Session A

1	2	3a	3b	3c	3d	4	5	6	TOTAL

1. Compute the 13-adic valuation $v_{13}(200!)$.

2. Approximate $\sqrt{2} + \sqrt{3}$ by a rational using continued fractions. You may stop after three divisions.

3. Let $\omega(n)$ be the number of prime divisors of $n \in \mathbf{N}$ and let $\alpha \in \mathbf{C}$. We define $f_{\alpha}(n) := \alpha^{\omega(n)}$. a. Show that $f_{\alpha}(n)$ is multiplicative function. For which values of α is f_{α} totally multiplicative?

b. Prove that $f_2(n) = d(n)$ if and only if n is square free.

c. Compute $f_{\sqrt{5}}(300)$.

d. Show that $f_2 * \mu = \mu^2$.

4. Prove that for any prime p, there exists a primitive root modulo p.

5. Prove that if $n \equiv 10 \mod 16$, the *n* is not of the form $x^2 + 2y^2 + 3z^2$ with $x, y, z \in \mathbb{Z}$.

6. Let $m \in \mathbf{N}$. Prove that if $x^2 \equiv 2 \mod n$ has solution, then the Jacobi symbol $\left(\frac{2}{m}\right)_J = 1$ but there are infinitely many integers m such that $\left(\frac{2}{m}\right) = 1$ but 2 is NOT a square modulo m.