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A Finite Field Example
Over Fp geometric pictures don’t make sense.

Example

Let E : y2 = x3 − 5x + 8/F37, P = (6,3),Q = (9,10) ∈ E(F37)

rP,Q : y = 27x+26 rP,P : y = 11x+11

rP,Q ∩ E(F37) =

{
y2 = x3 − 5x + 8
y = 27x + 26

= {(6,3), (9,10), (11,27)}

rP,P ∩ E(F37) =

{
y2 = x3 − 5x + 8
y = 11x + 11

= {(6,3), (6,3), (35,26)}

P +E Q = (11,10) 2P = (35,11)
3P = (34, 25), 4P = (8, 6), 5P = (16, 19), . . . 3P + 4Q = (31, 28), . . .

Exercise
• Compute the order and the Group Structure of E(F37)



EXAMPLE: Elliptic curves over F5

∀E/F5 (12 elliptic curves), #E(F5) ∈ {2,3,4,5,6,7,8,9,10}.
∀n,2 ≤ n ≤ 10∃!E/F5 : #E(F5) = n with the exceptions:

Example (Elliptic curves over F5)

• E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2 both order 6 and E1(F5) ∼= E2(F5) ∼= C6

• E3 : y2 = x3 + x and E4 : y2 = x3 + x + 2 order 4

E3(F5) ∼= C2 ⊕ C2 E4(F5) ∼= C4

• E5 : y2 = x3 + 4x and E6 : y2 = x3 + 4x + 1 both order 8

E5(F5) ∼= C2 ⊕ C4 E6(F5) ∼= C8

• E7 : y2 = x3 + x + 1 order 9 and E7(F5) ∼= C9



Determining points of order 2

Definition

2–torsion points E [2] = {P ∈ E(Fp) : 2P =∞}.

FACTS:

E [2] ∼=


C2 ⊕ C2 if p > 2
C2 if p = 2,E : y2 + xy = x3 + a4x + a6

{∞} if p = 2,E : y2 + a3y = x3 + a2x2 + a6

Each curve /F2 has cyclic E(F2).

E E(F2) |E(F2)|
y2 + xy = x3 + x2 + 1 {∞, (0,1)} 2
y2 + xy = x3 + 1 {∞, (0,1), (1,0), (1,1)} 4
y2 + y = x3 + x {∞, (0,0), (0,1), (1,0), (1,1)} 5
y2 + y = x3 + x + 1 {∞} 1
y2 + y = x3 {∞, (0,0), (0,1)} 3



Determining points of order 3

FACTS (from yesterday):

1 ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 called the 3rd division polynomial
2 (x1, y1) ∈ E(Fp) has order 3 ⇒ ψ3(x1) = 0
3 E(Fp) has at most 8 points of order 3
4 If p 6= 3, E [3] := {P ∈ E(Fp) : 3P =∞} ∼= C3 ⊕ C3

5 If p = 3, E : y2 = x3 + Ax2 + Bx + C and P = (x1, y1) has order 3, then
• Ax3

1 + AC − B2 = 0
• E [3] ∼= C3 if A 6= 0 and E [3] = {∞} otherwise



Determining points of order 3 (continues)

FACTS:

E [3] ∼=


C3 ⊕ C3 if p 6= 3
C3 if p = 3,E : y2 = x3 + Ax2 + Bx + C,A 6= 0
{∞} if p = 3,E : y2 = x3 + Bx + C

Example: inequivalent curves /F7 with #E(F7) = 9.

E ψ3(x) E [3] ∩ E(F7) E(F7) ∼=
y2 = x3 + 2 x(x + 1)(x + 2)(x + 4) {∞, (0,±3), (−1,±1), (5,±1), (3,±1)} C3 ⊕ C3

y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9

y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9

y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9



One count the number of inequivalent E/Fp with #E(Fp) = r

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0,0), (0,1)} ⊂ E(F4).
E(F4) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3



Determining points of order (dividing) m

Definition (m–torsion point)

Let E/K and let K an algebraic closure of K .

E [m] = {P ∈ E(K ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′,p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

E/Fp is called

{
ordinary if E [p] ∼= Cp

supersingular if E [p] = {∞}



Group Structure of E(Fp)

Corollary

Let E/Fp. ∃n, k ∈ N are such that

E(Fp) ∼= Cn ⊕ Cnk

Proof.

From classification Theorem of finite abelian group
E(Fp) ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with ni |ni+1 for i ≥ 1.
Hence E(Fp) contains nr

1 points of order dividing n1. From Structure of Torsion
Theorem, #E [n1] ≤ n2

1. So r ≤ 2

Theorem

Let E/Fp and n, k ∈ N s.t. E(Fp) ∼= Cn ⊕ Cnk . Then n | p − 1.



The division polynomials

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0, ψ1 = 1, ψ2 = 2y , ψ3 = 3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y (x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)
...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =
(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x , y ] is called the mth division polynomial

FACTS:

• ψ2m+1 ∈ Z[x ] and ψ2m ∈ 2yZ[x ] ψm =

{
y (mx (m2−4)/2 + · · · ) if m is even
mx (m2−1)/2 + · · · if m is odd.

• ψ2
m = m2xm2−1 + · · ·



Remark.

• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}

Example

ψ4(x) =2y (x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4BAx − A3 − 8B2)

ψ5(x) =5x12 + 62Ax10 + 380Bx9 − 105A2x8 + 240BAx7 +
(
−300A3 − 240B2

)
x6 − 696BA2x5 +

(
−125A4 − 1920B2A

)
x4

+
(
−80BA3 − 1600B3

)
x3 +
(
−50A5 − 240B2A2

)
x2 +
(
−100BA4 − 640B3A

)
x +
(

A6 − 32B2A3 − 256B4
)

ψ6(x) =2y (6x16 + 144Ax14 + 1344Bx13 − 728A2x12 +
(
−2576A3 − 5376B2

)
x10 − 9152BA2x9 +

(
−1884A4 − 39744B2A

)
x8

+
(

1536BA3 − 44544B3
)

x7 +
(
−2576A5 − 5376B2A2

)
x6 +
(
−6720BA4 − 32256B3A

)
x5

+
(
−728A6 − 8064B2A3 − 10752B4

)
x4 +
(
−3584BA5 − 25088B3A2

)
x3 +
(

144A7 − 3072B2A4 − 27648B4A
)

x2

+
(

192BA6 − 512B3A3 − 12288B5
)

x +
(

6A8 + 192B2A5 + 1024B4A2
)

)



Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x , y ) ∈ E)

m(x , y ) =
(

x − ψm−1ψm+1

ψ2
m(x)

,
ψ2m(x , y )
2ψ4

m(x)

)
=
(
φm(x)
ψ2

m(x)
,
ωm(x , y )
ψ3

m(x , y )

)

where

φm = xψ2
m − ψm+1ψm−1, ωm = ψm+2ψ

2
m−1−ψm−2ψ

2
m+1

4y

FACTS:

• φm(x) = xm2
+ · · · ψm(x)2 = m2xm2−1 + · · · ∈ Z[x ]

• ω2m+1 ∈ yZ[x ], ω2m ∈ Z[x ]
• ωm(x,y )
ψ3

m(x,y ) ∈ yZ(x)

• gcd(ψ2
m(x), φm(x)) = 1

• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K ) : y−1ψ2m(x) = 0}



Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq. Then the order of E(Fq) satisfies

|q + 1− #E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq

2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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