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Elliptic curves over I

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular
Weierstraf3 equation
E:y?+aixy+asy =x3+ ax?+ asx + as,a € K

If p=charK > 3,
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Elliptic curves over K

After applying a suitable affine transformation we can always

assume that E/K has a Weierstra3 equation of the following
form

Example (Classification (p = char K))
E P Ag

Y =x*+Ax+B >5 | 4A° 4+ 27B°
Vixy=xP+ax’+a | 2 | &
Vday=xtaxta | 2 | a

4A°C — A2B? — 18ABC
2 _ 3 2
y°=x"+Ax“"+Bx+C 3 4B 4 27C2
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Elliptic curves over K

After applying a suitable affine transformation we can always
assume that E/K has a Weierstra3 equation of the following
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Example (Classification (p = char K))

E

p | Ae
Y =x*+Ax+B >5 | 4A° 4+ 27B°
V4xy=xP+axP+a | 2 | &
Vday=xtaxta | 2 | a
3~ p2p2
y2=x®+Ax>+Bx+C 3 G =58 =TEAEE

+4B3 + 27C?
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line through Pand Q if P# Q Elliptic curves over
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It P,Q € E(Fy), rp.o: line throggh Pand Q ff P#Q
’ tangentlineto Eat P if P=Q,
I'p : Vvertical line through P

Xy +y?+y=x3-3x2+x+1 xy+y?+y=x3-3x%+x+1

o

P /
Fpooo N E(Fq) = {P, 00, P'} o,

rp.0 N E(Fg) = (P.Q.R) w PHeQ:=-R |
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Theorem
The addition law on E /K (K field) has the following properties:

(@) P+e Qe E VP,Qe E
(b) P+eoo=00+gP=P YPe E
(¢) P+e(—P)=c0 VP c E
d) P+e(Q+eR) =(P+Q)+eR VP,Q, Rc E
() PreQ=Q+eP VP,Qc E

So (E(K), +g) is an abelian group.
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Formulas for Addition on E (Summary)
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Formulas for Addition on E (Summary for

E:y?=x3+Ax+B

special equation)

P = (x1,)1), P2 = (X2, )2) € E(K) \ {0},
Addition Laws for the sum of affine points

° |fP17éP2

e X1 =X
°* X1 £ Xo
—_ Yo—n — NXe—YoXq
L= X2 —Xq V="
o If P1 = P2
e y1=0 =
ey #0
A= 32+A B —Aq—2B
=2 VT 21

Then
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Notations
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The j-invariant
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The j-invariant
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Examples of j invariants
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Points of finite order
Points of order 2

Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2
#E1(Fs) = #E2(Fs5) = 6 and  j(E1) =j(E2) =0 |

+—— 2Xx E; and E; affinely equivalent
3y over F5[v/3] = a5 (twists)

Elliptic curves over Fq

F. Pappalardi
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Points of finite order
Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof
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Hasse's Theorem
Waterhouse's Theorem
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2

#E1(Fs) = #E2(Fs) =6 and  j(E) =j(E2) =0 |

+—— 2Xx E; and E; affinely equivalent
3y over F5[v/3] = a5 (twists)

Definition (twisted curve)
Let E/Fq: y* = x3 + Ax+ B, u € Fj; \ (F3)2.
E.:y?=x3+ 1 2Ax + 1i°B

is called twisted curve.

Elliptic curves over Fq
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Points of finite order
Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2

#E1(Fs) = #E2(Fs) =6 and  j(E) =j(E2) =0 |

X < 2x E; and E; affinely equivalent
« 3y over F5[v/3] = a5 (twists)

Definition (twisted curve)
Let E/Fq: y* = x3 + Ax+ B, u € Fj; \ (F3)2.

E.:y?=x3+ 1 2Ax + 1i°B
is called twisted curve.

Exercise: prove that

* J(E) =Jj(Eu)

Elliptic curves over Fq
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Points of finite order
Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof
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Hasse's Theorem
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2

#E1(Fs) = #E2(Fs) =6 and  j(E) =j(E2) =0 |
X +— 2X
y 3y
Definition (twisted curve)
Let E/Fq: y* = x3 + Ax+ B, u € Fj; \ (F3)2.

E; and E, affinely equivalent
over F5[v/3] = a5 (twists)

E.:y?=x3+ 1 2Ax + 1i°B
is called twisted curve.

Exercise: prove that

* J(E) =J(Ey)
e E and E, are IF4[,/u]-affinely equivalent

Elliptic curves over Fq
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Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof

Important Results
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Waterhouse's Theorem
Riick's Theorem
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2
#E1(Fs) = #E2(Fs5) = 6 and  j(E1)=j(E2) =0 |

X < 2x E; and E; affinely equivalent
3y over F5[v/3] = a5 (twists)

Definition (twisted curve)

Let E/Fq: y* = x3 + Ax+ B, u € Fj; \ (F3)2.
E.:y?=x3+ 1 2Ax + 1i°B

is called twisted curve.

Exercise: prove that
* J(E) =J(Ey)
e E and E, are IF4[,/u]-affinely equivalent
O #E(qu) = #EH(FQZ)

Elliptic curves over Fq

F. Pappalardi

CIMPA
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Points of finite order
Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Examples of j invariants
From monday £; : y? = x® +1and E> : y? = x® + 2

#E1(Fs) = #E2(Fs) =6 and  j(E) =j(E2) =0 |

X < 2x E; and E; affinely equivalent
3y over F5[v/3] = a5 (twists)

Definition (twisted curve)
Let E/Fq: y* = x3 + Ax+ B, u € Fj; \ (F3)2.

E.:y?=x3+ 1 2Ax + 1i°B
is called twisted curve.

Exercise: prove that
* J(E) =J(Ey)
e E and E, are IF4[,/u]-affinely equivalent
° #E(qu) = #E#(qu)
o usually #E(Fq) # #E,(Fq)

Elliptic curves over Fq

F. Pappalardi
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Reminder from
Monday

Points of finite order
Points of order 2
Points of order 3
Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 2 Ellptic curves over Fq

F. Pappalardi

Let P = (x1,y1) € E(Fg) \ {o0},
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the j-invariant
Points of finite order
Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
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Riick's Theorem
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Determining points of order 2 Ellptic curves over Fq
F. Pappalardi

P

Let P = (x1,y1) € E(Fq) \ {oc},
Phasorder2 < 2P=c <— P=-P J
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Points of order 3
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Important Results
Hasse's Theorem
Waterhouse's Theorem
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Determining points of order 2 Ellptic curves over Fq
F. Pappalardi

P

Let P = (x1,y1) € E(Fq) \ {00},
Phasorder2 < 2P=c <— P=-P J

CIMPA
So

Reminder from
_P=(X1,—a1X1—33—y1)=(X17y1)=P J Monday

the j-invariant

Points of finite order

Points of order 3
Points of finite order
The group structure
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Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Determining points of order 2 Ellptic curves over Fq

F. Pappalardi

Let P = (x1,y1) € E(Fq) \ {oc},
Phasorder2 < 2P=c <— P=-P J

CIMPA
So

Reminder from

—P = (X1,—a1x1 — a3 —y1) = (X17y1) =P — 2y1 = —aixXy — as J Monday

the j-invariant

Points of finite order

Points of order 3
Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 2

Let P = (x1,y1) € E(Fq) \ {o0},

Phasorder2 < 2P=c <— P=-P J

So
—P=(,—aixi—as—y1)=(x, 1) =P = 21 = —aixs — as

J

If p#2, canassume E: y> = x3 + Ax> + Bx + C

Elliptic curves over Fgq

F. Pappalardi
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CIMPA
Reminder from
Monday
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Points of finite order
Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
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Determining points of order 2

Let P = (x4, y1) € E(Fg) \ {oo},

Phasorder2 < 2P=c <— P=-P J

So
—P=(,—aixi—as—y1)=(x, 1) =P = 21 = —aixs — as

J

If p#2, canassume E: y> = x3 + Ax> + Bx + C
—P=,-y1)=(x1,y1) =P

Elliptic curves over Fgq

F. Pappalardi

CIMPA
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Monday

the j-invariant
Points of finite order
Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 2

Let P = (x1,y1) € E(Fq) \ {oo},
Phasorder2 < 2P=c <— P=-P J

So
—P=(,—aixi—as—y1)=(x, 1) =P = 21 = —aixs — as )

If p#2, canassume E: y> = x3 + Ax> + Bx + C
—P=(x,-y)=(x, 1) =P = y1 =0, +Ax{ +Bx +C=0 |

Elliptic curves over Fgq

F. Pappalardi
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CIMPA
Reminder from
Monday
the j-invariant
Points of finite order

Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 2 Elliptic curves over Fg
F. Pappalardi

Let P = (x1,y1) € E(Fg) \ {oo},

Phasorder2 < 2P =00 <— P=-P J
SO CIMPA

Reminder from

—P= (X1,—a1x1 — a3 —y1) = (X17y1) =P = 2y1 = —aiX; — a J Monday

the j-invariant

If P 7& 2, can assume E : y2 — X3 + AX2 + Bx + C Points of finite order

-P= (X1»—}’1) = (X1,}/1) =P — yi= 0,X13 + AX12 + BX1 + C=0 J Points of finite order

The group structure

sketch of proof

Note Important Results
Hasse's Theorem
Waterhouse's Theorem

o the number of points of order 2 in E(IF,) equals the Ross Treoren
number of roots of X2 + Ax2 + Bx + Cin Further reacing



Determining points of order 2 Elliptic curves over Fg

F. Pappalardi

Let P = (x1.,y1) € E(Fq) \ {0},

Phasorder2 < 2P=c <— P=-P J
CIMPA
So
Reminder from
—P= (X1,—a1x1 — a3 —y1) = (X17y1) =P = 2y1 = —aiX; — a J Monday
the j-invariant
If p#2, canassume E : y?2 = x3 + Ax2 + Bx + C Points o finte order

-P= (X1»—Y1) = (X17,V1) =P — Y1 = 0,X13 + AX12 +Bx;+-C=0 J Points of finite order

The group structure

sketch of proof

S e
Waterhouse's Theorem
e the number of points of order 2 in E(F) equals the Ross Treoren
number of roots of X3 + Ax2 + Bx + Cin Further reacing

e roots are distinct since discriminant Ag # 0



Determining points of order 2 A IS CE g

F. Pappalardi

Let P = (xi,y1) € E(Fq) \ {o0},
Phasorder2 < 2P =00 < P=-P J

CIMPA
So

Reminder from

—P= (X1,—a1x1 — a3 —y1) = (X17y1) =P = 2y1 = —aiX; — a J Monday

the j-invariant

If p#2,canassume E: y> = x3 + Ax> + Bx + C —

—P=(x,-y1)=(a, 1) =P = y1 =0, +Ax* +Bx; + C=0 J Poins offirita order

The group structure

sketch of proof

Important Results
Note P

Hasse's Theorem

Waterhouse's Theorem
o the number of points of order 2 in E(IF,) equals the R Theerem
number of roots of X2 + Ax2 + Bx + Cin Iy Furherreadng

e roots are distinct since discriminant Ag # 0
e E(Fg) has always 3 points of order 2 if E/Fq



Determining points of order 2 Elliptic curves over Fg

F. Pappalardi

Let P = (x1.,y1) € E(Fq) \ {0},

Phasorder2 < 2P=o00c < P=-P J
So CIMPA

Reminder from

—P= (X1,—a1x1 — a3 —y1) = (X17y1) =P = 2y1 = —aiX; — a J Monday

the j-invariant

If p 7& 2, can assume E : y2 _ X3 + AX2 + Bx + C Points of finite order

—P = (X1,_Y1) = (x1,y1) =P = y = O,)(13 4 A)(12 +Bxy+C=0 J Points of fiite order

The group structure

sketch of proof

Note (e
Waterhouse's Theorem
o the number of points of order 2 in E(IF,) equals the Ross Treoren
number of roots of X3+ Ax2 + Bx + Cin I R

e roots are distinct since discriminant Ag # 0
e E(Fg) has always 3 points of order 2 if E/Fq
e E[2]:={P€c E(Fg):2P =00} 2 Co® C>
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Determining points of order 2 (continues) Flipte curves overf
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Determining points of order 2 (continues) it carves overt
elfp=2and E:y? + a3y = x>+ axx?> + a rFepeierd

—P=(x1,a3+y1)=(x3,1) =P J

CIMPA

Reminder from
Monday
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Points of order 3

Points of finite order
The group structure

sketch of proof
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Determining points of order 2 (continues) it carves overt
elfp=2and E: y? + a3y = x° + axx® + ag rFepeierd

—P=(x,a3+y)=X,y1)=P = a3=0 |
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the j-invariant
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Points of order 3

Points of finite order
The group structure

sketch of proof
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Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag
—P=(x,a3+y1)=(x1,/¢1)=P = a3 =0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E: y2 +xy = x3 + asx + as

Elliptic curves over Fq

F. Pappalardi

exsny

CIMPA
Reminder from
Monday
the j-invariant
Points of finite order

Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag
—P=(x,a3+y1)=(x1,/¢1)=P = a3 =0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E:y? +xy = x3 + asx + as
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Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag
—P=(x,a3+y1)=(x1,/¢1)=P = a3 =0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E:y? +xy = x3 + asx + as

—P =X, x1+y1)=(1,y1)=P

J
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Points of order 3
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The group structure

sketch of proof

Important Results
Hasse's Theorem
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Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag
—P=(x,a3+y1)=(x1,/¢1)=P = a3 =0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E:y? +xy = x3 + asx + as

—P=(xt,x1 +y1) = (x1,1) =P = x =0,y = a

J

Elliptic curves over Fq
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Reminder from
Monday

the j-invariant
Points of finite order
Points of order 3

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
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Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag

—PZ(X1,33+}/1)=(X1,}/1)=P — a3 =0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E:y? +xy = x3 + asx + as

—P=(a,x+y1)=(x,0)=P = x1=0,yf = a

J

So there is exactly one point of order 2 namely (0, \/as)
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Determining points of order 2 (continues)
elfp=2and E: y? + a3y = x° + axx® + ag
—P= (X1,83+y1) = (X1,y1) =P — a=0

Absurd (a; = 0) and there are no points of order 2.
elfp=2and E:y? +xy = x3 + asx + as

—P=(a,x+y1)=(x,0)=P = x1=0,yf = a

J

So there is exactly one point of order 2 namely (0, \/as)
Definition
2—torsion points

E[2] ={P € E: 2P = xo}.

In conclusion
Co Co ifp>2
E[2) =< C, ifp=2E:y?>+xy=x3+asx+ as
{00} fp=2E:y?+asy=x3+ax?>+as
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Elliptic curves over F,,F3 and Fs Fllptic curves over £
F. Pappalardi

Each curve /F, has cyclic E(F>).

E E(F2) |E(F2)|

VP xy=x+x2+1 [0, (0, 1)} 5 CiMPA
Y Hxy=x+1 {o0, (0,1),(1,0),(1,1)} 4 Forier o
y2+y:X3+X {005(070)7(0’1)7(170)7(1’1)} 5 the j-invariant
Y+y=x"+x+1 {00} 1 Points of finite order
y2 +y= x° {OO, (Oa O)a (07 1)} 3 TS

Points of finite order
The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Elliptic curves over F,, F3 and Fs

Each curve /F, has cyclic E(F>).

E E(F2) |E(F2)]
V4 xy=x+x%+1 {o0,(0,1)} 2
V2 xy =x°+1 {0, (0,1),(1,0),(1,1)} 4
VP+y=x3+x {0, (0,0),(0,1),(1,0),(1,1)} | 5
Y+y=x"+x+1 {0} 1
y2+y:X3 {%,(0,0),(0,1)} 3

o £y y2=x3+x

Ei(F3) = Cy and

Ep:y?=x%—x

Ex(F3) = Co® Co

J

e E3:y2=x3+x

E(F5) =2 C @ G

Ey: y2=x3+x+2

and

E4(Fs) = C4

)

o E5:y?=x3+4x

Es(F5) = Co @ Cq4

Es:y?=x3+4x+1

and

Es(Fs) = Cs

J
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Determining points of Order 3 Elliptic curves ovtfr]Fq
Let P = (X17y1) c E(Fq) F. Pappalardi

Phasorder3 < 3P=c < 2P=-P J

Reminder from
Monday

the j-invariant
Points of finite order
Points of order 2
Points of finite order
The group structure
sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = ()\2 — 2X1,*)\3 + 2AXx1 — l/) J
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P

So,ifp>3and E:y>=x*>+ Ax+ B

2P = (Xgp, ygp) = 2(X1,y1) = ()\2 — 2Xq, ¢ 2\X1 — l/) J

where \ =

2y,

3x24+A b= X} —Ax—2B

2y
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P

So,ifp>3and E:y>=x*>+ Ax+ B

2P = (Xgp, ygp) = 2(X1,y1) = ()\2 — 2Xq, ¢ 2\X1 — l/) J

where \ = 2

P has order 3 < Xxop = Xy J

3x24+A b= X} —Ax—2B

2y
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Determining points of order 3

Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P |

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = ()\2 —2X1,*/\3 + 2AXx1 — l/) J

where \ =

P has order 3 < Xxop = Xy J

Substituting A,

3x2+A
2y,

)

x3—Ax;—2B

2y
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The group structure
sketch of proof
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Hasse's Theorem
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Determining points of order 3

Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = ()\2 —2X1,*/\3 + 2AXx1 — l/) J

where \ =

P has order 3 < Xxop = Xy J

Substituting A,

Xop — X1 =

3x2+A
2y,

)

—3x{ —BAX2—12Bx; +A? _
4(x34Ax;+4B)

x3—Ax;—2B

2y

>

Elliptic curves over Fq

F. Pappalardi

ey

:‘h'
CIMPA
Reminder from
Monday
the j-invariant
Points of finite order
Points of order 2
Points of finite order
The group structure
sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P )

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = (/\2 72X1,*/\3 + 2AXx1 — l/) J

32
Xy +A P
2y 2y

where \ =

P has order 3 < Xxop = Xy J

Substituting A, Xxop — X1 =

—3x{ —BAX2—12Bx; +A? _ 0
4(x34Ax;+4B) -

Note

o 3(x) := 3x* + 6Ax2 + 12Bx — A? the 3 division
polynomial

x3—Ax;—2B
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P J

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = (/\2 72X1,*/\3 + 2AXx1 — l/) J

_ A Xi—Ax—2B
where A = =5 =, v = _—
Phasorder3 <= xp=x1 |
Substituting . xop — xq — —SX—BAG—12Bx+A _
94 = 1= 4(x3+Ax,+4B) = }

Note

o 13(x) := 3x* + 6AX? + 12Bx — A? the 3" division
polynomial

o (xq,y1) € E(Fq) has order 3 = 3(x1) =0
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P J

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = (/\2 72X1,*/\3 + 2AXx1 — l/) J

_ A Xi—Ax—2B
where A = =5 =, v = _—
Phasorder3 <= xp=x1 |
Substituting . xop — xq — —SX—BAG—12Bx+A _
94 = 1= 4(x3+Ax,+4B) = }

Note
o 13(x) := 3x* + 6AX? + 12Bx — A? the 3" division
polynomial
e (x1,y1) € E(Fg) hasorder3 = 43(x1) =0
e E(F,) has at most 8 points of order 3
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Determining points of order 3
Let P = (xy,y1) € E(Fq)

Phasorder3 < 3P=c < 2P=-P J

So,ifp>3and E:y>=x*>+ Ax+ B
2P = (Xgp,ygp) = 2(X1,y1) = (/\2 72X1,*/\3 + 2AXx1 — V) J

where )\ — 3x2+A » X} —Ax—2B

2y 7 T 2y,

P has order 3 < Xxop = Xy )

o . _ 3 —6AX—12Bx+A*
Substituting A\, xop — X1 = 403+ Ax, +4B) =0 ’

Note
o 13(x) := 3x* + 6AX? + 12Bx — A? the 3" division
polynomial
e (x1,y1) € E(Fg) hasorder3 = 43(x1) =0
e E(F,) has at most 8 points of order 3
o lfp#£3,E[3]:={P€E:3P=c0} 2 C3® Cs
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Determining points of order 3 (continues) Ellptic curves over Fq
F. Pappalardi
Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3») has order 3, then CimMPA
O AZ+AC-B2=0
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Points of finite order
Points of order 2
Points of finite order
The group structure
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Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem
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Determining points of order 3 (continues)

Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3n) has order 3, then

O AZ+AC-B2=0
® E[3] = C3if A# 0 and E[3] = {oo} otherwise
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Determining points of order 3 (continues)

Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3n) has order 3, then

O AZ+AC-B2=0
® E[3] = G3if A# 0 and E[3] = {co} otherwise
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Determining points of order 3 (continues) Ellptic curves over Fq

F. Pappalardi
Exercise
Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3n) has order 3, then CIMPA

O AZ+AC-B2=0
® E[3] = G3if A# 0 and E[3] = {co} otherwise

Reminder from
Monday

the j-invariant

Points of finite order

Points of order 2
Example (from Monday) Points of finite order
If E . y2 — X3 + X + 1’ then #E(Fs) _ 9. e group structure:
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Important Results
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Riick's Theorem
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Determining points of order 3 (continues) Ellptic curves over Fq

F. Pappalardi
Exercise
Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if K
P = (x1,y1) € E(F3n) has order 3, then CIMPA

O AZ+AC-B2=0
® E[3] = G3if A# 0 and E[3] = {co} otherwise

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Example (from Monday)

Points of finite order

If E:y? = x3+x+1, then #E(Fs) = 9. he o stucte

sketch of proof

Ua(x) = (x +3)(x +4)(x? + 3x + 4) P
3 B Waterhouse's Theorem
Riick’s Theorem

Hence

E[3] = {oo, (2,£1),(1,£v3), (1 £ 23, (1 £ \/5))}
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Determining points of order 3 (continues) Ellptic curves over Fq

F. Pappalardi

Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if

P = (x1,y1) € E(IF3n) has order 3, then CimMPA
ﬂ AX1:3 + AC — B2 = 0 air:;gt;erfrom
® E[3] = G3if A# 0 and E[3] = {co} otherwise the j-invariant

Points of finite order
Points of order 2

Example (from Monday)
If E:y?=x3+x+1, then #E(Fs) = 9.

Points of finite order
The group structure

sketch of proof

Important Results

1/}3()() = (X + 3)(X + 4)(X2 + 3X + 4) Hasse's Theorem

Waterhouse's Theorem
Riick's Theorem

Hence Further reading

E[3] = {oo,(z,i1),(1,if3),(1 SN S \/5))}
© E(Fs) = {00, (2,£1),(0,£1),(3,£1), (4, £2)} = Cq



Determining points of order 3 (continues)

Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3n) has order 3, then

O AZ+AC-B2=0
® E[3] = G3if A# 0 and E[3] = {co} otherwise

Example (from Monday)
If E:y?=x3+x+1, then #E(Fs) = 9.

Y3(x) = (x + 3)(x + 4)(x% + 3x + 4)

Hence
E[3] = {oo,(z,i1),(1,if3),(1 SN S \/5))}
0 E(]F5) = {OO’ (23 i1)v (07i1)7 (3’11), (43 :|:2)} = C9
® Since Fo5 = F5[\/§] = E[3] C E(Fgg,)
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Determining points of order 3 (continues)

Exercise

Let E: y? = x3 + Ax? + Bx + C, A, B, C € F3». Prove that if
P = (x1,y1) € E(F3n) has order 3, then

O AZ+AC-B2=0
® E[3] = G3if A# 0 and E[3] = {co} otherwise

Example (from Monday)
If E:y?=x3+x+1,then #E(Fs) = 9.
Y3(x) = (X + 3)(x + 4)(x2 + 3x + 4)
Hence
ED3) = {oo, (2,£1), (1,%v3), (1 + 23, £(1 + V3))}
6 E(]F5) = {OO’ (23 +1 )v (Ov +1 )7 (3’ +1 ), (43 :|:2)} = C9
(2] Since Fo5 = F5[\/§] = E[3] C E(IF25)
e #E(Fg{,) =27 = E(Fgg‘,) = Cs ) CQ
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Determining points of order 3 (continues) Ellptic curves over Fq
F. Pappalardi

Inequivalent curves /F; with #E(F7) = 9.

E 3 (x) E3] 0 E(F7) E(F7) =
0, £3), (—1, =1 )
Rl R o i R
CIMP.
Y2 =x>+3x+ 2| (x+2)(x° +5x% + 3x + 2) {0, (5, £3)} Co A
Y2 =x° +5x+ 2| (x +4)(x* +3x* +5x +2) {0, (3, £3)} Co Reminder from
Y =xT+6x+2]| (x+1)(x°+6x°+6x+2) {oo, (6, £3)} @) By

the j-invariant
Points of finite order
Points of order 2
Points of finite order
The group structure
sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order 3 (continues)

Inequivalent curves /F; with #E(F7) = 9.

E pa(x) E[3] N E(F7) E(F7) =
y¥=x+2 X(x +1)(x +2)(x +4) { ?;’fni(ss)i?; ﬂ)} Cs @ Cs
Y2 =x° +3x+ 2| (x +2)(x* +5x* + 3x + 2) {co, (5, £3)} Co
yP=x>+5x+2](x+4)(x° +3x° +5x +2) {co, (3, £3)} Co
yP=x"+6x+2](x+1)(x° +6x°+6x+2) {co, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = F»(¢),£2 = £+ 1;

E:y’+y=x%
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Determining points of order 3 (continues)
Inequivalent curves /F; with #E(F7) = 9.

E pa(x) E[3] N E(F7) E(F7) =
y¥=x+2 X(x +1)(x +2)(x +4) { ?;fﬁfgi;; ﬂ)} Cs @ Cs
y2=x"+3x+2 ] (x+2)(x° +5x° + 3x +2) {co, (5, £3)} Co
yP=x>+5x+2](x+4)(x° +3x° +5x +2) {co, (3, £3)} Co
yP=x"+6x+2](x+1)(x° +6x°+6x+2) {co, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = F»(¢),£2 = £+ 1;

We know E(F2) = {o0, (0,0), (0,1)} C E(F4).

E:y’+y=x%
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Determining points of order 3 (continues)
Inequivalent curves /F; with #E(F7) = 9.

E pa(x) E[3] N E(F7) E(F7) =
y¥=x+2 X(x +1)(x +2)(x +4) { ?;fﬁfgi;; ﬂ)} Cs @ Cs
y2=x"+3x+2 ] (x+2)(x° +5x° + 3x +2) {co, (5, £3)} Co
yP=x>+5x+2](x+4)(x° +3x° +5x +2) {co, (3, £3)} Co
yP=x"+6x+2](x+1)(x° +6x°+6x+2) {co, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = F»(¢),£2 = £+ 1;

We know E(F2) = {o0, (0,0), (0,1)} C E(F4).

E(F4) = {o0,(0,0),(0,1),(1,8), (1,6 +1),(£,8), (&, €+ 1), (€ + 1,8, (+ 1, £+ 1)}

E:y’+y=x%
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Determining points of order 3 (continues)
Inequivalent curves /F; with #E(F7) = 9.

E P3(x) E[3] N E(F7) E(F7) =
0,£3), (—1, £1

s o2y |{E OG0 e

Y2 =x>+3x+2 | (x+2)(x® +5x% + 3x + 2) {0, (5, £3)} Cy

Y2 =x>+5x+2 | (x+4)(x® +3x% + 5x + 2) {0, (3, £3)} Cy

y2=x"4+6x+2]| (x+1)(x° +6x% +6x +2) {0, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = F(¢),£2 = € 4 1;

We know E(F2) = {o0, (0,0), (0,1)} C E(F4).

E(Fs) = {00, (0,0), (0,1), (1,€), (1, £ + 1), (£, €), (€, + 1), (6 +1,), (6 + 1,6 + )}
Ya(x) = X'+ x = X(X + )X +E)(X +E+1) = E(Fa) 2 Co® Cs |

E:y?+y=x)

Exercise (Suppose (X0, yo) € E/F2n has order 3. Show that)

0 E:y2+aay:x3+a4x+as = Xé+a§x0+(a4a3)2:0
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Determining points of order 3 (continues)
Inequivalent curves /F; with #E(F7) = 9.

E P3(x) E[3] N E(F7) E(F7) =
Pxi2 X(X + 1)(X +2)(x + 4) {(5 Oﬂs)id ¢1)} C oG
¥ =x>+3x+2 | (x+ 2)(x° 4+ 5x° + 3x + 2) {0, (5, £3)} Cy
Y2 =x>+5x+2 | (x+4)(x® +3x% + 5x + 2) {0, (3, £3)} Cy
y2=x"4+6x+2]| (x+1)(x° +6x% +6x +2) {0, (6, £3)} Co

Can one count the number of inequivalent E/IF, with #E(Fq) = r?

Example (A curve over F, = F(¢),£2 = € 4 1;

{OO, (070)3 (07 1 )} < E(IF4)
E(F4) = {00,(0,0),(0,1),(1,8),(1,£ +1),(£,€),(§, 6 +1),(§+1,8),(E+ 1,6+ 1)}

We know E(Fy) =

Pa(X) = x* +x = x(x + ) (X + ) (x + £+ 1) = E(F,) =

Cs @ Cs J

E:y?+y=x)

Exercise (Suppose (X0, yo) € E/F2n has order 3. Show that)

0 E:y2+asy:x3+a4x+a6 = Xg+a§XO+(a4a3)2:O

@E: y’+xy=x*+ax?+a = x5+X;+a =0
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Determining points of order (dividing) m Ellptic curves over Fq
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Determining points of order (dividing) m Fillpic curves over Fq
F. Pappalardi

Definition (m—torsion point)

Let E/K and let K an algebraic closure of K. c;v;m
E[m] = {P S E(R) . mP = OO}J Reminder from

Monday

the j-invariant

Points of finite order
Points of order 2
Points of order 3

The group structure

sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Determining points of order (dividing) m

Definition (m—torsion point)

Let E/K and let K an algebraic closure of K.

E[m] = {P € E(K) : mP:oo}J

Theorem (Structure of Torsion Points)
Let E/K and m € N. If p = char(K) 1 m,
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Determining points of order (dividing) m Ellptic curves over Fq
F. Pappalardi

Definition (m—torsion point)

Let E/K and let K an algebraic closure of K.

CIMPA

E[m] = {P € E(K) : mP = OO}J Reminder from

Monday
the j-invariant

Theorem (Structure of Torsion Points) Points of finite order

Points of order 2
Points of order 3
Let E/K and m € N. If p = char(K) 1 m, [ pois of e order
The group structure

E[m] = Cm @ Cm J sketch of proof

Important Results
Hasse's Theorem

A /
Ifm= pm ,,OJ( m, Waterhouse's Theorem

E [m] > Cn@® Cy or E [m] & G @ Coy J Rick’s Theorem

Further reading




Determining points of order (dividing) m

Definition (m—torsion point)

Let E/K and let K an algebraic

closure of K.

E[m] = {P € E(K) : mP:oo}J

Theorem (Structure of Torsion Points)

Let E/K and m € N. If p = char(K) 1 m,
Elm = Cy,® Cn J

Ifm=p'm ptm,

E[m| = Cy ¢ Cry J

E/F, is called {

ordinary
supersingular

if E[p] = C,
if E[p] = {oo}
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Group Structure Of E(Fq) Elliptic curves over Fgq

F. Pappalardi
Corollary

Let E/Fq4. 3n,k € N are such that
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Group Structure Of E(Fq) Elliptic curves over Fq

F. Pappalardi
Corollary

Let E/Fq4. 3n,k € N are such that

CIMPA

Reminder from

E(]Fq) =4 Cn P an Monday

the j-invariant

Points of finite order
Points of order 2
Points of order 3

Proof. Points of finite order

From classification Theorem of finite abelian group —
E(Fq) = Cn1 @ an @ ttt @ Cn, Important Results
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Waterhouse's Theorem
Riick's Theorem
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Group Structu re of E(Fq) Elliptic curves over Fg
F. Pappalardi

Corollary

Let E/Fq4. 3n,k € N are such that

CIMPA

Reminder from

E(]Fq) =~ Cn D an Monday

the j-invariant

Points of finite order
Points of order 2
Points of order 3

Proof. Points of finite order
From classification Theorem of finite abelian group sketch of proof
E(Fq) = Cn1 @ an @ te @ Cn, Important Results
H H Hasse's Theorem
with n,-|n,-+1 for i > 1. Waterhouse's Theorem
Hence E(IF4) contains nj points of order dividing ny. From Racks Thearem
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Group Structure Of E(]Fq) Elliptic curves over Fq
F. Pappalardi

Corollary

Let E/Fq4. 3n,k € N are such that

CIMPA
Reminder from

E(]Fq) = Cn D an Monday

the j-invariant

Points of finite order
Points of order 2
Points of order 3

Proof. Points of finite order
From classification Theorem of finite abelian group sketch of proof
E(Fq) o~ Cn1 fas) an @@ Cp, Important Results
with nj|nj4 fori > 1. N
Hence E(IFq) contains nj points of order dividing ny. From Focks Theorem
Structure of Torsion Theorem, #E[mn] < n2. So r < 2 [ fererreadns

Theorem (Corollary of Weil Pairing)
LetE/Fgandn, k e Ns.t. E(Fq) = C,® Cn. Thenn| q— 1.



Group Structure Of E(]Fq) Elliptic curves over Fq

F. Pappalardi

Corollary
Let E/Fq4. 3n,k € N are such that

CIMPA

Reminder from

E(]Fq) = Cn D an Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3
Proof. Points of finite order
From classification Theorem of finite abelian group sketch of proof
E(Fq) o~ Cn1 fas) an @@ Cp, Important Results
with nj|nj4 fori > 1. N
Hence E(IFq) contains nj points of order dividing ny. From Focks Theorem
Structure of Torsion Theorem, #E[mn] < n2. So r < 2 [ fererreadns

Theorem (Corollary of Weil Pairing)
LetE/Fgandn, k e Ns.t. E(Fq) = C,® Cn. Thenn| q— 1.

We shall discuss the proof of the latter tomorrow
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Sketch of the proof of Structure Theorem of Torsion Points
The division polynomials

The proof generalizes previous ideas and determine the points
P € E(FFq) such that mP = oo or equivalently (m—1)P = —P.

Definition (Division Polynomials of E : y? = x* + Ax + B (p > 3))
o =0
Py =1
Vo =2y
s =3x* + 6Ax® + 12Bx — A
Vg =4y (x® + 5Ax* + 20Bx® — 5A2x? — 4ABx — 882 — A%)

3 3
¢2m+1 :¢m+2¢m - wmq z/’m+1

form>2
Vom = (g;) - (miaPmg — Ym-a¥y) form>3

The polynomial v, € Z[x, y] is called the m" division
polynomial
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The division polynomials Fillpic curves over Fq
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The division polynomials

Lemma

LetE : y?> = x3 + Ax + B, (p > 3) and let ), € Z|x, y] the m"
division polynomial. Then

vemi1 €EZ[X]  and Yo €2yZ[x] |

Proof is an exercise.

True o, 11, Y2, W3, 14 and for the rest apply induction, the

identity y?2 = x3 + Ax + B--- and consider the cases m odd
and m even.
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The division polynomials Fillpic curves over Fq
F. Pappalardi
Lemma

LetE : y?> = x3 + Ax + B, (p > 3) and let ), € Z|x, y] the m"
division polynomial. Then
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Yomi1 € Z[X] and hom € 2yZ[X] J
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Hence 12, = m?x™ —1 + ...



The division polynomials
Lemma

LetE : y?> = x3 + Ax + B, (p > 3) and let ), € Z|x, y] the m"
division polynomial. Then

vomi1 €Z[X]  and  dom €2yZ[X] |

Proof is an exercise.

True o, 11, Y2, W3, 14 and for the rest apply induction, the

identity y?2 = x3 + Ax + B--- and consider the cases m odd
and m even.

Lemma

= y(mx(m=4/2 L ...y ifmis even
T mx(m=n/2 4 if m is odd.

2
Hence 12, = m?x™ —1 + ...

Proof is another exercise on induction:

O
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Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)

Elliptic curves over Fgq

F. Pappalardi

¥

m(X, y) _ <X _ wm—ﬂ/}m—H 1/’2m(X,}/)>

_ <¢m(X) Wm(’ﬂ)’))
Va(x) 7 2¢5(x)

() Uh(x,y)

CIMPA

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order
The group structure

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)
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Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)
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Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)
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Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)
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. Ym—1"Um pam(X, ) . dm(Xx) wm(X,y)
mix.y) = (X‘ R0 2680 )‘ <w%7(x)’w?n(x,y)>
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Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)
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¥

(X _ Ym—1¥mer Yom(X, y)) _ <¢m(X) Wm(X, y))
() 205(x) V(X)) (X, y)
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. Ym—1"Um pam(X, ) . dm(Xx) wm(X,y)
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Ymi2¥h_ 1 —Ym—2th,
(,Zsm — X/(pm ¢m+1 ’(/}m 1o @i = +2 14y 2¥mi1 J

Points of order 3

We will omit the proof of the above (see [8, Section 9.5])

The group structure

sketchofproof
Exercise (Prove that after substituting y*> = x® + Ax + B) Important Resuits
T
Q@ om(x) € Z[X]

Riick's Theorem

Further readin,
@ Gn(X) = X" £ P(X)2 = mEXTT 4 g
e wWoam+1 € yZ[X] Wom € Z[X]
0 20 ¢ y7(x)
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Theorem (E : Y2 = X® + AX + B elliptic curve, P = (x, y) € E)

wm(va)

m(x,y) = (X -

wm—1¢m+1 T/JZm(X»Y)> _ <¢m(X
VE(x) T 205(x)

)
P2,(X)" (X, ¥)

where

¢m = X¢m

YmioP 1 —¥m_2h,
Ym1Pm—1,wm = -~ 14y = J

We will omit the proof of the above (see [8, Section 9.5])
Exercise (Prove that after substituting y*> = x® + Ax + B)
© ¢m(x) € Z[X]
@ Om(X) = X" 4o Pm(x)?
(3) w2m+1 € }’Z[X] wom € Z[X]
0 3% c yz(x)
(5] ng(z/)m( )ém( )) =1

this is not really an exercise!! - see [8, Corollary 3.7]

:m2x”72—1_|_...
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Lemma

Elliptic curves over Fq
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SE(m] = #{P e E(R): mP = o0} { . fpAm
- o <m? ifp|m

¥

CIMPA
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Lemma

#E[m] = #{P € E(K) :

< mP

ifptm

P=
m oo} ifp| m

Proof.

Consider the homomorphism:

[m] : E(K) —
If pt m, need to show that

E(K), P — mP

# Ker[m] = #E[m] = m?
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Lemma

- — 2 .f
#E[m] = #{P € E(R) - mP = o0) {< i

|

Proof.
Consider the homomorphism:

[m] : E(K) — E(K),P ~ mP
If pt m, need to show that

# Ker[m] = #E[m] = m?

We shall prove that 3Py = (a, b) € [m](E(K)) \ {co} s.t.
#{Pc E(K): mP= Py} =m?
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Lemma

_ 2 if
#E[m] = #{P € E(K) : mP = o0} {< 22 ;'fgm

Proof.

Consider the homomorphism:
[m] : E(K) — E(K),P — mP
If pt m, need to show that
# Ker[m] = #E[m] = m?

We shall prove that 3P, = (a, b) € [m]|(E (K )) \ {0} s.t.

#{P e E(K): mP =Py} =
Since E(K) infinite, we can choose (a, b) € [m](E(R)) s.t.

Q@ ab+#0
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Lemma

<m? ifp|m

H#E[m] = #{P ¢ E(K) : mP = oo}{ e "prmJ

Proof.

Consider the homomorphism:
[m] : E(K) — E(K),P +— mP
If pt m, need to show that
# Ker[m] = #E[m] = m?
We shall prove that 3P, = (a, b) € [m]|(E (K )) \ {0} s.t.
#{Pe E(K): mP=Py} =
Since E(K) infinite, we can choose (a, b) € [m](E(K)) s.t.
@ ab+#0
O VxeK: (Dmbm — 20mpm)(X0)m(X0) =0 = a # :;giig;
if p+ m, conditions imply that ¢,,(x) — ay2,(x)

has m? = 9(¢m(x) — ay2,(x)) distinct roots
in fact dgm(x) = m? and 0y2,(x) = m? — 1
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Proof continues.
Write
mP = m(x,y) = (

The map

{a € K: ¢m(a) — apm(a)? =0} < {P e E(K): mP = (a,b)}

dm(X) wm(X.y)

X

Ya(x)7 ¥m(x)®

) = (¢

o = (Cv,o, bl’(()zo)_1)

is a well defined bijection.

X

3, yr(x))
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Proof continues.
Write
mP = m(x,y) = (

The map

{a € K: ¢m(a) — apm(a)? =0} < {P e E(K): mP = (a,b)}

dm(X) wm(X.y)

X

Ya(x)7 ¥m(x)®

) = (¢

o = ((140, bl’((l%o)_1)

is a well defined bijection.

X

3, yr(x))

Hence there are m? points P € E(K) with mP = (a, b)
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Elliptic curves over Fq
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Proof continues.

Write
i wm(X, P CIMPA
)= (5 69) - (28500)
rm m Reminder from
The ma_p _ :\::Ti:iariam
{OZ € K: ¢m(04) - ad}m(()[)z = O} = {P = E(K) :mP = (a7 b)} Points of finite order
Qo — (CYO, br((yo)_1) :\nlso:ov:evz
is a well defined bijection. e geumans
Hence there are m? points P € E(K) with mP = (a, b) I

Important Results
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Proof continues.
Write

mP = m(x,y) = (%3, 52640) = (%84, yr(x))
The map

{0 €K : ¢m(a) — abm(a)? =0} » {P € E(K): mP = (a,b)}

ag — (o, br(ag) ")
is a well defined bijection.
Hence there are m? points P € E(K) with mP = (a, b)

So there are m? elements in Ker[m].

If p | m, the proof is the same except that ¢m(x) — aym(x)? has

multiple roots!!
In fact ¢f,(x) — ayly(x)2 =0

O
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From Lemma, Theorem follows:
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From Lemma, Theorem follows:
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From Lemma, Theorem follows:
If pt+ m, apply classification Theorem of finite Groups:
E[m] = Cp, & Cp, & --- Cp,,

n; | niy1. Let £ | ny, then E[¢] C E[m]. Hence
k=1 = k=2.S0

E[m] = C,, & C,,
Finally n, | mand nyn, = m? so m= ny = ny.
If p | m, write m= p/m’, pt m’ and
E[m] = E[m']| ® E[p] = Cw @ C @ E[P]
The statement follows from:

E[p] = { 1} and  Cuw @ Cy = Cpip
Cp
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From Lemma, Theorem follows:

If pt+ m, apply classification Theorem of finite Groups:

E[m] = Cp, & Cp, & --- Cp,,

n; | niy1. Let £ | ny, then E[¢] C E[m]. Hence
k=1 = k=2.S0

E[m] = Cf71 D an
Finally np | mand nyn, = m? so m= ny = ny.
If p | m, write m= p/m’, pt m’ and
E[m] = E[m']| ® E[p] = Cw @ C @ E[P]

The statement follows from:

E[p] = { 1} and  Cuw @ Cy = Cpip
Cp

which is done by induction.
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From Lemma, Theorem follows (continues)
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From Lemma, Theorem follows (continues)
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From Lemma, Theorem follows (continues)
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From Lemma, Theorem follows (continues)
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Elp] = if follows from #E[p] < p
Cp CIMPA
o If E[p] = {oc} = E[p]] = {00} ¥j > 2: ramer o
In fact if E[p/] # {oco} then it would contain some element PP
of order p
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From Lemma, Theorem follows (continues)
Induction base:

Elp] = {CQO} if follows from #E[p] < p?
(o]
o If E[p] = {00} = E[p] = {o0} Vj > 2:
In fact if E[p/] # {oo} then it would contain some element
of order p(contradiction).

o If E[p] = Cp, then E[p/] = C, Vj > 2:
In fact E[p/] is cyclic (otherwise E[p] would not be cyclic!)
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From Lemma, Theorem follows (continues)
Induction base:

Elp] = {CQO} if follows from #E[p] < p?
(o]
o If E[p] = {00} = E[p] = {o0} Vj > 2:
In fact if E[p/] # {oo} then it would contain some element
of order p(contradiction).

o If E[p] = Cp, then E[p/] = C, Vj > 2:
In fact E[p/] is cyclic (otherwise E[p] would not be cyclic!)
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From Lemma, Theorem follows (continues)
Induction base:

)= § o
« 1 E[p] = {0} = E[p] = {0} %> 2:

In fact if E[p/] # {oo} then it would contain some element
of order p(contradiction).

o If E[p] = Cp, then E[p/] = C, Vj > 2:
In fact E[p/] is cyclic (otherwise E[p] would not be cyclic!)

if follows from #E[p] < p?

Fact: [p] : E(K) — E(K) is surjective (to be proven tomorrow)J

Elliptic curves over Fq

F. Pappalardi

CIMPA

Reminder from
Monday

the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order
The group structure

Important Results
Hasse's Theorem
Waterhouse's Theorem
Riick's Theorem

Further reading



From Lemma, Theorem follows (continues)

Elliptic curves over Fq
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Induction base:

Efp] = { 1} if follows from #E[p] < p?
Cp CIMPA
« If E[p] = {oc} = E[p] = {oc} V] > 2: I
In fact if E[p] # {0} then it would contain some element PO
of order p(contradiction). Points o fnte order
o If E[p] = Cp, then E[p] = C, Vj > 2: rone o
In fact E[p/] is cyclic (otherwise E[p] would not be cyclic!) he e st
Fact: [p] : E(K) — E(K) is surjective (to be proven tomorrow) | _Impmamsu"s
i PeEandordP=p~' = 3Q¢ Est pQ=Pand s
Q=p.

Further reading

Hence E[p/] = C, since it contains an element of order p'.

Remark:

o E[2m+1]\ {oo} = {(x,¥) € E(K) : t2ms1(x) =0}
o E[2m]\ E[2] = {(x,y) € E(K) : y~"¢2m(x) = 0}




Theorem (Hasse)

Let E be an elliptic curve over the finite field Fy. Then the order

of E(Fy) satisfies

lg+1—#E(Fq)| <2V/4.
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Theorem (Hasse)

Let E be an elliptic curve over the finite field Fy. Then the order
of E(Fy) satisfies

|9 +1 - #E(Fq)| <2V4.

So #E(Fq) € [(vVa -

Example (Hasse Intervals)

1)2,(,/q + 1)?] the Hasse interval I,

q Ig

> 11,2,3,4,5)

3 {1,2,3,4,5,6,7}

4 {1,2,3,4,5,6,7,8,9}

5 {2,3,4,5,6,7,8,9,10}

7 {3,4,5,6,7,8,9,10, 11, 12, 13}

8 {4,5.6.7.8.9,10, 11, 12, 13, 14}

9 {4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16}

11 {6,7,8,9,10, 11, 12, 13 14,15, 16, 17, 18}

13 {7,8,9, 10,11,12 13, 14, 15, 16, 17, 18 19, 20,21}

16 | {9.10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}

17 | {10, 11,12, 13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

19 | {12, 13,14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}

23 | {15,16,17,18, 19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

25 | {16,17,18,19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}

27 | {18,19,20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}

29 | {20,21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}

31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 | {22,23,24,25,26,27,28,29,30, 31,32, 33,34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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Theorem (Watel‘house) Elliptic curves over Fq
F. Pappalardi

Letg=p"andletN=q+1— a.

JE/Fq s.t#E(Fq) = N & |a] < 2,/q and =

CIMPA
one of the following is satisfied: _
Reminder from
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the j-invariant

Points of finite order
Points of order 2

Points of order 3

Points of finite order
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Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

q aec
2
4= —4, -3, —2, —1,0,1,2,3,4
§=8 |18 28 Th 00080 s
9=32 | (-6 —5 —4, —3, —2, —1,0,1,2,3,4,5,6}
16=2*[{—8 —7,-6, —5 —4, —3,-2, —1,0,1,2,3,4,5,6,7,8}
2
25=5 [ {—10, -9, -8, —7, —6, —5, —4, —3, —2, —1,0,1,2,3,4, 5,6,7,8,9, }
27=3% | { —9, , -6, -3, 0,1,2,3 6,7,8,9,10}
32725 { —10, —8 —6 —4, —2, ,0 2,3,4,5,6 8 10 }




Theorem (Waterhouse)
Letg=p"andletN=q+1— a.
JE/Fq s.t#E(Fy) = N < |a| < 2/q and

one of the following is satisfied:

(i) ged(a,p) =1;
(ii) n even and one of the following is satisfied:

Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

q aec
2
4= =4, =3 —o=0,1,2)3,4
=8 | 178 28 T 00080 4y
9=3% | {-6 —5 —4, —3, —2, 0,1,2,3,4,5,6}
t6=2*|{—8 ~7,—6 —5 —4, —3,—2, —1,0,1,2,3,4,5,6,7,8}
25=5% | {—10, —9, —8, —7, —6, —5, ,0,1,2,3,4, 5,6,7,8,9, }
27=3% | { —o9, , ,—6, -3 ,0,1,2,38, 6,7,8,9,
32=25 | { —10, —8, -6 —4, -2, ,0,1,2,3,4,5,6, 10,
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Theorem (Waterhouse)

Letg=p"andletN=q+1— a.

JE/Fq s.t#E(Fy) = N < |a| < 2/q and

one of the following is satisfied:
(i) ged(a,p) =1;

(i) n even and one of the following is satisfied:

Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

Q@ a=+2,q;

q aec
2
4= , —2 —1,0,1,2,3,
Fr S (0 (i S P R SRS e LIPS
9=3% [{-6 —5 —4, —3, —2, —1,0,1,2,3,4,5,6}
16=24 | { , =6, , — 4, =2, ,0,1,2,3,4,5,6,7,8}
25=52 | { . , —6, —5, ,0,1,2,3,4,5,6,7,8,9, }
27=3% | { -9, ,—6, — 5, -3, 0,1,2,3,4,5,6,7,8,9,
32=25 | { —10, —8, -6, —4, -2, ,0, ,4,5,6, 10,
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Theorem (Waterhouse)

Letg=p"andletN=q+1— a.

one of the following is satisfied:

(i) ged(a,p) =1;
(i) n even and one of the following is satisfied:

Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

JE/Fq s.t#E(Fy) = N < |a| < 2/q and

Q@ a=+2,4;

® p#1 (mod3), and a= +./q;

q aec
2
4 — s 0 @ ilo 2 3
=8 |58 5 %halsk s
9=3 | {—8, —5, , —2, —1,0,1,2,3,4,5,6}
16=2% | { ,—6, —5, —4, -2, —1,0,1,2,3,4,5,6,7,8}
25=5 | { . , —6, —5, ,0,1,2,3,4,5,6,7,8,9, }
27=3% | { —9, , —6, B -3, 0,1,2,8 ,6,7,8,9,
32=2% | { —10, —8, -6, —4, -2, ,0, ,4,5,6 10,
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Theorem (Waterhouse)

Letg=p"andletN=q+1— a.
JE/Fq s.t#E(Fy) = N < |a| < 2/q and

one of the following is satisfied:
(i) ged(a,p) =1;
(i) n even and one of the following is satisfied:

Qa==+2,q;
® p£1 (mod3),and a=+.,/q;
® p#£1 (mod4),anda=0;

Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

q ae
7
4=2" [ {—4, -3, —2, -1,0,1,2,3,
=B |0 a5 hatsk s
9=3% | {-6, —5 —4, —3, —2, —1,0,1,2,3,4,5,6}
t6=2*|{—-8 —7,-6 —5 —4, —3,-2, —1,0,1,2,3,4,5,6,7,8}
25 =52 | { ,0,1,2,3,4,5,6,7,8,9, }
27=3% | { -9 -6 -3 ,0,1,2,3,4,5,6,7,8,9,10}
32=2% | { —10 -8 -6 —4 =2 ,0,1,2,3,4,5,6,7,8,9,10
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Theorem (Watel‘house) Elliptic curves over Fq
F. Pappalardi

Letg=p"andletN=q+1— a.

JE/Fq s.t#E(Fy) = N < |a| < 2/q and
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one of the following is satisfied:

Reminder from
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(i) ng(a’ 2 ) =1, m: j-i:iariam
(i) n even and one of the following is satisfied: Points of finte order
0 a—+2,q; S
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e p ¢ 1 (mOd 4)’ anda _ 0; The group structure
sketch of proof
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Riick's Theorem
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Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

ae

{ ) ) , 5 )
16=2% | { s, -6, , , -2, ,0,1,2,3,4,5,6,7,8}
{
{
{




Theorem (Watel‘house) Elliptic curves over Fq
F. Pappalardi

Letg=p"andletN=q+1— a.

JE/Fq s.t#E(Fy) = N < |a| < 2/q and

CIMPA

one of the following is satisfied:

Reminder from

. . Mond
(i) ng(a’ 2 ) =1, m: j-i:iariam
(i) n even and one of the following is satisfied: Points of finte order
© a=+2,3; e
(2) pZE1 (mod 3), and a = :tf,' Points of fiite order
e p 5_& 1 (mOd 4)’ and a— 0; Lheg:u?slruch:re
sketch of proof
||| n IS Odd, and one Of the fOl/OWIn IS SafISfled' Important Results
g
n p _ 2 or 3’ and a—= :l:p(n+1)/2" Hasse's Theorem

Riick's Theorem

Further reading

Example (g prime VN € Iy, 3E /Fq, #E(Fy) = N. g not prime:)

q ae
2
4=2 | {—-4 -3, —2, —1,0,1,2,3,
§=8 || 2200805k, 4,5
9=32 | { o = Up@ Uo2y 5, }
16=24 | { —6 -2 ,0,1,2,3,4,5,6,7,8}
25 =52 | { ,0,1,2,8,4,5,6,7,8,9, }
27=3% | { -6 -3 ,0,1,2,8,4,5,6,7,8,9,10}
32=25|{ —10 —6 —4 =2 ,0,1,2,3,4,5,6,7,8,9,10, 11}




Theorem (Waterhouse)

Letg=p"andletN=q+1— a.
JE/Fq s.t#E(Fy) = N < |a| < 2/q and

one of the following is satisfied:
(i) ged(a,p) =1;
(i) n even and one of the following is satisfied:
Qa==+2,q;
® p£1 (mod3),and a=+.,/q;
® p#£1 (mod4),anda=0;
(iii)y nis odd, and one of the following is satisfied:
©® p=2o0r3,anda= +p""/2;

® a-=0.
Example (g prime VN € Iy, 3E /Fq, #E(Fq) = N. q not prime:)
q . ac
g= B f —2,7-1,0,1,) 2,}, 5}
9=3% | { ,0,1,2,3,4,5,6}
16=24 | { —6 -2 ,0,1,2,3,4,5,6,7,8}
25=5 | { , ,0,1,2,8,4,5,6,7,8,9, }
27=3% | { -6 , -3 ,0,1,2,8,4,5,6,7,8,9,10}
32=25|{ —10 —6, —4 —2, —1,0,1,2,3,4,5,6,7,8,9,10
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Elliptic curves over Fq
Theorem (Riick)

F. Pappalardi
Suppose N is a possible order of an elliptic curve /Fq, q = p".
Write

N=p°mn,, ptnny and n | np (possibly ny =1).
There exists E /Fq s.t.
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Elliptic curves over Fq
Theorem (Riick)

F. Pappalardi

Suppose N is a possible order of an elliptic curve /Fq, g = p".
Write

N=p°mn,, ptnny and n | np (possibly ny =1).
There exists E /Fq s.t.
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /Fq, g = p"
Write

N = p®ninz, pfnne

and ny | ny (possibly ny = 1).
There exists E /Fq s.t.

E(Fq) = Ch, @ Crype
if and only if

© ni = no in the case (ii).1 of Waterhouse’s Theorem;
® ni|q — 1 in all other cases of Waterhouse’s Theorem.
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /Fq, g = p"
Write

N = p®ninz, pfnne

and ny | ny (possibly ny = 1).
There exists E /Fq s.t.

E(Fq) = Ch, @ Crype
if and only if

© ni = no in the case (ii).1 of Waterhouse’s Theorem;
® ni|q — 1 in all other cases of Waterhouse’s Theorem.

Example

o If g=p?" and #E(Fy) = g+ 1+2,/G = (p" + 1), then
E(Fq) = Cp”:H D Cp”:t1~
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Elliptic curves over Fq

Theorem (Riick)

F. Pappalardi
Suppose N is a possible order of an elliptic curve /Fq, g = p".
Write

N=p°mn,, ptnny and n | np (possibly ny =1).
There exists E /Fq s.t.

CIMPA

Reminder from
Monday

E(Fq) = Ch, @ Crype

the j-invariant

g . Points of finite order
If and On/y If Points of order 2
Points of order 3
© ni = no in the case (ii).1 of Waterhouse’s Theorem; P of ke order
® ni|q — 1 in all other cases of Waterhouse’s Theorem. sketch of proof

Important Results
Hasse's Theorem
Waterhouse's Theorem

Example

Further readin
o If g=p?"and #E(Fq) = g+ 1+2/G = (p" £+ 1) then g
E(Fq) = Cp”:H D cp”:t1~
e Let N =100 and q= 101 = 3E1, EQ, E3, E4/F101 s.t.
E1(F101) = C10 @ Cio Ex(F101) = C2 @ Cso
E3(F101) = Cs @ Co E4(F101) = Cioo



Further Reading...
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