ESAME DI METÀ SEMESTRE

5 Aprile 2002

- 1. Se $n \in \mathbb{N}$, sia $\sigma(n)$ la somma dei divisori di n. Supponiamo che sia nota la fattorizzazione (unica) di $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$. Calcolare il numero di operazioni bit necessarie per calcolare $\sigma(n)$. (Suggerimento: Usare il fatto che σ è una funzione moltiplicativa e calcolare una formula per $\sigma(p^{\alpha})$)
- 2. Mostrare che le moltiplicazioni nell'anello quoziente $\mathbf{Z}/n\mathbf{Z}[x]/(x^d)$ si possono calcolare in $O(\log^2 n^d)$ operazioni bit mentre le addizioni in $O(\log n^d)$ operazioni bit.
- 3. Dato il numero binario $n = (10011100101)_2$, calcolare $[\sqrt{n}]$ usando l'algoritmo delle approssimazioni successive (Non passare a base 10 e non usare la calcolatrice!)
- 4. Calcolare il massimo comun divisore tra 240 e 180 utilizzando sia l'algoritmo euclideo che quello binario. Calcolare anche l'identità di Bezout.
- 5. Dimostrare che se $n=p_1\cdots p_{20}$ è un intero privo di fattori quadratici, e $f(x)\in \mathbf{Z}/n\mathbf{Z}[x]$ ha grado 10, allora la congruenza $f(x)\equiv 0 \bmod n$ è risolvibile se e solo se lo sono le 20 congruenze $\begin{cases} f(x)\equiv 0 \bmod p_1\\ \vdots\\ f(x)\equiv 0 \bmod p_{20}. \end{cases}$ Dedurre che la prima congruenza $f(x)\equiv 0 \bmod n$ ha al più 10^{20} soluzioni. Sapreste dare un esempio in cui le soluzioni sono esattamente 10^{20} ?
- 6. Illustrare l'algoritmo dei quadrati successivi in un gruppo analizzandone la complessità. Fare anche un esempio.
- 7. Mettere in ordine di priorità e spiegare il significato di ciascuna delle seguenti operazioni:

$$x \sim x \wedge y \qquad x \& y \qquad x++ \qquad x \backslash y \qquad x=y \qquad x \% y \qquad x | y \qquad x \ll n$$

- 8. Si dia la definizione di pseudo primo forte in base 2 e si mostri che se $n=2^{\alpha}+1$ è pseudo primo forte in base 2, allora $2^{2^{\beta}} \equiv -1 \mod n$ per qualche $\beta < \alpha$.
- 9. Scrivere un programma in Pari che produca due vettori v e w. In cui v contiene i primi 100 pseudo-primi composti in base 2 e il secondo i primi 100 pseudo primi di Eulero composti in base 2.
- 10. Implementare RSA utilizzando il sistema Pari e creando tre funzioni distinte (una per generare le chiavi, una per cifrare e una per decifrare).

ESAME DI FINE SEMESTRE

5 Giugno 2002

- 1. Quale è la probabilità che un polinomio irriducibile f di grado 8 su \mathbf{F}_7 risulti primitivo?
- 2. Spiegare il metodo di fattorizzazione p-1.
- 3. Fissare una radice primitiva di ${\bf F}_{5^2}$ ed utilizzarla per simulare un scambio chiavi alla Diffie-Hellmann
- 4. Fattorizzare $f(x) = (x^{10} + 3x^5 + 1)(x^2 + 2)(x^2 + 1)$ su \mathbf{F}_5 e dopo averne fissato un campo di spezzamento \mathbf{F} , si scrivano tutte le radici di f(x) in \mathbf{F} .

- 5. Spiegare il funzionamento del crittosistema Massey-Omura sul gruppo dei punti razionali di una curva ellittica.
- 6. Dopo aver verificato che si tratta di una curva ellittica, determinare (giustificando la risposta) l'ordine e la struttura del gruppo dei punti razionali della curva ellittica su \mathbf{F}_7

$$y^2 = x^3 - x + 5.$$

- 7. Spiegare l'algoritmo di Berlekamp.
- 8. Spiegare il significato delle seguenti funzioni di Pari: ispseudoprimes(n); znprimroot(n); znstar(n); znorder(x); ffinit(p, n, x).
- 9. Implementare in pari il crittosistema di El Gamal.
- 10. Dato un gruppo ciclico G, sia g un suo generatore e p un primo tale che $p^4 \parallel \# G$. Supponiamo che X denoti il logaritmo discreto di $\alpha \in G$. Si scriva uno pseudo codice per calcolare X mod p^4 .

ESAME FINALE 5 Giugno 2002

- 1. Si stimi il numero di operazioni bit necessarie a calcolare la derivata di un polinomio di grado n^2 in cui tutti i coefficienti sono minori di n.
- 2. Si risolva il seguente sistema di equazioni di congruenze

$$\begin{cases} x^3 \equiv 1 \bmod 7 \\ x^2 \equiv 1 \bmod 5 \end{cases}.$$

- 3. Quale è la probabilità che un polinomio irriducibile f di grado 8 su \mathbf{F}_7 risulti primitivo?
- 4. Si illustri la nozione di pseudo primo di eulero e si indichi la sua applicazione in crittografia.
- 5. Fattorizzare $f(x) = (x^{10} + 3x^5 + 1)(x^2 + 2)(x^2 + 1)$ su \mathbf{F}_5 e dopo aver fissato un campo di spezzamento \mathbf{F} per f, si scrivano tutte le radici di f(x) in \mathbf{F} .
- 6. Spiegare il funzionamento del metodo dello scambio delle chiavi Diffie-Hellman sul gruppo dei punti razionali di una curva ellittica.
- 7. Dopo aver verificato che si tratta di una curva ellittica, determinare l'ordine e la struttura del gruppo dei punti razionali della curva ellittica su \mathbf{F}_7

$$y^2 = x^3 - x + 5.$$

- 8. Si calcoli il seguente simbolo di Jacobi: $\binom{234564}{134431}$.
- 9. Scrivere in una sola riga il codice (in PARI) per ottenere:
 - a Numero di cifre binarie di x;
 - b L' inverso aritmetico di $a \in (\mathbf{Z}/n\mathbf{Z})^*$;
 - c Un primo con al massimo *m* cifre binarie.
- 10. Scrivere un programma in PARI per ottenere un vettore contenente i numeri minori di 10^{20} che sono pseudoprimi forti, per almeno una base random.

ESAME FINALE 9 Luglio 2002

(1) Sia m un intero dispari. Dopo aver dimostrato che ammette soluzione, si stimi il numero di operazioni bit necessarie a risolvere il seguente sistema

$$\begin{cases} X \equiv 1 \mod m \\ X \equiv 2 \mod m + 1 \\ X \equiv 3 \mod m + 2. \end{cases}$$

- (2) Si descriva un'algoritmo per calcolare $\lceil \sqrt{m} \rceil$, dove $m \in \mathbb{N}$ in tempo polinomiale
- (3) Si descrivano i valori di $a \in \mathbf{F}_p$ per cui $x^2 + a \in \mathbf{F}_p[x]$ è irriducibile e si dimostri che non è mai primitivo.
- (4) Si dimostri che se m è un intero dispari composto, allora esiste sempre un base $a \in U(\mathbf{Z}/m\mathbf{Z})$ rispetto a cui m non è pseudo primo di Eulero. Quale è l'applicazione di questa proprietà nei test di primalità?
- (5) Fattorizzare $f(x) = (x^{12} + 3x^4 + 1)(x^2 + x + 2)(x^{10} + x^2 + 1)$ su \mathbf{F}_2 e determinare il numero di elementi del campo di spezzamento di f.
- (6) Spiegare il funzionamento del crittosistema RSA e simularne un'applicazione con un modulo RSA di esattamente tre cifre.
- (7) Dopo aver verificato che si tratta di una curva ellittica, determinare l'ordine e la struttura del gruppo dei punti razionali della curva ellittica su \mathbf{F}_{11}

$$E: y^2 = x^3 - 1.$$

Quale è l'ordine del punto (5,5) in $E(\mathbf{F}_{11})$?

- (8) Siano m, n interi tali che $m \equiv 3 \mod 4$, che $m \equiv 2 \mod n$ e che $n \equiv 1 \mod 8$. Si calcoli il seguente simbolo di Jacobi: $\left(\frac{(5m+n)^3}{m}\right)$.
- (9) Si scriva un programma Pari che implementi il metodo di fattorizzazione di Pollard.
- (10) Scrivere un programma in pari che verifichi se un numero n di cui è nota la fattorizzazione in primi $(n = p_1 \cdots p_t)$ è o meno un numero di Carmichael.

ESAME FINALE 9 Settembre 2002

- (1) Si dia una stima (in funzione del parametro t) per il numero di operazioni bit necessarie al calcolo del determinante di una matrice 3×3 a coefficienti interi in cui gli elementi della prima colonna sono in valore assoluto minori di t, quelli della seconda colonna sono in valore assoluto minori di t.
- (2) Si descriva un'algoritmo per calcolare in tempo polinomiale $2^m \pmod{m+1}$. Si stimi anche il numero di operazioni bit necessarie.
- (3) Si enunci e dimostri la formula per il numero di polinomi irriducibili di grado 8 su \mathbf{F}_p . Quale è la probabilità che un polinomio di grado 4 monico su \mathbf{F}_3 e che non ammette zeri in \mathbf{F}_3 risulti irriducubile su \mathbf{F}_3 ?
- (4) Descrivere il test di primalità di Miller Rabin spiegandone gli aspetti probabilistici.

- (5) Si descrivano gli ordini degli elementi del campo di spezzamento del polinomio $x^4 + x + 1$ su \mathbf{F}_2 .
- (6) Spiegare il funzionamento del crittosistema Massey-Omura e simularne un'applicazione in un campo con 32 elementi.
- (7) Dopo aver verificato che si tratta di una curva ellittica, determinare l'ordine e la struttura del gruppo dei punti razionali della curva ellittica su \mathbf{F}_7

$$E: y^2 = x^3 - x + 1.$$

determinando l'ordine di ciascun punto.

- (8) Sia m un intero tale che $m \equiv 17 \mod 28$. Si calcoli (se è ben definito) il seguente simbolo di Jacobi: $\left(\frac{5m+7}{m^5}\right)$.
- (9) Si scriva un programma Pari che verifichi se un polinomio di grado 3 a coefficienti in \mathbf{F}_5 è o meno primitivo.
- (10) Scrivere un programma in pari che implementi il metodo di fattorizzazione ρ di Pollard.

ESAME FINALE 19 Febbraio 2003

- 1. Si stimi il numero di operazioni bit necessarie a calcolare l'integrale a di un polinomio di grado n in cui tutti i coefficienti sono minori di e^n .
- 2. Si risolva il seguente sistema di equazioni di congruenze

$$\begin{cases} x^2 \equiv 4 \bmod 11 \\ x^3 \equiv 2 \bmod 5 \end{cases}.$$

- 3. Quale è la probabilità che un polinomio irriducibile f di grado 6 su \mathbf{F}_{11} risulti primitivo?
- 4. Si illustri la nozione di pseudo primo forte e se ne indichi l'applicazione in crittografia.
- 5. Fattorizzare $f(x) = (x^{14} + 3x^7 + 1)(x^2 + 2)(x^2 + 1)$ su \mathbf{F}_7 e dopo aver fissato un campo di spezzamento \mathbf{F} per f, si scrivano tutte le radici di f(x) in \mathbf{F} .
- 6. Spiegare il funzionamento del metodo dello scambio delle chiavi Diffie-Hellman e simularne un applicazione in un campo finito con 19 elementi.
- 7. Dopo aver verificato che si tratta di una curva ellittica, determinare l'ordine e la struttura del gruppo dei punti razionali della curva ellittica su ${\bf F}_5$

$$y^2 = x^3 - x + 1.$$

- 8. Si calcoli il seguente simbolo di Jacobi: $\binom{983932}{72637}.$
- 9. Scrivere in una sola riga il codice (in PARI) per ottenere:
 - a Numero di cifre decimali di x;
 - b Il resto della divisione euclidea di a per b;
 - c Un più piccolo numero primo con 100 cifre binarie.
- 10. Scrivere un programma in PARI per ottenere un vettore contenente i numeri minori di 10²⁰ che sono pseudoprimi di Eulero, per almeno una base random.