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Proto-History (from WIKIPEDIA)

Giulio Carlo, Count Fagnano, and Marquis de
Toschi (December 6, 1682 — September 26,
1766) was an Italian mathematician. He was
probably the first to direct attention to the
theory of elliptic integrals. Fagnano was born
in Senigallia.

He made his higher studies at the Collegio
Clementino in Rome and there won great
distinction, except in mathematics, to which his
aversion was extreme. Only after his college
course he took up the study of mathematics.

Later, without help from any teacher, he
mastered mathematics from its foundations.
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o m=2ilog %ﬁ
e Length of Lemniscate

Collegio Clementino

Lemniscate
(@® +y%)? = 2a%(2® — o)

e=4f0“

aZdr — aﬁl“(%)
Vat—rd T(3)

Dipartim. Mat. & Fis.

Universita Roma Tre

=A:Z

Introduction

length of ellipses

why Elliptic curves?

Weierstral Equations
The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem
Weil Pairing

Further reading



Dipartim. Mat. & Fi:

Length of Ellipses

(=]
El
H
<
=
e
B
&

|||||||||l
|
||||||||I|

Introduction

History

why Elliptic curves?

Weierstral Equations

The Discriminant

Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order

Points of order 2

Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse’s Theorem
Riick’s Theorem
Weil Pairing

Further reading



. Dipartim. Mat. & Fis.
Length of Ellipses R
Universita Roma Tre

. 12 2 —
o J

=AS

Introduction

IS
I
o

History

why Elliptic curves?

Weierstral Equations

The Discriminant

Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order

Points of order 2

Points of order 3
The length of the arc of a plane curve Poinis of finite order
Yy = f(z)’ i [a’ b] — Ris: ‘The group structure

Important Results
Hasse’s Theorem

‘Waterhouse’s Theorem

b Riick’s Theorem
l= A/ 1+ (f/(¢))2dt Weil Pairing
a

Further reading



Length of Ellipses Dipartim. Mat. & Fis.

Universita Roma Tre

J Applying this formula to £: = A =

4 2 History
dy/ 1601 — 12/4) ot
LE) =4 —_—— | dat

1+ dt why Elliptic curves?

0 Weierstral Equations

‘The Discriminant

1
1+ 322 Elliptic curves /Fy
= 4/ \/ ) dz T =1/2 Elliptic curves /¥
0

The sum of points

¢ Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order

Points of order 2

Points of order 3
The length of the arc of a plane curve Points of finite order
y = f(z), f: [a,b] — Ris: The group structure

Important Results
Hasse’s Theorem

Waterhouse’s Theorem

’ / Riick's Theorem
l= 14 (f/(t))2dt Weil Pairing
a

Further reading



Length of Ellipses

E:%—l—y—:l

2 2
16

J Applying this formula to £:

The length of the arc of a plane curve

y=f(z), f:

b
e:/ V1t ()2t

la,b] — Ris:

Dipartim. Mat. & Fis.

Universita Roma Tre

=A

If y is the integrand, then we have the identity:

y2(1 —2?) =1 4 322

History

why Elliptic curves?

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem
Weil Pairing

Further reading



Length of Ellipses

2 2

E:’”T—l—y—:l

16

J Applying this formula to £:

The length of the arc of a plane curve

y=f(z), f:

la,b] — Ris:

b
e:/ V1t ()2t

Dipartim. Mat. & Fis.

Universita Roma Tre

=AS

dt

Y 11322
=4/0 ﬁdw w = )2

4 _ 42
1) = 4/ - d+/16(1 — t2/4)
0

If y is the integrand, then we have the identity:

y2(1 —2?) =1 4 322

Apply the invertible change of variables:

1—2/t

—
< 8
[l
gy
i
|

Arrive to

History

why Elliptic curves?

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Dipartim. Mat. &

Universita Roma Tre

Introduction
History
length of ellipses

Weierstral Equations
The Discriminant
Elliptic curves /Fy
Elliptic curves /F

The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse’s Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Elliptic Curves

@ are curves and finite groups at the same time

Dipartim. Mat. & Fis.

Universita Roma Tre

=AZ

Introduction

History
length of ellipses

Weierstral Equations
The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse’s Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Elliptic Curves
© are curves and finite groups at the same time

® are non singular projective curves of genus 1

Dipartim. Mat. & Fis.

Universita Roma Tre

=AS

Introduction

History
length of ellipses

Weierstral Equations
The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse’s Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Elliptic Curves
© are curves and finite groups at the same time
® are non singular projective curves of genus 1

© have important applications in Algorithmic Number Theory and
Cryptography

Dipartim. Mat. & Fis.

Universita Roma Tre

EAE

Introduction

History
length of ellipses

Weierstral Equations
The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Elliptic Curves
© are curves and finite groups at the same time
® are non singular projective curves of genus 1

©® have important applications in Algorithmic Number Theory and
Cryptography

@ are the topic of the Birch and Swinnerton-Dyer conjecture (one
of the seven Millennium Prize Problems)

Dipartim. Mat. & Fis.

Universita Roma Tre

EAE

Introduction

History
length of ellipses

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Elliptic Curves
@ are curves and finite groups at the same time
® are non singular projective curves of genus 1

©® have important applications in Algorithmic Number Theory and
Cryptography

@ are the topic of the Birch and Swinnerton-Dyer conjecture (one
of the seven Millennium Prize Problems)

© have a group law that is a consequence of the fact that they
intersect every line in exactly three points (in the projective
plane over C and counted with multiplicity)

Dipartim. Mat. & Fis.

Universita Roma Tre

EAE

Introduction

History
length of ellipses

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem
Weil Pairing

Further reading



What are Elliptic Curves?

Reasons to study them

Elliptic Curves

@ are curves and finite groups at the same time

® are non singular projective curves of genus 1

©® have important applications in Algorithmic Number Theory and
Cryptography

@ are the topic of the Birch and Swinnerton-Dyer conjecture (one
of the seven Millennium Prize Problems)

® have a group law that is a consequence of the fact that they
intersect every line in exactly three points (in the projective
plane over C and counted with multiplicity)

@ represent a mathematical world in itself ... Each of them does!!
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Definition (The discriminant of a Weierstraflequation is the following
quantity)

1

— afai — 8atasai — 16a3a3 + 96a,aza; + 64a;+

—a?a3a4 — Sa?a2a3a4 — 16a1a§a3a4 4 36&%(1%@4

aSag + 12ajasas + 48a3a3as + 64a3as — 36a’azas

—144aqasa306 — 72a?a4a6 — 288asaqsag + 432@%)

Definition

Two Weierstral} equations over I, are said (affinely) equivalent if
there exists a (affine) of the following form

z+—ulz+r
g ; r,s,t,u €,
Yy — u’y +usx +1
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The WeierstraBl equation
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The WeierstraBl equation
Classification of simplified forms

After applying a suitable affine transformation we can always assume
that E/IF,(q = p™) has a Weierstral equation of the following form

Example (Classification)

E P Ap

y> =23+ Az + B >5 | 443 +27B?

v+ zy =2 + axz? + ag 2 a?

v + azy = «° + asz + ag 2 as

y2 =2+ Az®> + Bo + C 3 4A°C — A*B? —18ABC

+4B3 4 27C?
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After applying a suitable affine transformation we can always assume
that E/IF,(q = p™) has a Weierstral equation of the following form

q Q History
Example (Classification) NN
E P N why Elliptic curves?
Weierstral Equations
y? =2+ Az + B >5 | 4A4% 4+ 27B?
Elliptic curves /Fy
yg 4 Ty = .'ES + a2x2 + ag 2 ag Elliptic curves /Fy
The sum of points
2 _ .3 4
Yy~ + a3y =" + asx + as 2 ag Examples
Structure of E (F3)
3 2 2
2 3 2 4A°C — A*B° — 18ABC Structure of B (Fy)
=2z° 4+ Az + Bx + C 3
& +4BS A 2702 Points of finite order
Points of order 2
Points of order 3
Points of finite order
Definition (Elliptic curve) The group sucture
. . . . . . Important Results
An elliptic curve is the data of a non singular Weierstrall equation e oo
. ‘Waterhouse’s Theorem
(l.e. AE # 0) Riick’s Theorem
Weil Pairing
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Elliptic curves over F,

All possible Weierstrall equations over Fy are:
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Elliptic curves over F,

All possible Weierstrall equations over Fy are:

Weierstrall equations over s
0V +ry=a+22+1
1y try=23+1
©V+ty=23+x
0 yV+y=2+z+1
©y +y=2a°
0y +y=23+1
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Elliptic curves over F,

All possible Weierstrall equations over Fy are:

Weierstrall equations over s
0V +ry=a+22+1
1y try=23+1
©V+ty=23+x
0 yV+y=2+z+1
©y +y=2a°
0y +y=23+1

However the change of variables

curve into the fifth. Hence we can remove the sixth from the list.

r+—x+1
y<—y+x

takes the sixth
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Elliptic curves over F,

All possible Weierstrall equations over Fy are:
Weierstrall equations over s

0V +ry=a+22+1

1y try=23+1

©yV+y=2>+x

0 yV+y=2+z+1

0y’ +y=2

0y +y=23+1

— 1
However the change of variables Tert takes the sixth

y<—y+x

curve into the fifth. Hence we can remove the sixth from the list.

Fact:

There are 5 affinely inequivalent elliptic curves over [y
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Elliptic curves in characteristic 3

Via a suitable transformation (z — u?z + r,y — vy + u2sx + 1)
over 3, 8 inequivalent elliptic curves over [F3 are found:
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Elliptic curves in characteristic 3

Via a suitable transformation (z — u?z + r,y — vy + u2sx + 1)
over 3, 8 inequivalent elliptic curves over [F3 are found:

Weierstrall equations over 3
0y2=m3—|—ﬂc

® =1z

© 1y =s3—-2+1
9y2 —r—1
0y =23+22+1
0y =x3+22-1
@y2=2%—22+1

© 1y =23—22-1
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Elliptic curves in characteristic 3

Via a suitable transformation (z — u?z + r,y — vy + u2sx + 1)
over 3, 8 inequivalent elliptic curves over [F3 are found:

Weierstrall equations over 3

0y=2+z

®y’ =2z

© 1y =s3—-2+1
9y2 —r—1
0y =2>+22+1
0y =x3+22-1
@y2=2%—22+1
© 1y =23—22-1

Observations

@ Over Fj5 there are 12 elliptic curves
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Elliptic curves in characteristic 3

Via a suitable transformation (z — u?z + r,y — vy + u2sx + 1)
over 3, 8 inequivalent elliptic curves over [F3 are found:

Weierstrall equations over 3

0y’ =2tz
@y =2z
0y2=x3—x—|—1

0 y=2-z-1
0y =2>+22+1
0y:=x3+22-1
@12 —a—22+1
02 —ad—22—1

Observations

© Over [5 there are 12 elliptic curves
® Over IF, there are approximately 2p
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The definition of E(F,)
Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) ={[X,Y,Z] € P2(F,) : Y?Z + a1 XYZ +a3YZ% =
X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(F,) ={(z,y) € ]Fg s y? +arzy + azy = 2 + azx® + asx + ag} U {0}

We can think either
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E(F,) ={[X,Y,Z] € P2(F,) : Y?Z + a1 XYZ +a3YZ% =
X3 4+ a2 X?Z + as X Z% + ac 2%}
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2 2 3 2 why Elliptic curves?
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The definition of E(F,)
Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) ={[X,Y,Z] € P2(F,) : Y?Z + a1 XYZ +a3YZ% =
X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(F,) ={(z,y) € ]Fg s y? +arzy + azy = 2 + azx® + asx + ag} U {0}

We can think either

o E(F,) C Pa(FF,) --» geometric advantages
o E(F,) C F2U{co}

Dipartim. Mat. & Fis.

Universita Roma Tre

EAE

Introduction

History
length of ellipses

why Elliptic curves?

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /Fy

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem

Weil Pairing

Further reading



The definition of E(F,)
Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) ={[X,Y,Z] € P2(F,) : Y?Z + a1 XYZ +a3YZ% =
X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(F,) ={(z,y) € ]Fg s y? +arzy + azy = 2 + azx® + asx + ag} U {0}

We can think either

o E(F,) C Pa(FF,) --» geometric advantages
o E(F,) C F2U{co} --+ algebraic advantages
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The definition of E(F,)
Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) ={[X,Y,Z] € P2(F,) : Y?Z + a1 XYZ +a3YZ% =
X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(F,) ={(z,y) € ]Fg s y? +arzy + azy = 2 + azx® + asx + ag} U {0}

We can think either
o E(F,) C Pa(FF,) --» geometric advantages
o E(F,) C F2U{co} --+ algebraic advantages
oo might be though as the “vertical direction”
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The definition of E(F,)

Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) =A{[X,Y, Z] € P2(F,) :

X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(Fq) = {(z,y) € F; :

Y2Z+a1XYZ+a3YZ? =

y2 + a1y + asy = 23 + asx? + asx + ag} U {0}

We can think either

> E(Fq) - P2(Fq)
o E(F,) C F2U{co}

--+ geometric advantages
--» algebraic advantages

oo might be though as the “vertical direction”

Definition (line through points P, Q € E(F,))
line through P and )

TPQ -

ifP+Q

tangent lineto K at P if P =@

projective or affine
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The definition of E(F,)

Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) =A{[X,Y, Z] € P2(F,) :

Y2Z+a1XYZ+a3YZ? =

X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(Fq) = {(z,y) € F; :

y2 + a1y + asy = 23 + asx? + asx + ag} U {0}

We can think either

> E(Fq) - IF)2(Fq)
o E(F,) C F2U{co}

--+ geometric advantages
--» algebraic advantages
oo might be though as the “vertical direction”

Definition (line through points P, Q € E(F,))

line through P and )
tangent line to £ at P

TPQ -

ifP+Q

. projective or affine
if P=0@Q

o if #(rp o NEF,)) >2 = #(rpo N E(F,)) =3

if tangent line, contact point is counted with multiplicity
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The definition of E(F,)

Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) =A{[X,Y, Z] € P2(F,) :

Y2Z+a1XYZ+a3YZ? =

X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(Fq) = {(z,y) € F; :

y2 + a1y + asy = 23 + asx? + asx + ag} U {0}

We can think either

> E(Fq) - P2(Fq)
o E(F,) C F2U{co}

--+ geometric advantages
--» algebraic advantages
oo might be though as the “vertical direction”

Definition (line through points P, Q € E(F,))

line through P and )
tangent line to £ at P

TPQ -

ifP+Q

. projective or affine
if P=0@Q

o if #(rpQNE[F,)) >2 = #(rpqoNE(F,)) =3

if tangent line, contact point is counted with multiplicity

® I'o0o NE(F,) = {00, 00,00}
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The definition of E(F,)
Let E/F, elliptic curve, co := [0, 1,0]. Set

E(F,) =A{[X,Y, Z] € P2(F,) :

Y2Z+a1XYZ+a3YZ? =

X3 4+ a2 X?Z + as X Z% + ac 2%}

or equivalently

E(Fq) = {(z,y) € F; :

y2 + a1y + asy = 23 + asx? + asx + ag} U {0}

We can think either

> E(Fq) - P2(Fq)
o E(F,) C F2U{co}

--+ geometric advantages
--» algebraic advantages
oo might be though as the “vertical direction”

Definition (line through points P, Q € E(F,))

line through P and )
tangent line to £ at P

TPQ -

ifP+Q

. projective or affine
if P=0@Q

o if #(rpQNE[F,)) >2 = #(rpqoNE(F,)) =3

if tangent line, contact point is counted with multiplicity

® T'oo,00 NE(Fy) = {00, 00,00}
e rpg:aX +bZ =0 (vertical) = oo = [0,1,0] € rpg
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E:y? + a1y + azy = 3 + a1® + a4x + ag J
Py = (x1,51), P> = (22,12) € E(F,) \ {oc}, =A:Z
Addition Laws for the sum of affine points ‘:‘]‘sﬁ;’“u’"
o IfP # P, e
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® 1 = T2 = P1 +E P2 = 00 ' ‘The Discriminant

Elliptic curves /Fy
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Y1T2—Y2T1 Examples
T2 —T] Structure of E (F)
° If Pl = P2 Structure of E (Fy)

Points of finite order

P P, =2P; = oo Points of order 2
° 2y1 +a1x+a3 =0 = 11515 1 J Points of order 3
Points of finite order
° 2y1 + aéw +as 7é 0 3 The group structure
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E:y? + a1y + azy = 3 + a1® + a4x + ag J
Py = (x1,51), P> = (22,12) € E(F,) \ {oc}, =A:Z
Addition Laws for the sum of affine points ‘:‘]‘sﬁ;’“u’"
o IfP # P, e

Weierstral Equations

® 1 = T2 = P1 +E P2 = 00 ' ‘The Discriminant

Elliptic curves /Fy

° I 7& ) Elliptic curves /F;
A= VS msomorpons
Y1T2—Y2T1 Examples
T2 —T] Structure of E (F)
° If Pl = P2 Structure of E (Fy)

Points of finite order

P P, =2P; = oo Points of order 2
° 2y1 +a1x+a3 =0 = 11515 1 J Points of order 3
Points of finite order
° 2y1 + aéw +as 7é 0 3 The group structure
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E:y?=2>4+Az+ B

Py = (z1,11), P2 = (22,2) € E(Fy) \ {00},

Addition Laws for the sum of affine points

o IfPl ?EPQ

° r1 = T2
o x1 # a2

° IfP1 =P2

[ ] y1:0
* 1 #0

Then

P +g P> = ()\2 — 1 — T2, —)\3 —+ )\(121 + LIIQ) — I/)J

A\ =

T2—x1
Yyix2—y2r1
To—a]
P P, =2P, =
_ G +E P2 1 J
3z%+A _ z?—Az1—2B
2y1 2y1

P+ P = |
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EXAMPLE: Elliptic curves over [,

From our previous list:

Groups of points

E

E(Fy)

vroy=a3+22+1
v +aoy=23+1

y+y=a'+u

v+y=2>+z+1

{00, (0,1)}

{00, (0,1),(1,0),(1,1)}
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EXAMPLE: Elliptic curves over [,

From our previous list:

Groups of points

E

E(Fy)

vroy=a3+22+1
v +aoy=23+1

y+y=a'+u

v+y=2>+z+1

yt+y=gz

{00, (0,1)}
{00, (0,1),(1,0),(1,1)}

{00, (0,0), (0, 1),
(1,0), (1, 1)}

{oo}

{0,(0,0),(0,1)}

So for each curve E(IF3) is cyclic except possibly for the second for
which we need to distinguish between Cy and Cy @ Cs.
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EXAMPLE: Elliptic curves over [,

From our previous list:

Groups of points

E

E(Fy)

vroy=a3+22+1
v +aoy=23+1

y+y=a'+u

Y+y=aP+z+1

yt+y=gz

{00, (0,1)}
{00, (0,1),(1,0),(1,1)}

{0, (0,0), (0, 1),
(1,0), (1, 1)}

{oo}
{0,(0,0),(0,1)}

So for each curve E(TF5) is cyclic except possibly for the second for
which we need to distinguish between Cy and Cy @ Cs.
Note: each C;,i = 1,...,5 is represented by a curve /Fo
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EXAMPLE: Elliptic curves over [F'5

From our previous list:

Groups of points
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1 4
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4 y=x3—z—1 {co} 1
5l y2=a34+22-1 {o0, (1,1), (1,2)} 3
6 y2 =3+’ +1 {00, (0,1, (0,2), (1,0), (2, 1), (2,2)} 6
7Tl y2=a3—22+1 {0, (0, 1), (0,2), (1,1), (1,2), } 5
8| y2=a—22-1 {o0, (2,0))} 2
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EXAMPLE: Elliptic curves over [F'5

From our previous list:

Groups of points
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y2 $3+.’L'

{0, (0,0), (2,1), (2,2)}

2 3

i |E;(IF
1 4
2 Yy =2x° —x {00, (1,0), (2,0), (0,0)} 4
3 Y=z —z+1 {oo,<o,1),<o,2),(1,1>,<1,2>,((227,21)>}, 7
4 y=x3—z—1 {co} 1
5l y2=a34+22-1 {o0, (1,1), (1,2)} 3
6| yi=a+22+1 {00, (0, 1), (0,2), (1,0, (2,1), (2,2)} 6
7Tl y2=a3—22+1 {0, (0, 1), (0,2), (1,1), (1,2), } 5
8ly*=2-22-1 {c0, (2,0))} 2

Each F;(FF3) is cyclic except possibly for F1(F3) and Eo(F3) that
could be either Cy or Cy @& C5. We shall see that:
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From our previous list:

Groups of points
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7Tl y2=a3—22+1 {0, (0, 1), (0,2), (1,1), (1,2), } 5
8| y2=a—22-1 {o0, (2,0))} 2

Each F;(FF3) is cyclic except possibly for F1(F3) and Eo(F3) that
could be either Cy or Cy @& C5. We shall see that:

and EQ(]Fg) =Cyd Oy J
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From our previous list:

Groups of points
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7Tl y2=a3—22+1 {0, (0, 1), (0,2), (1,1), (1,2), } 5
8| y2=a—22-1 {o0, (2,0))} 2

Each F;(FF3) is cyclic except possibly for F1(F3) and Eo(F3) that
could be either Cy or Cy @& C5. We shall see that:
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Determining points of order 2

Let P = (z1,y1) € E(F,) \ {o0},
Phasorder2 <— 2P =00 <— P=—-P

So
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Determining points of order 2

Let P = (z1,y1) € E(F,) \ {00},
Phasorder2 <— 2P =00 <— P=—-P )

So

—P = (z1,—a1x1 —az —y1) = (1,91) = P = 2y1 = —a1x1 —as J

If p#2,canassume E : y? = 23 + Az?> + Bz + C
—P=(z1,-y1) = (z1,91) = P = y1=0,x§+Am§+Bx1+C:0J

Note

e the number of points of order 2 in E(F,) equals the number of
roots of X3 + Az? + Br + CinF,
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Let P = (z1,y1) € E(F,) \ {oo},
Phasorder2 <— 2P =00 <— P=—-P J

So
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Note

e the number of points of order 2 in E(F,) equals the number of
roots of X® + Az? + Bz + C'inF,

e roots are distinct since discriminant Ag # 0
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|E(F2)]
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Each curve /F has cyclic E(F3).
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|
nimnil

E E(F2) |E(F2)| '
yz + Ty = wé +w2 + 1 { 7( 71)} 2 lx:r:)dr:clwn
yz + TY = ;Uj —|— 1 {OO, (O, ), (1, 0), (]., 1)} 4 lenglhofe‘]lipses
yty=a+uw {00, (0,0),(0,1), (1,0), (L, 1)} | 5 e
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Determining points of order 3
Let P = (1‘1,3/1) S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P )

So,ifp>3and E: y2 =22 + Az + B
2P = (z2p,y2p) = 2(x1,y1) = (A\* — 221, =A% 4 2\z; — V)J

3z24+A 8 Az, —2B
Where )\ — ﬁ’y — _%
21 2y1
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Determining points of order 3
Let P = (1‘1,3/1) S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P )

So,ifp>3and E: y2 =22 + Az + B
2P = (z2p,y2p) = 2(x1,y1) = (A\* — 221, =A% 4 2\z; — V)J

3z24+A 8 Az, —2B
Where )\ — ﬁ’y — _%
21 2y1

Phasorder 3 <= x9p = 77 J
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Determining points of order 3
Let P = (1‘1,3/1) S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P )

So,ifp>3and E: y2 =22 + Az + B
2P = (z2p,y2p) = 2(x1,y1) = (A\* — 221, =A% 4 2\z; — V)J

3a7+A

where A\ = ST o

Phasorder 3 <= x9p = 77 J
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o a:?—Aa:l—QB
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Determining points of order 3
Let P = (l‘l,yl) S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P )

So,ifp>3and E: y2 =22 + Az + B
2P = (z2p,y2p) = 2(x1,y1) = (A\* — 221, =A% 4 2\z; — V)J

3ai+A
2y1 07 T 2y1

:oJ

where A =

Phasorder 3 <= x9p = 77 J

—3z}—6Az3—12Bz; +A>

Substituting \, 4(z3+ Az, +4B)

Top —T1 =

o a:?—Aa:l—QB
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Determining points of order 3
Let P = (l‘l,y]) S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P J!

So,ifp>3and E: y2 =22 + Az + B

2P = (Z‘Qp,ygp) = 2(:L‘1,y1) = ()\2 — 2[[31, —/\3 =4F 2)\331 — l/) J

where A =

Phasorder 3 <= x9p = 77

J

Substituting \,

Top —T1 =

3ai+A
2y1

—3z}—6Az3—12Bz; +A>

o a:?—Aa:l—QB

2y1

4(23+ Az, +4B)

:oJ

Note

o 3(z) = 3z + 6Ax? + 12Bx — A? the 3" division polynomial
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Determining points of order 3
Let P = (l‘l,yl) S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P J

So,ifp>3and E: y2 =22 + Az + B
2P = (z2p,y2p) = 2(x1,y1) = (A\* — 221, =A% 4 2\z; — V)J

3z24+A _a:?—Aa:l—QB
2y 7T T 2y, :

:oJ

o 3(x) := 3x* +6Ax? + 12Bx — A? the 3" division polynomial
o (z1,y1) € E(F,) hasorder 3 = 93(x1) =0

where A =

Phasorder 3 <= x9p = 77 )

—3z}—6Az3—12Bz; +A>

Substituting \, L@+ Az1 +4B)

Top —T1 =

Note
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Determining points of order 3
Let P = (l‘1,y1) (S E(Fq)
Phasorder 3 <= 3P =00 <= 2P =-P J

So,ifp>3and E: y2 =22 + Az + B
2P = (2z2p,y2p) = 2(x1,y1) = (A* — 221, —\° + 221 — V) J

3z24+A S_Az,—2B
where \ = $21+ =T EnTe2
Y1 2y1

:oJ

o 3(x) := 3x* +6Ax? + 12Bx — A? the 3" division polynomial
o (z1,y1) € E(F,) hasorder 3 = 93(z1) =0
e E(F,) has at most 8 points of order 3

Phasorder 3 <= x9p = 77 )

—3z}—6Az3—12Bz; +A>
4(23+ Az, +4B)

Substituting \, xop —x1 =

Note
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Corollary
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Group Structure of E(F,)

Corollary
Let E/F,. 3n, k € N are such that

E(F,) = C, & Crp

Proof.

From classification Theorem of finite abelian group
EFf)=Ch @Ch,®---@®Ch,
with n;|n;4q fori > 1.
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Proof.

From classification Theorem of finite abelian group
EFf)=Ch @Ch,®---@®Ch,
with n;|n;4q fori > 1.
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O

Dipartim. Mat. & Fis.

Universita Roma Tre

EAE

Introduction

History
length of ellipses

why Elliptic curves?

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /F5
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3

Points of finite order

Important Results
Hasse’s Theorem
Waterhouse's Theorem
Riick’s Theorem

Weil Pairing

Further reading

24



Group Structure of E(F,)

Corollary
Let E/F,. 3n, k € N are such that
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Theorem (Hasse)

Let E be an elliptic curve over the finite field . Then the order of

E(F,) satisfies

lg+1— #E(]Fq)| <2q.
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Theorem (Hasse)

Let I be an elliptic curve over the finite field IF,. Then the order of
E(F,) satisfies

lg+1— #E(]Fq)| <2q.

So #E(F,) € [(/q —1)?, (\/q + 1)?] the Hasse interval I,

Example (Hasse Intervals)

q Zg

z {1,2,3,4,5}

3 {1,2,3,4,5,6,7}

4 {1,2,3,4,5,6,7,8,9}

5 {2,3,4,5,6,7,8,9,10

7 {3,4,5,6,7,8,9,10, 11, 12,13}

8 {4,5,6,7,8,9,10,11, 12,13, 14}

9 {4,5,6,7,8,9,10,11, 12,13, 14, 15, 16}

11 {6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18}

13 {7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

16 {9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}

17 {10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

19 {12,13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}

23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}

27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}

29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,40}

31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,43, 44}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:
(i) ged(a,p) = 1;

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. g not prime:)

q ac
$=85 | (=%
=32 | {—s,
16 =2% | { -8, 8}
25 =52 | { — 10, ,2,3,4,5,6,7,8,9,10}
27 =33 | { 10, 3,14,5,6,7,5,9,10}
32 =25 | {11, 1,2,3,4,5,6,7,8,9,10,11}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:

(i) ged(a,p) = 1;
(i1) n even and one of the following is satisfied:

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. ¢ not prime:)

q a €

=85 1178 .5}

9 =32 { -6, 1,2,8,4,5,6}

16 =2% | { -8, 1,0,1,2,3,4,5,6,7,8}

25 =52 | { — 10, 4, — 3, — 2, —1,0,1,2,3,4,5,6,7, 8,9, 10}
27 =33 | { — 10, ; 4,-3, —2, —1,0,1,2,83,4,5,6,7,8,9, 10}
32=2%| {—11,—-10, — 9, — 8, —7,—6, —5,—4, —3,—2, —1,0,1,2,3,4,5,6,7,8,9,10, 11}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:

(i) ged(a,p) = 1;
(i1) n even and one of the following is satisfied:

0 a=+2/g;

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. ¢ not prime:)

q a €

4= | ¢

9 =32 {

16 =24 | {

25 =52 | { 6,7,8,9,10}

27 =33 | { 7,8,9,10}

32 =25 | 5,6,7,8,9,10, 11}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:

(i) ged(a,p) = 1;
(i1) n even and one of the following is satisfied:

0O a==£2/q
® p %1 (mod 3), and a = £,/q;

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. ¢ not prime:)

q a €

g=% |1

9 =32 {

16 =24 | .6, 7,8}

25 =52 | { ,0,1,2,3,4,5,6,7,8,9,10}

27 =33 | { +1,2,3,4,5,6,7,8,9,10}

32 =25 | { 1,0,1,2,3,4,5,6,7,8,9,10,11}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.

JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:
(i) ged(a,p) = 1;
(i1) n even and one of the following is satisfied:
0 a=+2/g;

® p %1 (mod 3), and a = £,/q;
©® p#1 (mod4), and a = 0;

Example (¢ prime VN € I,, 3E/F,, #E(F,) =

N. g not prime:)

q a €

g=5 ({252 o5 000G Pl 4 5y

9 =32 {-6, -5, —4, -3, —2, —1,0,1,2,3,4,5,6}

16=2%|{ s —7,-6, 5, 4, ,—2, 1,0,1,2,3,4,5,6,7,8}

25 =52 | { 10, — 0, &, , —6, — 5, 1, 3, — 2, 1,0, ,2,3,4, ,6,7,8,9,10}
27=83 | { 10, —9, 8 —7.-6, 5, —4,-8, 2, 1,0,1,2,3,4,5,6,7 89,10}

32 =25 | { —10, — 9, —8, — 7,6, a = — B = — il @y il By .,4, 5,6,7,8,9,10,11}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:
(i) ged(a,p) = 1;
(i1) n even and one of the following is satisfied:

0 a=+2,/q
® p %1 (mod 3), and a = £,/q;
® p#1 (mod4), and a = 0;

(iii) n is odd, and one of the following is satisfied:

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. g not prime:)

q a €

$2F (1520 50 0haidh a0

9 =32 {-6, -5, —4, —3, —2, —1,0,1,2,3,4,5,6}

16=2%|{ s —7,-6, 5, 4, 3,—2, —1,0,1,2,3,4,5,6,7, 8}

25 =52 | { — 10, — 9, — 8, , -6, -5, —4, -3, —2, —1,0,1,2,3,4,5,6,7,8,9,10}
27=3% [ {-10, —9, -8, —7,-6, — 5, —4,-3, —2, —1,0,1,2,3,4,5,6,7,8,9,10}

32 =2%| {-11,-10, —9, —8 —7,—6, —5,—4, —3,—-2, —1,0,1,2,3,4,5,6,7,8,9,10,11}

Dipartim. Mat. & Fis.

Universita Roma Tre

=A:Z

Introduction
History
length of ellipses

why Elliptic curves?

Weierstral Equations
‘The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (F3)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Riick’s Theorem
Weil Pairing

Further reading

26



Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.

JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:

(i) ged(a,p) = 1;

(i1) n even and one of the following is satisfied:

0 a=+2/g;

® p#1 (mod 3), and a = +,/q;

® p#1 (mod4), and a = 0;
(iii) n is odd, and one of the following is satisfied:

©® p=20r3 anda = £ptH/2;

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. ¢ not prime:)

q a €

§l: 7 E 5, 4 JL:—2}’”’JJ,'O{’\;,’?,}I,{3}

9 =32 {-6, -5, —4, —3, —2, —1,0,1,2,3,4,5, 6}

16=2%|{ s —7,-6, 5, 1, 3,—2, —1,0,1,2,3,4,5,6,7, 8}

25=52|{—-10, -9, -8 -7, -6, -5, —4, —3, —2, —1,0,1,2,3,4,5,6,7,8,9, 10}
27=33 | { — 10 9, -8, —7,—6, —5, —4,—-3, —2, —1,0,1,2,3,4,5,6,7,8,9,10}
32=2% | { 11,—10, 0, 8, —7,-6, 5,—4, —3,—2, —1,0,1,2,3,4,5,6,7,5,0,10, 11}
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Theorem (Waterhouse)

Letq=p" andlet N =q+ 1 —a.
JE/F, s.t#E([F,) = N < |a| < 2,/q and

one of the following is satisfied:
(i) ged(a,p) = 1;

(i1) n even and one of the following is satisfied:
0 a=+2/g;
® p %1 (mod 3), and a = £,/q;
® p#1 (mod4), and a = 0;

(ii1) n is odd, and one of the following is satisfied.:
©®p=2o0r3 anda = :I:p("H)/z;
® a=0

Example (¢ prime VN € [,,AE/F,, #E(F,;) = N. ¢ not prime:)

q a €

g8 | {-b -8 22 0002k 4 5

9 =32 {—-6, -5, —4, -3, —2, —1,0,1,2,3,4,5,6}

16=2%|{ s —7,-6, 5, 1, :,—2, 1,0,1,2,3,4,5,6,7,8}

25 =52 [ { —10, — 9, 8, 7, 6, 1, 3, 2, 1,0,1,2,3,4,5,6,7,8,9,10}
27=3% | {-10, -9, -8, —7,—6, -5, —4,-3, —2, —1,0,1,2,3,4,5,6,7,8,9,10}
32=2% | { 11,—10, 0, 8, —7,—6, 5,—4, ~3,—2, —1,0,1,2,3,4,5,6,7,5,0,10, 11}
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /F,, g = p™. Write
N = penana

pjfnﬂlz

There exists E /F s.t.

if and only if

E(F,

)

and ny | ny (possiblyny = 1).

= Cn, © Chype

©® 11 = ny in the case (ii). 1 of Waterhouse’s Theorem;
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /F,, g = p™. Write
N = penana

pjfnﬂlz

There exists E /F s.t.

if and only if

E(F,

)

and ny | ny (possiblyny = 1).

= Cn, © Chype

©® n1 = ng in the case (ii).1 of Waterhouse’s Theorem;

® n1|q — 1 in all other cases of Waterhouse’s Theorem.
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /F,, g = p™. Write
N = penana

pJ(nan

There exists E /F s.t.

if and only if

E(F,

)

and ny | ny (possiblyny = 1).

= Cnl D Cn2pe

©® n1 = ng in the case (ii).1 of Waterhouse’s Theorem;

® n1|q — 1 in all other cases of Waterhouse’s Theorem.
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /F,, g = p™. Write
N = penana

ptning and ny | ng (possiblyn; =1).

There exists E /F s.t.

if and only if

E(Fq) = Cnl D CnQPE

©® n1 = ng in the case (ii).1 of Waterhouse’s Theorem;

® n1|q — 1 in all other cases of Waterhouse’s Theorem.

Example

o If ¢g=p*" and #E(F;) = ¢+ 1+£2,/qg = (p" + 1), then

E(Fy) & Cpns1 ® Cpns1.
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Theorem (Riick)

Suppose N is a possible order of an elliptic curve /F,, g = p™. Write
N =p°ning, pining and ny | ng (possiblyny = 1).
There exists E /F s.t.

E(Fq) = Cnl D CTIQPE

if and only if
©® n1 = ng in the case (ii).1 of Waterhouse’s Theorem;

® n1|q — 1 in all other cases of Waterhouse’s Theorem.

Example

o If ¢g=p*" and #E(F;) = ¢+ 1+£2,/qg = (p" + 1), then
EF,) = Chrni1 ® Cpntr.
e Let N =100and ¢ = 101 = E|E1,E2,E3,E4/F101 S.t.
Ei(Fi01) = Co @ Cho Es(F101) = Ca & Csxo
E3(F101) 2 C5 @ Coo E4(F101) = Cioo
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Weil Pairing

Let E/K and m € Ns.t. p{m. Then

E[m] 2 Cp, & Cp, J
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Weil Pairing
Let E/K and m € Ns.t. p{m. Then
E[m] 2 Cp, & Cp, J

We set
um::{mef(:xmzl}J
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Weil Pairing
Let E/K and m € Ns.t. p{m. Then
E[m] 2 Cp, & Cp, J

We set
,um::{xel_(:xmzl}J

I 18 a cyclic group with m elements(since p t m)

Dipartim. Mat. & Fis.

Universita Roma Tre

=AZ

Introduction

History
length of ellipses

why Elliptic curves?

Weierstral Equations
The Discriminant
Elliptic curves /Fy

Elliptic curves /F
The sum of points

Examples
Structure of E (F3)
Structure of E (Fy)

Points of finite order
Points of order 2
Points of order 3
Points of finite order

‘The group structure

Important Results
Hasse’s Theorem
Waterhouse’s Theorem

Riick’s Theorem

Further reading

28



Weil Pairing
Let E/K and m € Ns.t. pfm. Then
E[m] 2 Cp, & Cp, J

We set
,um::{xef(::cmzl}J

I 18 a cyclic group with m elements(since p t m)

Theorem (Existence of Weil Pairing)

There exists a pairing e, : E[m] x E[m| — i, called Weil Pairing,
s.t. YP,Q € E[m]
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Weil Pairing
Let E/K and m € Ns.t. pfm. Then
E[m] 2 Cp, & Cp, J

We set
,um::{xef(::cmzl}J

I 18 a cyclic group with m elements(since p t m)

Theorem (Existence of Weil Pairing)

There exists a pairing e, : E[m] x E[m| — i, called Weil Pairing,
s.t. YP,Q € E[m]

0 cn(P +5 Q, R) = em(P, R)enm (Q, R) (bilinearity)
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Weil Pairing
Let E/K and m € Ns.t. pfm. Then
Elm| = C,, & Cp, J

We set
,um::{azef(:xmzl}J

I 18 a cyclic group with m elements(since p t m)

Theorem (Existence of Weil Pairing)

There exists a pairing e, : E[m] x E[m| — i, called Weil Pairing,
s.t. VP, Q € E[m]
0 e(P+gQ,R) =en(P,R)en(Q, R) (bilinearity)
® e,(P,R) =1VR € Elm| = P = co (non degeneracy)
® e (P, P)=
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(0P,0Q) = oen(P,Q) Yo € Gal(K/K)
(a(P),a(Q)) = em (P, Q)8 Yo separable endomorphism

m

@ema

The last one needs to be discussed further!!!
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