Tutorato 5 AL310 Docente: Francesco Pappalardi. Esercitatore: Valerio Talamanca Tutori: Valeria Cinelli, Federica Fino Giovedì 22 novembre 2018

Exercise 1. Let $\mathbb{F}_5[\alpha]$ the stem field with $\alpha^2 = 2$; determine his number of elements and write the generators of $\mathbb{F}_5[\alpha]^*$.

Exercise 2. Find the zeros of the polynomial $f(x) = x^{16} + x^{12} + 1$ in $\mathbb{F}_2[\alpha]$ with $\alpha^4 = \alpha + 1$.

Exercise 3. After describing the elements of $Aut(\mathbb{Q}(5^{\frac{1}{3}}, \sqrt{-3})/\mathbb{Q})$ determine the order of any of them.

Exercise 4. Describe the elements of the Galois group of the polynomial $f(x) = x^4 - 14x^2 + 9 \in \mathbb{Q}[x]$ and determine to which group $Gal(\mathbb{Q}_f/\mathbb{Q})$ is isomorph.

Exercise 5. Describe the elements of the Galois group of the polynomial $f(x) = x^4 - x^2 - 6 \in \mathbb{Q}[x]$ and determine to which group $Gal(\mathbb{Q}_f/\mathbb{Q})$ is isomorph.

Exercise 6. Describe the lattice of subfields of $\mathbb{Q}(\zeta_5)$.

Exercise 7. Describe $G = Aut(\mathbb{Q}_f/\mathbb{Q})$, where \mathbb{Q}_f is the splitting field of the polynomial $f(x) = (x^2 + 1)(x^4 - 3)$. Calculate the order of the elements of G and determine to which group it is isomorph.