i) for all ε > 0 there is hε > 0 such that for all 0 ≤ h < hε∫
|Kφ(x+ h)−Kφ(x)|2 dx ≤ ε

(ii) for all ε > 0 there is Xε > 0 such that for all X ≥ Xε∫
|x|≥X

|Kφ(x)|2 dx ≤ ε

Property (i) follows from the continuity of integral.

Moreover from (3.6) we have that,

|v(x)| ≤
1

2mβ

(∫
m̄′(y)|x− y|

1
2 dy

)
||v′||2 ≤

(
1

2mβ

∫
m̄′(y)|x− y|2dy

) 1
4

||v′||2

≤ K(1 + |x|)||v′||2

(3.7)3.B10

where K > 0 is a constant depending on β and J .

Then ∫
|Kφ(x)|2 dx ≤ K||φ||22

∫
(m̄′(x))2 (1 + |x|) dx (3.8)3.B3

Then the (ii) statement follows from the rapid decay of m̄′ (1.10).

Using this notation and denoting by ∗ the adjoint operator in L2, we can rewrite∫
|(Av)′|2dx =

∫
v′
(
A2 +K∗A+AK +K∗K

)
v′dx .
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The operator K∗A + AK + K∗K is compact since A is bounded and K is compact. Hence, by Weyl’s

theorem, the essential spectrum of A2 and A2 + (K∗A+AK+K∗K) concide. By the above, both operators

are non-negative, with zero being a simple eigenvalue. Moreover, it is clear from the above that the nullspace

of A2 + (K∗A + AK + K∗K) is spanned by m̄′′. Since the essential spectrum of A2 is strictly positive, it

follows that A2 + (K∗A + AK + K∗K) is strictly positive on the orthogonal complement of m̄′′; i.e., for

some γ > 0, depending on β and J ,

∫
v′
(
A2 +K∗A+AK +K∗K

)
v′dx ≥ γ

∫
|Pv′|2dx

where P is the orthogonal projection on the orthogonal complement of m̄′′.

Proof of Theorem 3.2 To begin the proof we write

1

β

m′

1−m2
− J ? m′ =

1

β

(
m′

1−m2
−

m′

1− m̄2

)
+

(
1

β

m′

1− m̄2
− J ? m′

)
=

1

β

(
1

1−m2
−

1

1− m̄2

)
m′ +Am′ .

Then since Am̄′ = 0, Am′ = Av′. Also,

(
1

1−m2
−

1

1− m̄2

)
=

2m̄

(1− m̄2)2
v +

1 + 3m̄2 + 2m̄v

(1− m̄2)2(1−m2)
v2 .

Hence we can rewrite

1

β

m′

1−m2
− J ? m′ = Av′ +

1

β

2m̄m̄′

(1− m̄2)2
v + U(v)

where

U(v) =
1

β
m̄′

1 + 3m̄2 + 2m̄v

(1− m̄2)2(1−m2)
v2 +

1

β

2m̄

(1− m̄2)2
vv′ +

1

β

1 + 3m̄2 + 2m̄v

(1− m̄2)2(1−m2)
v2v′ (3.9)3.100 .

But since

2m̄m̄′

(1− m̄2)2
=

d

dx

1

(1− m̄2)

this is the same as

1

β

m′

1−m2
− J ? m′ = (Av)′ + U(v) .

Therefore we have that

I(m) =

∫
σ(m)

[
(Av)′ + U(v)

]2
dx (3.10)3.A2

Applying Lemma 3.3 we have that

I(m) ≥ (1− ε)

∫
σ(m̄)

[
(Av)′ + U(v)

]2
dx (3.11)3.A20

provided δ is less than the δ1 of Lemma 3.3.
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Now for any f and g in L2 and for any number λ with 0 < λ < 1,

‖f + g‖22 ≥ ‖f‖
2
2 + ‖g‖22 − 2‖f‖2‖g‖2

= λ‖f‖22 +

(
(1− λ)‖f‖22 + ‖g‖22 − 2‖f‖2‖g‖2

)
≥ λ‖f‖22 −

(
1

1− λ
− 1

)
‖g‖22

(3.12)3.B1

We apply this in (3.11), with λ = 1− ε, where ε > 0 is small, arbitrarily chosen, obtaining∫
σ(m̄)

[
(Av)′ + U(v)

]2
dx ≥ (1− 2ε)

∫
σ(m̄)

[
(Av)′

]2
dx

+

[
ε

∫
σ(m̄)

[
(Av)′

]2
dx−

1

ε

∫
σ(m̄)

[
U(v)

]2
dx

] (3.13)epsilon1

The statement of theorem follows once it is shown that the last term in (3.13) is positive.

Applying Lemma 3.4 to the last term in (3.13) one obtains

ε

∫
σ(m̄)

[
(Av)′

]2
dx−

1

ε

∫
σ(m̄)

[
U(v)

]2
dx

≥ εγσ(mβ)||Pv′||22 −
1

ε

∫
σ(m̄)

[
U(v)

]2
dx

(3.14)3.B28

Lemma 3.5 and Lemma 3.6 below show that the last term in (3.14) is positive. Therefore the constant

κ(β, J, ε) in the statement of theorem has to be taken equal to that one of Lemma 3.6, since this is the only

place where smallness condition is required for ||v′||2. The δ(β, J, ε) in the statement of the theorem has

to be taken δ(β, J, ε) ≤ min (δ1(β, J, ε); δ2(β, Jε)) where δ1(β, J, ε) is the δ1 of Lemma 3.3 and δ2(β, J, ε) is

from Lemma 3.6. Theorem is proved.

In the following we compare ||Pv′||22 with ||U(v)||22. It is not hard to estimate ||U(v)||22 in terms of ||v′||32,

however the ratio ||Pv′||2 (||v′||2)
−1

can be arbitrarily small, so that it is not clear that an O(||v′||32) term is

negligeable with respect to O(||Pv′||22). To see the situation more clearly, write

v′ = αm̄′′ + w′ (3.15)3.B20

where
∫
w′m′′dx = 0 so that Pv′ = w′. Note that, as indicated in our notation, Pv′ is a derivative since v′

and m̄′′ are derivatives. Hence, upon integration

v = αm̄′ + w (3.16)3.BB20

The fact that < v, m̄′ >= 0 means that ||w||2 cannot be too small. However, we need a lower bound on

||w′||2 = ||Pv′||2, and clearly ||w′||2 (||w||2)
−1

can be arbitrarily small. What makes things work is that
1

2mβ
m̄′(x)dx is a probability measure, so that < v, m̄′ >L2= 0 implies that

||w||∞ ≥
|α|

2mβ
||m̄′||2

Then since |α| is comparable to ||v′||2, one may use ||w||2∞ ≤ 2||w′||2||w||2 to obtain a bound for ||w′||2
in terms of ||v′||42. In Lemma 3.5, we obtain upper bounds on

∫
σ(m)

[
U(v)

]2
dx in term of ||w′||22 and ||v′||42
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and then in Lemma 3.6 we use the ideas sketched above to show that in a sufficiently small neighborhood of

a front, (3.14) is positive.

511 Lemma 3.5 Let v ∈ L2(IR), v′ ∈ L2(IR). For any N > 0 and ε0 > 0 small enough, there exists

δ(N, ε0, β, J) > 0 such that for the non linear operator U(v) defined in (3.9) the following two estimates hold∫
σ(m)

[
U(v)

]2
dx ≤ ε0

∫
|v′|2dx (3.17)3.1002 .

∫
σ(m)

[
U(v)

]2
dx ≤ c(ε0, β, J)||v′||42 + ε0||w

′||22 (3.18)3.1003 .

provided ||v′||2 ≤ N , ||v||2 ≤ δ(N, ε0, β, J) and where c(ε0, β, J) is a positive constant.

Proof: Observe that for some constant C depending only on β and J

|U(v)|2 ≤ C
(
R(x)|v|4 + |v|2|v′|2

)
(3.19)3.AA1

where R(x) is non-negative and
∫
R(x)dx = 1. Then since ‖v‖4∞ ≤ 4‖v‖22‖v

′‖22,∫
R(x)|v|4dx ≤ 4δ2‖v′‖22 (3.20)3.A6

For the other term we have∫
|v|2|v′|2dx ≤ 2||v||2||v

′||2

∫
|v′|2dx ≤ 2δN

∫
|v′|2dx (3.21)3.A7

Hence we have ∫
σ(m)

[
U(v)

]2
dx ≤ C(δ,N, β, J)

∫
|v′|2dx

where C(δ,N, β, J) = Cmin{2δN ; 4δ2}. Provided we take C(δ,N, β, J) ≤ ε0 we have (3.17).

We then derive (3.18). We insert the representation (3.6) for v in the first term of the right hand side of

(3.19) obtaining, since R(x) is rapidly decreasing, from properties (1.10),∫
R(x)v4dx ≤ ||v′||42

∫
R(x)(1 + |x|)4dx ≤ c(β, J)||v′||42

where c(β, J) is a positive constant.

For the other term in (3.19) we use for v the representation (3.16) obtaining∫
v2(v′)2dx ≤ 2

∫ [
α2(m̄′)2 + w2

]
(v′)2dx (3.22)3.C1

Moreover from (3.15)

|α| ≤ ||v′||2 (||m̄′′||2)
−1

(3.23)3.C9

and we obtain

∫
v2(v′)2dx ≤ 2

||v′||42
||m̄′′||22

||m̄′||22 + 4||w||2||w
′||2||v

′||22

≤ 2
||v′||42
||m̄′′||22

||m̄′||22 + 16λ||w||22||w
′||22 +

1

λ
||v′||42

=

(
2
||m̄′||22
||m̄′′||22

+
1

λ

)
||v′||42 + 16λ||w||22||w

′||22

(3.24)3.C2
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for any chosen λ > 0. Because of (3.16) and (3.23)

||w||2 = ||v − αm̄′||2 ≤ ||v||2 + |α|||m̄′||2

≤ ||v||2 +
||v′||2
||m̄′′||2

||m̄′||2
(3.25)3.BB26

Applying (3.25) to the last term of (3.24) one obtains

∫
v2(v′)2dx ≤

(
2
||m̄′||22
||m̄′′||22

+
1

λ

)
||v′||42 + 32λ

[
||v||22 +

||v′||22
||m̄′′||22

||m̄′||22

]
||w′||22 (3.26)3.C3

We can take λ such that 32λ
[
1 + N2

||m̄′′||22
||m̄′||22

]
≤ ε0. Lemma is proved.

512 Lemma 3.6 Let v ∈ L2(IR) and v′ ∈ L2(IR). For any ε > 0 there exists δ2(ε, β, J) > 0 and κ(ε, β, J) so

that for ||v′||2 ≤ κ(ε, β, J), ||v||2 ≤ δ2(ε, β, J)

εσ(mβ)γ||Pv′||2 −
1

ε

∫
σ(m̄)

[
U(v)

]2
dx ≥ 0 (3.27)3.B5

where γ is from lemma 3.4 and U(v) is defined in (3.9).

Proof: Suppose that

||Pv′||22 >
1

2
||v′||22 (3.28)3.BB22

Then from (3.17) of Lemma 3.5 we can take ε0 = ε2+r, with r > 0 obtaning

1

2
εγσ(mβ)||v′||22 −

1

ε
ε0||v

′||22 = ε||v′||22[γσ(mβ)− εr] (3.29)3.B29

Choosing a suitable r > 0, the last term in (3.29) is positive. This implies that provided ||v||2 ≤ δ(ε
2+r
0 , β, J),

where δ(ε2+r
0 , β, J) is from Lemma 3.5 (3.27) holds. Note that no further condition is required for ||v′||2

besides boundeness,i.e. the condition required to apply Lemma 3.5.

Next, suppose (3.28) is false, i.e. :

||Pv′||22 ≤
1

2
||v′||22 (3.30)3.B22

then from (3.15)

||v′ − w′||2 ≤ |α|||m̄
′′||2

and applying (3.12) with λ = 1
3 and (3.30) one obtains

|α|2||m̄′′||22 ≥ ||v
′ − w′||22 ≥

1

3
||v′||22 −

1

2
||w′||22 ≥

1

12
||v′||22 (3.31)3.B23

Therefore

||v′||22 ≤ 12||m̄′′||22|α|
2 (3.32)3.B230

Since v is orthogonal to m̄′ we have

1

2mβ
|α|||m̄′||2 =

1

2mβ

∫
wm̄′dx ≤ ||w||∞ (3.33)3.B21
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Inequality ||w||∞ ≤ 2||w||2||w′||2, (3.32) and (3.33) imply

||v′||2 ≤ c(β, J)||w||
1
2
2 ||w

′||
1
2
2 (3.34)3.B25

where c(β, J) is a positive constant. Then applying (3.18), since ||Pv′|| = ||w′|| and (3.34) we have

εγσ(mβ)||w′||2 −
1

ε

∫
σ(m̄)

[
U(v)

]2
dx

≥ εγσ(mβ)||w′||22 −
c(ε0, β, J)

ε
||v′||42 −

ε0

ε
||w′||22

≥
[
εγσ(mβ)−

ε0

ε

]
||w′||22 −

c(ε0, β, J)

ε
||w||22||w

′||22

= ||w′||22

[
εγσ(mβ)−

ε0

ε
−

2c(ε0, β, J)

ε
||w||22

]
(3.35)3.B26

Since (3.25) the last term of (3.35) is bigger or equal to

εγσ(mβ)−
ε0

ε
−
c(ε0, β, J)

ε

[
||v||22 +

||v′||22
||m̄′′||22

]
(3.36)3.C10

Take ε0 = ε2+r. We can always find r > 0, δ2(ε, β, J) > 0 and κ(ε, β, J) > 0 such that provide ||v||2 ≤

δ2(ε, β, J) and ||v′||2 ≤ κ(ε, β, J) the term in (3.36) is positive. This is the only place where the bound on

||v′||2 depends on the chosen ε.

Remark: In the case v is antisymmetric, since v′ is symmetric and m̄′′ is antisymmetric the projection

operator P in Lemma 3.4 is equal to I, the identity operator. Then, in this case, Theorem 3.2 follows

applying simply (3.17) of Lemma 3.5.

Proof of Theorem 3.1: The proof of theorem follows applying Theorem 3.2 and Lemma 1.2.

Since F is decreasing along the solution of (1.12), see Theorem 2.1, we have

dF

dt

(
m(t)

)
= −I

(
m(t)

)
(3.37)3.D1

We take k and δ0 in the statement of the theorem to be respectively k ≤ k(β, J, 1
6 ) where k(J, β, 1

6 ) is the

quantity in Theorem 3.2 for ε = 1
6 and δ0 ≤ min{δ(J, β, 1

6 ); δ(k, β, J)} where δ(J, β, 1
6 ) is the quantity in

Theorem 3.2 for ε = 1
6 and δ(k, β, J) is the quantity in the statement of Lemma 1.2.

We apply Theorem 3.2, for ε = 1
6 , and the uncertainty principle (1.36) to (3.37) obtaining

dF

dt

(
m(t)

)
≤ −

1

2
σ(mβ)

||A(m(t) − m̄)||42
||xA(m(t) − m̄)||22

Since A has a gap, see (1.24),

dF

dt

(
m(t)

)
≤ −

1

2
σ(mβ)α2 ||(m(t) − m̄)||42

||xA(m(t) − m̄)||22
(3.38)5.999

Applying Lemma 1.2 to (3.38) and recalling the definition of φ, (1.39), we have
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dF

dt

(
m(t)

)
≤ −

1

2
σ(mβ)2α

2

C

[F
(
m(t))−F

(
m̄
)
]2

φ(t)
(3.39)5.1

Denote by A = 1
2σ(mβ)2 α2

C which obviously depends on κ, δ0, J, β and Theoren is proved.
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4 Moment Estimates

Our goal in this section is to estimate the growth of

φ(t) =

∫
σ(m̄)|xAv|2dx (4.1)basic

where v is a solution of (1.34), and the mobility σ(m̄) is given by (1.6) evaluated at m̄. Recall that our

notational convention is that m̄ stands for m̄a(t) and that A denotes the second variation of F at m̄a(t).

Thus, when we differentiate (4.1), we must take this into account. Moreover we will need pointwise bounds

on functions such as x2m̄′(x) in what follows. Clearly ||x2m̄′(x)||∞ ≤∞ by (1.10) but the bound depends on

|a(t)|, since (2mβ)−1m̄′(x) is a probability density centered on a(t). For this reason, our hypotheses involve

a bound on |a(t)|.

61 Theorem 4.1 Let v be a solution of (1.34). Then for any κ, there are finite constants δ = δ(κ, β, J) > 0

and C = C(κ, β, J) <∞ such that for all t with ‖v′(t)‖2 ≤ κ, ‖v(t)‖2 ≤ δ, and |a(t)| ≤ 1.

d

dt
φ(t) ≤ C

[
F(m̄+ v)−F(m̄)

]
. (4.2)phibound

Proof: Since A is self adjoint,

d

dt

∫
σ(m̄)|xAv|2dx = 2

∫
A
(
σ(m̄)x2Av

)∂v
∂t

dx+

ȧ(t)2

(
β

∫
m̄m̄′x2|Av|2dx+

∫
σ(m̄)x2(Av)

2m̄m̄′

β(1− m̄2)2
vdx

) (4.3)phirate

We arrange the proof in a series of lemmas. The terms in (4.3) involving ȧ(t) are the easiest to estimate,

and we begin with these.

62 Lemma 4.2 Let v be a solution of (1.34). Then for any ε > 0, there is a constant δ = δ(κ, β, J) > 0 such

that for all t with ‖v(t)‖2 ≤ δ(κ, β, J)

d

dt
φ(t) ≤ 2

∫
A
(
σ(m̄)x2Av

)∂v
∂t

dx+ ε
[
F(m̄+ v)−F(m̄)

]
. (4.4)lem1bound

Proof: By (1.10) and the boundedness of A on L2 and then Theorem 2.4, which says that |ȧ(t)| ≤ C‖v(t)‖2,

one clearly has that

ȧ(t)2

(
β

∫
m̄m̄′x2|Av|2dx+

∫
σ(m̄)x2(Av)

2m̄m̄′

β(1− m̄2)2
vdx

)
≤

|ȧ(t)|C‖v(t)‖22 ≤ C‖v(t)‖32

(4.5)apart

where C is a constant depending only on β and J that changes from line to line. The result clearly follows

from this and Lemma A.2.
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Now for the part of (4.3) coming from the time derivative of v, recall that

∂v

∂t
=
(
σ(m̄)(Av)′

)′
+

β
(
v2J ∗ m̄′

)′
+ β

(
v(v + 2m̄)J ∗ v′

)′
+

ȧm̄′

(4.6)vevo2

and we will separately estimate the linear and nonlinear contributions from (4.6) to (4.3). Note that since

Am̄′ = 0, the term containing ȧ in (4.6) makes no contribution to (4.3).

The basic manipulation, to be done repeatedly in the rest of the proof, is to commute differentiation and

multiplication by x with A. Therefore we define

g(x) =
2m̄m̄′

(1− m̄2)2
(4.7)gdef

and observe that for any function w, (
Aw
)′

= Aw′ + gw . (4.8)diffcom

Furthermore, define the convolution operator C by

Cw(x) =

∫
J(y)yw(x− y)dy (4.9)cdef

and observe that for any function w,

x
(
Aw
)

= A(xw) + Cw (4.10)mulcom

where xw denotes the function with values xw(x). Note that by Young’s inequality C is bounded on all Lp

with operator norm

‖C‖ ≤

∫
|xJ(x)|dx . (4.11)cbnd

We shall also need the following technical lemma:

63 Lemma 4.3 For any function w,

‖σ(m̄)x
(
Aw
)′
‖2 ≤

‖
(
σ(m̄)xm̄′

)′
‖2

‖m̄′‖2
‖w‖2 + α−1/2‖A1/2

(
σ(m̄)x

(
Aw
)′)
‖2 (4.12)trade1

where α is the spectral gap (1.24) of A. Also, there is a finite constant K(β, J) depending only on β and J

such that whenever |a(t)| ≤ 1,

‖J ? (xw′)‖2 ≤ K

(
‖w‖2 + ‖A1/2

(
σ(m̄)x

(
Aw
)′)
‖2

)
. (4.13)trade2

Proof: Let P denote the orthogonal projection onto the span of m̄′; i.e., the null space of A. Then

P
(
σ(m̄)x

(
Aw
)′)

=
1

‖m̄′‖22
〈m̄′, σ(m̄)x

(
Aw
)′
〉L2m̄′ =

−
1

‖m̄′‖22
〈
(
σ(m̄)xm̄′

)′
,
(
Aw
)
〉L2m̄′
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Hence, by the Schwarz inequality,

‖P
(
σ(m̄)x

(
Aw
)′)
‖2 ≤

‖
(
σ(m̄)xm̄′

)′
‖2

‖m̄′‖2
‖Aw‖2 . (4.14)schwarzie

Next,

‖P⊥
(
σ(m̄)x

(
Aw
)′)
‖2 =

‖A−1/2A1/2P⊥
(
σ(m̄)x

(
Aw
)′)
‖2 ≤

α−1/2‖A1/2P⊥
(
σ(m̄)x

(
Aw
)′)
‖2 =

α−1/2‖P⊥A1/2
(
σ(m̄)x

(
Aw
)′)
‖2 ≤

α−1/2‖A1/2
(
σ(m̄)x

(
Aw
)′)
‖2 .

Hence, the Minkowski inequality and (4.14) yield the result.

The proof of (4.13) is more involved. To begin, define the operator B by

Bw =
1

β(1−m2
β)
w − J ? w .

Fourier transforming, one sees that B is bounded with a bounded inverse since β(1 − m2
β) < 1. Also, B

commutes with convolution by J , and

xBw = B(xw) + Cw

as with A in (4.10). Hence,

J ? xv′ = B−1J ?
(
Bxv′

)
= B−1J ?

(
xBv′ − Cv′

)
=

− B−1C
(
J ′ ? v

)
+ B−1J ?

(
xAv′ − g̃v′

)
where

g̃ =
1

β(1− m̄2)
−

1

β(1−m2
β)

and where we have used the fact that convolution with J comutes with C and that J ? v′ = J ′ ? v. Next,

using (4.8),

B−1J ?
(
xAv′ − g̃v′

)
= B−1J ?

(
x
(
Av
)′)

+ (xg − g̃
)
v′
)

and
B−1J ?

((
(xg − g̃

)
v′
)

=

B−1J ?
(((

xg − g̃
)
v
)′)
− B−1J ?

((
xg − g̃

)′
v
)

=

B−1J ′ ?
(((

xg − g̃
)
v
))
− B−1J ?

((
xg − g̃

)′
v
)

where again we have once again used J ? v′ = J ′ ? v. Thus,

‖J ? (xv′)‖2 ≤

‖B−1C
(
J ′ ? v

)
‖2 + ‖B−1J ?

(
x
(
Av
)′)
‖2+

‖B−1J ′ ?
(((

xg − g̃
)
v
))
‖2 + ‖B−1J ?

((
xg − g̃

)′
v
)
‖2 ≤

C(β, J)
(
‖v‖2 + ‖σ(m̄)x

(
Av
)′
‖2

since (xg − g̃
)′

and (xg − g̃
)′

are bounded by (1.10) and the hypothesis that |a(t)| ≤ 1. Now application of

(4.12) yields (4.13).
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We next estimte the nonlinear contribution from (4.6) to (4.3) .

64 Lemma 4.4 Let v be a solution of (1.34). Then for any ε > 0, there are constants δ = δ(β, J, ε) > 0 and

κ = κ(β, J, ε) > 0 such that for all t with ‖v(t)‖2 ≤ δ, ‖v′(t)‖2 ≤ κ, and |a(t)| ≤ 1,

d

dt
φ(t) ≤ 2

∫
A
(
σ(m̄)x2Av

)(
σ(m̄)(Av)′

)′
dx+

ε
[
F(m̄+ v)−F(m̄)

]
+ ε‖A1/2

(
σ(m̄)x

(
Av
)′
‖22

. (4.15)lem4bound

Proof: We separately estimate the contribution of the two nonlinear terms in (4.6) to (4.3), beginning with

the more difficult of the two:

2

∫
A
(
σ(m̄)x2Av

)
β
(
v(v + 2m̄)J ∗ v′

)′
dx (4.16)badone

Now integrating by parts and applying (4.8) to (4.16) yields

−2

∫
g
(
σ(m̄)x2Av

)
β
(
v(v + 2m̄)J ′ ∗ v

)
dx− 2

∫
A
(
σ(m̄)′x2Av

)
β
(
v(v + 2m̄)J ′ ∗ v

)
dx

−4

∫
A
(
σ(m̄)xAv

)
β
(
v(v + 2m̄)J ∗ v′

)
dx− 2

∫
A
(
σ(m̄)x2

(
Av
)′)
β
(
v(v + 2m̄)J ∗ v′

)
dx

(4.17)int2ss

where the first term on the right comes from (4.8), and the other three from differentiating the product

σ(m̄)x2Av. We have also used the fact that J ? v′ = J ′ ? v. Because of (1.10), the two integrals in (4.17)

that are written in terms of J ′ ? v can easily be estimated above by

C‖v‖∞‖v‖
2
2 (4.18)temp

where C is a constant depending only on β and J . Then by Lemma A.2 and ‖v‖2∞ ≤ 2‖v′‖2‖v‖2, there are

constants δ > 0 and κ > 0 such that for all t with ‖v(t)‖2 ≤ δ, ‖v′(t)‖2 ≤ κ and |a(t)| ≤ 1, the quantity in

(4.18) is no greater than
ε

3

[
F(m̄+ v)−F(m̄)

]
. (4.19)temp2

For the remaining integrals in (4.17), we need to commute an x past A. Applying (4.10), these become

−4

∫
C
(
σ(m̄)Av

)
β
(
v(v + 2m̄)J ∗ v′

)
dx− 2

∫
C
(
σ(m̄)x

(
Av
)′)
β
(
v(v + 2m̄)J ∗ v′

)
dx

− 4

∫
A
(
σ(m̄)Av

)
β
(
v(v + 2m̄)xJ ∗ v′

)
dx− 2

∫
A
(
σ(m̄)x

(
Av
)′)
β
(
v(v + 2m̄)xJ ∗ v′

)
dx

Now, it is exactly the convolution by J in A that doesn’t commute with multiplication by x so that

xJ ? w = J ? (xw) + Cw

so that the integrals above can be partially rewritten as

−4

∫
C
(
σ(m̄)Av

)
β
(
v(v + 2m̄)J ′ ∗ v

)
dx− 2

∫
C
(
σ(m̄)x

(
Av
)′)
β
(
v(v + 2m̄)J ′ ∗ v

)
dx

−4

∫
A
(
σ(m̄)Av

)
β
(
v(v + 2m̄)Cv′

)
dx− 2

∫
A
(
σ(m̄)x

(
Av
)′)
β
(
v(v + 2m̄)Cv′

)
dx

−4

∫
A
(
σ(m̄)Av

)
β
(
v(v + 2m̄)J ∗ (xv′)

)
dx− 2

∫
A
(
σ(m̄)x

(
Av
)′)
β
(
v(v + 2m̄)J ∗ (xv′)

)
dx
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Clearly there is a constant C depending only on β and J so that

‖Cv′‖2 ≤ C‖v‖2

and hence the four terms containing C may be estimated by

C‖v‖∞‖v‖
2
2

and hence by
ε

3

[
F(m̄+ v)−F(m̄)

]
(4.20)temp3

for all t with ‖v(t)‖2 ≤ δ, ‖v′(t)‖2 ≤ κ and |a(t)|ε1.

Next, by the Schwarz inequality, and then (4.13) of Lemma 4.3,

− 4

∫
A
(
σ(m̄)Av

)
β
(
v(v + 2m̄)J ∗ (xv′)

)
dx ≤ C‖v‖∞‖v‖2‖J ∗ (xv′)‖2 ≤

C‖v‖∞‖v‖2
(
‖v‖2 + ‖A1/2σ(m̄)x

(
Av
)′
‖2
) (4.21)temp4

and

− 2

∫
A
(
σ(m̄)x

(
Av
)′)
β
(
v(v + 2m̄)J ∗ (xv′)

)
dx ≤ C‖v‖∞‖A

1/2σ(m̄)x
(
Av
)′
‖2‖J ∗ (xv′)‖2 ≤

C‖v‖∞‖A
1/2σ(m̄)x

(
Av
)′
‖2
(
‖v‖2 + ‖A1/2σ(m̄)x

(
Av
)′
‖2
) (4.22)temp5

where C is a constant depending only on β and J .

Hence the sum of the two terms in (4.21) and (4.22) is no greater than

C‖v‖∞
(
‖v‖22 + ‖σ(m̄)x

(
Av
)′
‖22
)

and now decreasing δ and κ as necessary, we obtain as before from ‖v‖2∞ ≤ 2‖v′‖2‖v‖2 and Lemma A.2 that

this is no greater than
ε

3

[
F(m̄+ v)−F(m̄)

]
+ ε‖A1/2σ(m̄)x

(
Av
)′
‖22 (4.23)temp7

for all t with ‖v(t)‖2 ≤ δ, ‖v′(t)‖2 ≤ κ and |a(t)| ≤ 1. Thus the estimate on (4.16) follows from (4.19) (4.20)

and (4.23).

It remains to estimate the contributions to (4.3) from the other of the two non-linear terms in (4.6),

namely

−2

∫ (
A
(
σ(m̄)x2Av

)′ (
v2J ? m̄′

)
dx (4.24)goodone

Proceeding as above, though with with much less effort, one obtains that there is a constant C(β, J) de-

pending only on β and J so that this is bounded by

‖v‖∞
(
C(β, J)‖v‖22 + ‖A1/2σ(m̄)x

(
Av
)′
‖22
)

(4.25)nlinterms

where the extra factor of ‖v‖∞ comes from the nonlinearity. Using once more the inequality ‖v‖2∞ ≤

2‖v‖2‖v′‖2, one sees that for δ sufficiently small, one can combine the above estimates, once more using

Lemma 1.2, to obtain the proof of Lemma 4.4.
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65 Theorem 4.5 Let v be a solution of (1.34). Then for any ε > 0, there are constants δ = δ(β, J, ε) > 0 and

κ = κ(β, J, ε) > 0 such that for all t with ‖v(t)‖2 ≤ δ, ‖v′(t)‖2 ≤ κ and |a(t)| ≤ 1,

d

dt
φ(t) ≤

−4

∫
A
(
σ(m̄)Av

)(
σ(m̄)x(Av)′

)
dx− 2‖A1/2

(
σ(m̄)x

(
Av
)′
‖22+

I1 + I2 + I3 + I4+

ε
[
F(m̄+ v)−F(m̄)

]
+ ε‖A1/2

(
σ(m̄)x

(
Av
)′
‖22

(4.26)lem6bound

where

I1 = −2

∫
g
(
σ(m̄)x2Av

)(
σ(m̄)(Av)′

)
dx

I2 = −2

∫
A
(
σ(m̄)′x2Av

)(
σ(m̄)(Av)′

)
dx

I3 = −4

∫
C
(
σ(m̄)Av

)(
σ(m̄)(Av)′

)
dx

I4 = −2

∫
C
(
σ(m̄)x

(
Av
)′)(

σ(m̄)(Av)′
)
dx

Proof: First, define L by

L = 2

∫
A
(
σ(m̄)x2Av

)(
σ(m̄)(Av)′

)′
dx =

−2

∫ (
A
(
σ(m̄)x2Av

))′(
σ(m̄)(Av)′

)
dx

(4.27)main4

Now applying (4.8) to (4.27) yields

L = −2

∫
g
(
σ(m̄)x2Av

)(
σ(m̄)(Av)′

)
dx− 2

∫
A
(
σ(m̄)′x2Av

)(
σ(m̄)(Av)′

)
dx

−4

∫
A
(
σ(m̄)xAv

)(
σ(m̄)(Av)′

)
dx− 2

∫
A
(
σ(m̄)x2

(
Av
)′)(

σ(m̄)(Av)′
)
dx

(4.28)intss

where the first term on the right comes from (4.8), and the other three from differentiating the product

σ(m̄)x2Av.

Denote the first two terms in the expression obtained for L in (4.28) by I1 and I2 respectively, so that

L =I1 + I2

−4

∫
A
(
σ(m̄)xAv

)(
σ(m̄)(Av)′

)
dx− 2

∫
A
(
σ(m̄)x2

(
Av
)′)(

σ(m̄)(Av)′
)
dx

Next, to exploit the positivity of A, we need to distribute the factors of x symmetrically in the last integral.

To do this, apply (4.10) to account for commuting multiplication by x with A. We also do this in the other

integral, so that the same function σ(m̄)x(Av)′ is produced there as well. The result is

L =I1 + I2

−4

∫
C
(
σ(m̄)Av

)(
σ(m̄)(Av)′

)
dx− 2

∫
C
(
σ(m̄)x

(
Av
)′)(

σ(m̄)(Av)′
)
dx

−4

∫
A
(
σ(m̄)Av

)(
σ(m̄)x(Av)′

)
dx− 2

∫
A
(
σ(m̄)x

(
Av
)′)(

σ(m̄)x(Av)′
)
dx
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Now denote the first two terms after I1 and I2; i.e., those containing C, by I3 and I4 respectively. Then, by

Lemma 4.4, the result is proved.

Proof of Theorem 4.1 The first two terms in (4.26) are the key to the analysis. They correspond to the

two terms produced in (1.37) when similar estimates were performed on the heat equation as an illustration

of the method. To see this more easily, introduce the following notations:

f = σ(m̄)Av (4.29)fdef

and

h = σ(m̄)x(Av)′ . (4.30)hdef

Then these integrals can be written and estimated as

−4〈f,Ah〉 − 2〈h,Ah〉 =

−〈h+ 2f,A(h+ 2f)〉 − 〈h,Ah〉+ 4〈f,Af〉 ≤

−〈h,Ah〉+ 4〈f,Af〉

Thus,

L ≤
4∑
j=1

Ij − 〈h,Ah〉+ 4〈f,Af〉 . (4.31)sofarr

The next step is to estimate each of the Ij in terms of ‖v‖22, using the negative term in (4.31) to absorb

contributions from v′.

First, using the Schwarz inequality, and then the arithmetic–geometric mean inequality,

I1 ≤2‖gσ(m̄)x2Av‖2‖σ(m̄)(Av)′‖2

2λ‖gσ(m̄)x2Av‖2 +
1

λ
‖σ(m̄)(Av)′‖2

for any λ > 0. Now choose λ so large that the estimate (4.12) of Lemma 4.3 gives

1

λ
‖σ(m̄)(Av)′‖2 ≤

1

4

(
‖v‖22 + 〈h,Ah〉L2

)
where h is given in (4.30). One obtains a constant C depending only on β, and J such that

I1 ≤
1

4
〈h,Ah〉+ C‖v‖22 . (4.32)I1bnd

It is easier to deal with I2. Schwarz and and (1.10) suffice to establish that there is a constant C depending

only on β, and certain finite moments of m̄′ so that

I2 ≤
1

4
〈h,Ah〉+ C‖v‖22 . (4.33)I2bnd

To bound I3, we will integrate by parts. Note that using (4.29)

I3 = −4

∫ (
Cf
)
σ(m̄)

(
Av
)′

dx

4

∫ (
Cf
)′
σ(m̄)

(
Av
)
dx+ 4

∫ (
Cf
)
σ(m̄)′

(
Av
)
dx
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Note that by Young’s inequality the operator d
dx ◦ C is bounded by

∫
|xJ ′(x) + J(x)|dx on all Lp, in

particular L2. Using this, (4.11) and the rapid decay of σ(m̄)′ coming from (1.10), there is clearly a constant

C depending only on β and J so that

I3 ≤ C‖σ(m̄)Av‖22 . (4.34)I3bnd

Finally, to bound I4, we use (4.30) and again integrat by parts:

I4 = −2

∫ (
Ch
)
σ(m̄)

(
Av
)′

dx =

2

∫ (
Ch
)′
σ(m̄)

(
Av
)
dx+ 2

∫ (
Ch
)
σ(m̄)′

(
Av
)
dx

Now proceeding as with I3, one obtains a constant C depending only on β and J so that

I4 ≤C‖σ(m̄)Av‖2〈h,Ah〉
1/2 ≤

1

4
〈h,Ah〉+ 4C2‖σ(m̄)Av‖22 .

(4.35)I4bnd

Then, inserting (4.32), (4.33), (4.34) and (4.35) into (4.31), and using the fact that A is bounded, with a

bound depending only on β and J , one obtains

L ≤ C‖v‖22 −
1

4
〈h,Ah〉 (4.36)linterms

where C is a constant depending only on β and J . Then for ε < 1/4 and Lemma 4.4, and another application

of Lemma 1.2, we have the result.
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5 System of Differential Inequalities

We begin this section by proving the bounds stated in the introduction for solutions of (1.38).

61 Theorem 5.1 Let f and φ be any two non-negative solutions of the system of differential inequalities

d

dt
f(t) ≤ −A

f(t)2

φ(t)

d

dt
φ(t) ≤ Bf(t)

(5.1)system2

Then

f(t) ≤ f(0)1−q

(
φ(0)

A+B

)q(
φ(0)

(A+B)f(0)
+ t

)−q
φ(t) ≤

(
(A+B)f(0)

)1−q
φ(0)q

(
φ(0)

(A+B)f(0)
+ t

)1−q
(5.2)soln

where

q =
A

A+B
. (5.3)qvalue

Proof: One easily checks that for any positive constants a and b, the functions

F (t) = b(a+ t)−q and Φ(t) = b(A+B)(a+ t)1−q

satisfy the system (5.1) with equality holding instead of inequality for any values of C and a, as long a q is

given by (5.3). Choose C and a so that f(0) < f(0) and φ(0) < Φ(0).

The first inequality (5.1) can be written as

d

dt

1

f(t)
≥ A

1

φ(t)

so that

1

f(t)
≥

1

f(0)
+A

∫ t

0

1

φ(s)
ds

In this way one obtains

f(t) ≤

(
A

∫ t

0

1

φ(s)
ds+

1

f(0)

)−1

φ(t) ≤ B

∫ t

0

f(s)ds+ φ(0)

Now suppose that there exists some t such that either f(t) ≥ F (t) or φ(t) ≥ Φ(t). Then, there would be a

first such time, and by our assumptions on the initial conditions this first time must be strictly positive. Let

t denote this putative first time, so that

f(s) ≤ F (s) and φ(s) ≤ Φ(s) (5.4)bound2
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for all s ≤ t Then

f(t) ≤

(
A

∫ t

0

1

φ(s)
ds+

1

f(0)

)−1

<

(
A

∫ t

0

1

Φ(s)
ds+

1

f(0)

)−1

= F (t)

where the inequality is strict since f(0) < f(0). In the same way one deduces that φ(t) < Φ(t). This

contradiction establishes that (5.4) holds for all s ≥ 0. Moreover, since the amounts by which f(0) < F (0)

and φ(0) < Φ(0) were arbitrary, (5.4) still holds for all s ≥ 0 in the limiting case in which f(0) = F (0) and

φ(0) = Φ(0). These two conditions fix the values of a and b, and the theorem is proved.

Proof of Theorem 1.3 : First, choose δ1 > 0 and κ1 > 0 such that the estimates of Lemma 1.2, Theorem

3.1, and Theorem 4.1 all hold with finite constants A, B and C.

Next define δ0 by

δ0 =
δ1

4(C + 1)
(5.5)donedef

where C is the constant in Lemma 1.2. Theorem 2.2 provides us with an ε0 > 0 and a t0 < ∞ such that

when ‖m0 − m̄‖2 ≤ ε0, the solution to (1.12) satisifies

‖v(t0)‖2 ≤ δ0

and

‖v′(t)‖2 ≤ κ1

for all t ≥ t0 such that ‖v(t)‖2 ≤ δ1. Now define

T0 = min{inf{ t > t0 | ‖v(t0)‖2 ≥ δ0/2 } , inf{ t > t0 |a(t)| ≥ 1 } } .

Then uniformly on the interval (t0, T0), (5.1) holds with f and φ chosen as specified in the introduction, and

A and B as above. Then, by the Theorem 5.1, this yields the algebraic decay of the excess free energy on

the interval (t0, T0), since by the hypotheses of Theorem 1.1, both f(0) and φ(0) are finite. Clearly, since f

is monotone decreasing, f(t0) is also finite. Using Theorem 2.4, it is not hard to see that φ(t0) is finite as

well.

It remains to show that by further decreasing ε0 if necessary, one has T0 = ∞. Suppose that this is not

the case. Then ‖v(T0)‖2 = δ1/2. Since Lemma 1.2 is still valid with the same constant C on the closed

interval [t0, T0], and since the excess free energy is monotone decreasing,

δ2
1

4
=‖v(T0)‖22 ≤

C
(
F(m̄+ v(T0))−F(m̄)

)
≤ C

(
F(m̄+ v(t0))−F(m̄)

)
≤

C2‖v(t0)‖22 ≤ C
2δ2

0

This contradicts (5.5), and hence T0 <∞ is not possible.
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Appendix

We restate in a slightly more general form and prove the Lemma 1.2:

Lemma A For any N > 0, there exists δ(N) > 0 and C ≡ C(N,β, J) > 0 such that for any function

m = m̄+ v, where m̄ is the closest instanton in L2 to m we have

1

C
||m− m̄||2 ≤ F

(
m
)
−F

(
m̄
)
≤ C||m− m̄||2 (6.1)2.41

provided ||v|| ≤ δ(N) and ||v′|| ≤ N .

Moreover for any ε > 0 and N there is a δ̃(ε,N, β, J) so that

1− ε

2
< v,Av >≤ F

(
m
)
−F

(
m̄
)
≤

1 + ε

2
< v,Av > (6.2)A.1

provided ||v|| ≤ δ̃(ε,N, β, J) and ||v′|| ≤ N .

Proof: We can represent

F
(
m
)
−F

(
m̄
)

=

∫ 1

0

dτF ′
(
m̄+ τv

)
(v) =

∫ 1

0

dτ

∫ τ

0

dsF ′′
(
m̄+ sv

)
< v, v >

In order to get a lower bound for the last term above we expand F ′′
(
m̄ + sv

)
< v, v > around s = 0

obtaining

F ′′
(
m̄+ s(m− m̄)

)
< v, v >= F ′′

(
m̄) < v, v > +F ′′′

(
m̃
)
< v, v, v >

where m̃ = m̄+ s0v for some s0 between 0 and 1 by the mean value theorem. Therefore

F
(
m
)
−F

(
m̄
)

=
1

2
< Av, v > +

∫ 1

0

dτ

∫ τ

0

dsF ′′′
(
m̃
)
< v, v, v > (6.3)A.2

Now we need a lower bound on the term involving the third derivative of the free energy. But by direct

computation,

∣∣F ′′′(m̃) < v, v, v >
∣∣ =

2

β

∣∣ ∫
IR

m̃

(1− m̃2)2

(
v(x)

)3
dx
∣∣ ≤ Kβ

∫
IR

|v(x)|3dx (6.4)3.6

for some constant Kβ depending only on β.

Note that for any x,

v2(x) = 2

∫ x

−∞
v(r)v′(r)dr ≤ 2‖v‖2‖v

′‖2

Therefore we can always take δ such that ||m̃||∞ < 1. Moreover, since by hypothesis ‖v′‖ ≤ N , from (6.4)

we have that ∣∣F ′′′(m̃) < v, v, v >
∣∣ ≤ √2KβN

1
2

(
‖v‖2

)5/2
(6.5)A.3

By (1.24)

< Av, v >≥ α‖v‖22
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Therefore choosing δ sufficiently small, since 5/2 > 2, it is clear that

F ′′
(
m̄+ s(m− m̄)

)
< v, v > ≥ Cα‖v‖2

where C is a constant depending on β, J , N and δ(N). So we established a lower bound for (6.1). The

upper bound follows from the boundness of A. In this way we proved (6.1).

In a similar way the inequalities (6.2) follows. Namely, from (6.3), for any positive ε and N

F
(
m
)
−F

(
m̄
)

=
1

2
(1− ε) < Av, v > +

[
1

2
ε < Av, v > +

∫ 1

0

dτ

∫ τ

0

dsF ′′′
(
m̃
)
< v, v, v >

]
(6.6)A.20

From (1.24) and (6.5) the last term in (6.6) is bigger or equal to

1

2
εα||v||22 −

√
2KβN

1
2

(
‖v‖2

)5/2
= ||v||22

[
1

2
εα−

√
2KβN

1
2

(
‖v‖2

)1/2]
(6.7)A.21

Therefore choosing δ̃ in such a way that the term of (6.7) is strictly positive we get (6.2).
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