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1 Lecture 1 - Introduction

Let E/Q be an elliptic curve. It is well known since the time of Jacobi that, for any field extension K/Q, the set E(K)
of projective K–rational points has a natural group structure. Furthermore, if K/Q is finite, E(K), with respect to
this group structure, is finitely generated.

For any integer n, we consider the kernel of the multiplication-by-n map,

E[n] = {P ∈ E(Q) : nP =∞}

which is called the n–torsion subgroup. It is part of the classical theory the fact that if n is an odd integer and
P (x, y, 1) ∈ E(Q) is non zero, then P ∈ E[n] if and only if x is a root of the n–division polynomial ψn(X) ∈ Z[X]
which are defined by recursive formulas and are separable. Furthermore

degψn =
n2 − 1

2
.

This implies easily that if n is odd, then
E[n] ∼= Z/nZ× Z/nZ. (1)

A similar argument allows to conclude that (1) holds also for n even. We set

E[∞] =
⋃
n∈N

E[n]

which is the torsion subgroup of E(Q). In virtue of (1), we have that

Aut(E[n]) ∼= GL2(Z/nZ).

So, there is a profinite group structure

Aut(E[∞]) ∼= GL2(Ẑ) where Ẑ = lim
←

Z/nZ.

The absolute Galois group

GQ := Gal(Q/Q) = {σ : Q→ Q, field automorphism}

is also a profinite group and if K is any Galois extension of Q, then

Gal(K/Q) ∼= GQ/{σ ∈ GQ : σ|K = idK}.

So GQ admits as quotient any possible Galois Group of Galois extensions of Q and it is the projective limit of its finite
quotients.

For every integer n, we consider the n–torsion field Q(E[n]) obtained by adjoining to Q all coordinates of all non
zero points in E[n]. Finally we use G(n) to denote the Galois group Gal(Q(E[n])/Q).

If P = (x, y, 1) ∈ E[n] and σ ∈ G(n), then σP := (σx, σy, 1) ∈ E[n]. This property and the fact that the operation
in E(Q) is defined by Q–rational functions, provides us with an inclusion

ρn : G(n) ↪→ Aut(E[n]) ∼= GL2(Z/nZ)

which can be extended to

ρ : GQ −→ Aut(E[∞]) =
∏

` prime

Aut(E[`∞]) ∼=
∏

` prime

GL2(Z`).

where E[`∞] = ∪m∈NE[`m] and Z` denoted the ring of `–adic integers. The above representation is an object of study
during these three lectures.

The main result of the Theory is
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Theorem (Serre’s Uniformity Theorem). If E does not have complex multiplication (i.e. the only homomorphism
E(Q) → E(Q) which are defined by rational maps are the multiplication-by-n maps), then the index of ρn(G(n))
inside Aut(E[n]) is bounded by a constant that depends only on E.

This statement has several striking consequences among which:

Corollary. If E does not have complex multiplication, then for all ` large enough

G(`) = Aut(E[`])

One of the central problem of this theory is to establish explicit bounds for ` for which the conclusion of the above
Corollary holds. It is believed that it holds for all ` > 37.

The group homomorphism
ρ`∞ : GQ → Aut(E[`∞])

obtained by composing ρ with the projection on the `-th component, is actually a continuous homomorphism of
topological groups and it is called `–adic representation.

The representation ρ`∞ is unramified at all primes p - `∆E in the sense that for such primes ρ`|Ip = IdZ`
where,

for a fixed prime number p and a fixed prime p of Q̄ over p, one defines the inertia subgroup Ip ⊂ GQ as the set of
those elements of GQ such that

σ(x) ≡ x mod p, ∀x ∈ Z̄.
Serre’s Uniformity Theorem is equivalent to the conjunction of the following two statements:

• For all primes `, ρ`∞(GQ) is an open subgroup with respect to the `–adic topology,

• For all but finitely many primes `, ρ`∞(GQ) = Aut(E[`∞]).

An important tool in the study of the above representations is the Frobenius element. In general, in a Galois
extension K of Q, for an unramified prime p, one defines the Frobenius element as any element in the conjugation
class of the Galois Group Gal(K/Q) which is determined by the lift of the Frobenius automorphism of the finite field
OK/P obtained as a quotient of the ring of integers O by any prime ideal P over p. Sometimes one calls Artin symbol,

the conjugation class itself and denotes it by
[
K/Q
p

]
.

In the case of the division fields Q(E[n]), the Artin symbol can be thought as a conjugation class of matrices in

GL2(Z/nZ). The characteristic polynomial det(
[
Q(E[n])/Q

p

]
− T ) turns out not to depend on n in the sense that

det

([
Q(E[n])/Q

p

])
≡ p mod n, tr

([
Q(E[n])/Q

p

])
≡ aE mod n

where aE = p− 1−#E(Fp).
During the first lecture we will introduce the above notions and explain some of their properties.

2 Lecture 2 - Serre’s Open Mapping Theorem and its applications

In most of Lecture 2 we will assume that E has no complex multiplication. During this lecture we will introduce more
tools and notions necessary for later applications.

2.1 Chebotarev Density Theorem

If K/Q is a finite Galois extension and C ⊂ Gal(K/Q) is a union if conjugation classes of G = Gal(K/Q), then the

Chebotarev Density Theorem predicts that the density of the primes p such that the Artin symbol
[
K/Q
p

]
⊂ C equals

#C
#G . The Chebotarev Density Theorem has also a quantitative versions. Let

πC/G(x) := #

{
p ≤ x :

[
K/Q
p

]
⊂ C

}
.

Then (see Serre [10] and Murty, Murty & Saradha [7]), assuming that the Dedekind zeta function of K satisfies the
Generalized Riemann Hypothesis,

πC/G(x) =
#C
#G

∫ x

2

dt

log x
+O

(√
#C
√
x log(xM#G)

)
where M is the product of primes numbers that ramify in K/Q. An analogue version, independent on the Generalized
Riemann Hypothesis can be found in [10].

We will apply it in the special case when K = Q(E[n]) where we think at the element of G as 2 by 2 non singular
matrices. For example
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• In the case when C = {id}, the condition
[
Q(E[n])/Q

p

]
= {id} is equivalent to the property that

E[n] ⊂ Ē(Fp)

where E(Fp) is the group of Fp-rational points on the reduced curve E.

• In the case when C = Gtr=r = {σ ∈ G : trσ = t}, and ` is a sufficiently large prime so that Gal(Q(E[`])/Q) =
GL2(F`), then

# GL2(F`)tr=r =

{
`2(`− 1) if r = 0

`(`2 − `− 1) otherwise.

These examples will be elaborated during Lecture 3.

2.2 Classification of possible subgroups of GL2(F`) that can appear as image of Galois

Part of the work of Serre consists in classifying the possible images of G(`). More precisely, Serre proved in [9] that
ρ`(GQ) contains a subgroup of one of the following types:

1. “split half Cartan subgroup”: A cyclic subgroup of of `− 1 which can be represented as{(
a 0
0 1

)
: a ∈ F∗`

}
,

2. “half Borel subgroup”: A solvable group that can be represented as{(
a 0
0 b

)
: a ∈ F∗` , b ∈ F`

}
,

3. “non split half Cartan subgroup”: A cyclic subgroup of of `2 − 1.

Furthermore if ρ`(GQ) 6= GL2(F`), then one of the following happens:

• ρ`(GQ) is either contained in a Cartan subgroup or a Borel subgroup (upper triangular matrices) of GL2(F`),

• ρ`(GQ) is contained in the normalizer of a Cartan subgroup and it is not contained in the Cartan subgroup of
GL2(F`).

We will conclude with some explicit examples.

2.3 The Definition of Serre’s Curve

It is in general not easy to compute the image ρ(GQ) ⊂ GL2(Ẑ). Actually, it was showed by Serre that ρ(GQ) is always

contained in an index 2 subgroup of GL2(Ẑ). Such subgroup is called the Serre’s Subgroup HE and it is defined as

HE = π−1mE
(HmE

)

where

• πm : GL2(Ẑ)→ GL2(Z/mZ) is the natural projection,

• mE is the Serre number of E defined as the least common multiple [2,disc(Q(
√
|∆E |))],

• and if ε denotes the signature map (i.e. ε : GL2(Z/mZ)→ GL2(Z/2Z) ∼= S3 → {±1}), then

Hm =

{
σ ∈ GL2(Z/mZ) : ε(A) =

(
∆E

detA

)}
.

An elliptic curve E/Q is called a Serre curve if ρ(GQ) = HE . These curves are quite common and will be considered
in the third lecture.

3 Lecture 3 - The Lang–Trotter Conjectures

The third lecture is devoted to reviews of some applications of `–adic representations to number Theory and in
particular to the Lang–Trotter Conjectures.
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3.1 Lang Trotter for primitive points

E. Artin made a celebrated conjecture concerning the density of primes for which a given integer is a primitive root.
In the first part of this lecture, we will discuss an analogous conjecture for elliptic curves. Let E be an elliptic curve
defined over Q with P ∈ E(Q) a Q-rational point of infinite order. P is called primitive for a prime p if the reduction
P of P mod p generates the entire group E(Fp) of Fp-rational points on the reduced curve E.

We set
πE,P (x) = #{p ≤ x : p - ∆E and P is primitive for p}.

In 1976, Lang and Trotter in [5] conjecture an asymptotic formula for πE,P (x) and consequently an expression for
the density of primes for which P is primitive. More precisely, they conjecture that

πE,P (x) ∼ δE,P
x

log x
x→∞.

where

δE,P =

∞∑
n=1

µ(n)
#CP,n

# Gal(Q(E[n], n−1P )/Q)

where Q(E[n], n−1P ) is the extension of Q(E[n]) obtained with all the coordinates of the points Q ∈ E(Q̄) such that
nQ = P and CP,n are suitable defined union of conjugacy classes in Gal(Q(E[n], n−1P )/Q).

The heuristic argument is based on the Chebotarev Density Theorem. The Lang–Trotter conjecture for primite
points is still not known in any case. The Generalized Riemann Hypothesis allows to deduce some analogue conjectures
for CM elliptic curves. We will discuss some of the known results and in particular those due to Gupta, Murty and
Murty [3]

3.2 Serre’s Cyclicity Conjecture

J. P. Serre has formulated a conjecture with a similar flavor. Let E/Q be an elliptic curve and let

πcyclic
E (x) = #{p ≤ x : E(Fp) is cyclic}.

The conjecture postulates the validity of the asymptotic formula:

πcyclic
E (x) ∼ δcyclicE

x

log x
x→∞

where

δcyclicE =

∞∑
n=1

µ(n)

Gal(Q(E[n])/Q)
.

Serre himself applied the Chebotarev Density Theorem, in analogy with the Hooley’s work for Artin’s Conjecture,
and proved this conjecture as a consequence of the Generalized Riemann Hypothesis. Furthermore, if E has no CM,
δcyclicE is a rational multiple of the quantity

∏
`

(
1− 1

(`2 − `)(`2 − 1)

)
.

We will discuss this result and several more due to Gupta and Murty [4] and to A. Cojocaru [1].

3.3 Lang Trotter for fixed trace of Frobenius

In an earlier publication [6], Lang and Trotter considered, for a fixed elliptic curve E/Q and an integer r, the function

πr
E(x) = #{p ≤ x : p - ∆E and #E(Fp) = p+ 1− r}

and they conjecture that if either r 6= 0 or if E has no CM, then

πr
E(x) ∼ CE,r

√
x

log x
x→∞

where CE,r is the so–called Lang–Trotter constant which is defined as follows:

CE,r =
2

π
lim

m→∞

Km# GalQ(E[Km])/Q)trace=r

# GalQ(E[Km])/Q)
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where Km a sequence of integers with the property that every integer divides Km when m is large enough. For example
km = m! has this property.

In virtue of the Open Mapping Theorem, we know that there exists an integer NE , called the torsion conductor
such that

CE,r =
2

π

NE# GalQ(E[NE ])/Q)trace=r

# GalQ(E[NE ])/Q)
×
∏
`-NE

`# GL2(F`)tr=r

# GL2(F`)

As an application of the theory of `–adic representations and of the Chebotarev density Theorem, assuming the
Generalized Riemann Hypoythesis, Serre in [10] showed that

πr
E(x)�

{
x7/8(log x)−1/2 if r 6= 0

x3/4 if r = 0.

These results were improved for r 6= 0 by Murty, Murty and Sharadha [7] that showed, assuming the Gereralized
Riemann Hypothsis, that πr

E(x)� x4/5/(log x).

3.4 Average Lang–Trotter

For every integer a, b such that 4a3 + 27b2 6= 0, we let

E(a, b) : y2 = x3 + ax+ b.

We will conclude the lecture with a discussion of the following statement which appeared in [2]. Let r be an integer,
A,B > 1. For every c > 0 we have

1

4AB

∑
|a|≤A,|b|≤B

πr
E(a,b)(x) = Cr

∫ x

2

dt√
t log t

+O

((
1

A
+

1

B

)
x3/2 +

x5/2

AB
+

√
x

logc x

)
.

where

Cr =
2

π

∏
`

# GL2(F`)tr=r

# GL2(F`)
.
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