Università degli Studi Roma Tre Corso di Laurea in Matematica Tutorato di AL310 - Istituzioni di Algebra superiore A.A.2017/2018

Docente: Prof. F. Pappalardi Tutori: Chiara Camerini e Gianclaudio Pietrazzini

Tutorato 1 del 23 Ottobre 2017

Esercizio 1

Calcolare il polinomio minimo su \mathbb{Q} di ξ_8 , ξ_{11} , $\sqrt[3]{5}$. Determinare il grado dell'estensione su \mathbb{Q} ed una sua base.

Esercizio 2

Sia $\alpha^2 \in \mathbb{Q}[\alpha]$, con $\alpha^3 = 3\alpha + 1$. α^2 è trascendente su \mathbb{Q} ? Se non lo è, determinare il polinomio minimo.

Esercizio 3

Calcolare il polinomio minimo di $\frac{1}{\alpha}$ e $\frac{1}{\alpha-1}$ nel campo $\mathbb{Q}[\alpha]$ con $\alpha^4=\alpha+1$. (I esonero A.A.2016/2017)

Esercizio 4

Sia $\alpha \in \mathbb{C}$ tale che $\min_{\mathbb{Q},\alpha}(x) = x^2 + x + 1$. Mostrare che $\alpha^2 - 1 \neq 0$. Scrivere l'elemento $\frac{\alpha^2 + 1}{\alpha^2 - 1} \in \mathbb{Q}(\alpha)$ nella forma $a + b\alpha$, con $a, b \in \mathbb{Q}$.

Esercizio 5

Determinare il grado delle seguenti estensioni di campi: $[\mathbb{Q}[\sqrt[3]{3},i]:\mathbb{Q}], [\mathbb{Q}[\sqrt{5},\sqrt{11}]:\mathbb{Q}].$

Esercizio 6

Determinare su \mathbb{Q} sia il campo di spezzamento che il grado di $f(x) = (x^4 - 2)(x^2 + 1)((x - 3)^2 + 6) \in \mathbb{Q}[x]$. (I esonero A.A.2016/2017)

Esercizio 7

Dimostrare che $\mathbb{Q}(1+\sqrt{3}) = \mathbb{Q}(\sqrt{3})$ e provare che $\mathbb{Q}(\sqrt{6},\sqrt{7}) = \mathbb{Q}(\sqrt{6}-\sqrt{7})$.

Esercizio 8

Determinare su \mathbb{Q} il grado di $\mathbb{Q}(\sqrt[3]{2}, i)$ ed il polinomio minimo di $\alpha = \sqrt[3]{2} + i$. Dimostrare che $\mathbb{Q}(\sqrt[3]{2}, i) = \mathbb{Q}(\alpha)$.