- 1. Si costruisca un polinomio f di grado 4 irriducibile su $\mathbf{F_2}$. Si indichi con α una radice di f e con $\mathbf{F_2}[\alpha]$ il campo di spezzamento di f.
 - (a) Si calcolino tutte le radici primitive di $\mathbf{F_2}[\alpha]$.
 - (b) Si calcoli il logaritmo discreto di $\alpha^3 + \alpha$ in base $\alpha^2 + 1$.
 - (c) Quanti elementi può avere il campo di spezzamento di un generico polinomio di grado 4 su $\mathbf{F_2}$?
- 2. Sia $\mathbf{F_3}$ il campo finito con 3 elementi.
 - (a) Determiare tutti i polinomi irriducibili di grado 3 su $\mathbf{F_3}$.
 - (b) Determinare tutti i polinomi primitivi di grado 3 su $\mathbf{F_3}$
 - (c) Si scelga un polinomio irriducibile f(x) non primitivo del punto (a) e sia α una sua radice primitiva. Determinare tutte le radici primitive di $\mathbf{F}_3(\alpha)$.
- 3. Si costruisca un polinomio di grado 3 irriducibile su \mathbf{F}_7 .
 - (a) Si illustri il metodo per calcolare tutti i polinomi di grado tre irriducibili su \mathbf{F}_{7} .
 - (b) Si dica quanti sono i polinomi primitivi su $\mathbf{F_7}$ spiegando la ragione della risposta.
 - (c) Quanti elementi può avere il campo di spezzamento di un generico polinomio di grado 3 su \mathbb{F}_7 ?
- 4. Si costruisca un polinomio f di grado 4 irriducibile su $\mathbf{F_2}$. Si indichi con α una radice di f e con $\mathbf{F_2}[\alpha]$ il campo di spezzamento di f.
 - (a) Si calcolino tutte le radici primitive di $\mathbf{F}_{2}[\alpha]$.
 - (b) Si calcoli il logaritmo discreto di $\alpha^3 + \alpha$ in base $\alpha^2 + 1$.
 - (c) Quanti elementi può avere il campo di spezzamento di un generico polinomio di grado 4 su $\mathbf{F_2}$?