Tutorato 3 AL310

Docente: Francesco Pappalardi. Esercitatore: Valerio Talamanca Tutori: Valeria Cinelli, Federica Fino Mercoledì 31 ottobre 2018

Exercise 1. Let $\mathbb{Q}(\alpha)$ be the stem field with $\alpha^3 = \alpha + 1$. Calculate $\frac{1}{\alpha}$, $\frac{1}{\alpha+4}$, α^5 and $\frac{1}{\alpha^2}$.

Exercise 2. Calculate the degrees of the following field extensions:

- $[\mathbb{Q}(2^{\frac{1}{5}}, \zeta_5) : \mathbb{Q}]$
- $[\mathbb{Q}(2^{\frac{1}{4}}):\mathbb{Q}(\sqrt{2})]$
- $[\mathbb{Q}(\zeta_3, \sqrt{2}) : \mathbb{Q}]$

Exercise 3. Determine the splitting field of the following polynomials and calculate their degree on \mathbb{Q} :

- $f(x) = x^4 x^3 + 2x^2 x + 1$
- $g(x) = (x^4 2)(x^2 + 1)((x 3)^2 + 6)$

Exercise 4. Verify that $cos(\frac{2\pi}{9})$ and $cos(\frac{2\pi}{5})$ are algebraics and calculate their minimal polynomials.

Exercise 5. • Describe the $\mathbb{Q}(\sqrt{-1})$ -homomorphisms of $\mathbb{Q}(\zeta_{16})$ over \mathbb{C} .

• Describe the $\mathbb{Q}(\sqrt{-1})$ -homomorphisms of $\mathbb{Q}(\sqrt{-3},\sqrt{3})$ over \mathbb{C} .

Exercise 6. Find a \mathbb{Q} -basis of the splitting field of the polynomial $f(x) = (x^2 - 2)(x^2 - 3)$ over $\mathbb{Q}[x]$.

Exercise 7. Find the number of irreducible factors of the polynomial $f(x) = x^{255} - 1$ over $\mathbb{Q}[x]$ and $\mathbb{F}_2[x]$.

Exercise 8. Calculate the number of elements in the splitting field of the polynomial $(x^{2^8} - x)(x^8 + x^4 + 1)(X^{12} + x^4 + 1)(x^5 + x)$ over $\mathbb{F}_2[x]$.