

ELLIPTIC CURVES CRYPTOGRAPHY

FRANCESCO PAPPALARDI

#3 - THIRD LECTURE.

June $18^{\text{TH}} 2019$

WAMS SCHOOL: O INTRODUCTORY TOPICS IN NUMBER THEORY AND DIFFERENTIAL GEOMETRY King Khalid University Abha, Saudi Arabia

A Finite Field Example

Over \mathbb{F}_{ρ} geometric pictures don't make sense.

Example Let $E: y^2 = x^3 - 5x + 8/\mathbb{F}_{37}$, $P = (6, 3), Q = (9, 10) \in E(\mathbb{F}_{37})$ $r_{P,Q}$: y = 27x + 26 $r_{P,P}$: y = 11x + 11 $r_{P,Q} \cap E(\mathbb{F}_{37}) = \begin{cases} y^2 = x^3 - 5x + 8\\ y = 27x + 26 \end{cases} = \{(6,3), (9,10), (11,27)\} \end{cases}$ $r_{P,P} \cap E(\mathbb{F}_{37}) = \begin{cases} y^2 = x^3 - 5x + 8\\ y = 11x + 11 \end{cases} = \{(6,3), (6,3), (35,26)\} \end{cases}$ $P_{+F}Q = (11, 10)$ 2P = (35, 11) $3P = (34, 25), 4P = (8, 6), 5P = (16, 19), \dots, 3P + 4Q = (31, 28), \dots$

Exercise

• Compute the order and the Group Structure of $E(\mathbb{F}_{37})$

EXAMPLE: Elliptic curves over \mathbb{F}_5

 $\forall E/\mathbb{F}_5 \text{ (12 elliptic curves), } \#E(\mathbb{F}_5) \in \{2, 3, 4, 5, 6, 7, 8, 9, 10\}.$ $\forall n, 2 \le n \le 10 \exists ! E/\mathbb{F}_5 : \#E(\mathbb{F}_5) = n \text{ with the exceptions:}$

Example (Elliptic curves over \mathbb{F}_5)

• $E_1: y^2 = x^3 + 1$ and $E_2: y^2 = x^3 + 2$ both order 6 and $E_1(\mathbb{F}_5) \cong E_2(\mathbb{F}_5) \cong C_6$ • $E_2: y^2 = x^3 + x$ and $E_4: y^2 = x^3 + x + 2$ order 4

$$E_3(\mathbb{F}_5) \cong C_2 \oplus C_2 \qquad E_4(\mathbb{F}_5) \cong C_4$$

•
$$E_5: y^2 = x^3 + 4x$$
 and $E_6: y^2 = x^3 + 4x + 7$

 $E_5(\mathbb{F}_5)\cong C_2\oplus C_4$ $E_6(\mathbb{F}_5)\cong C_8$

• $E_7: y^2 = x^3 + x + 1$

order 9 and $E_7(\mathbb{F}_5) \cong C_9$

Determining points of order 2

Definition

2-torsion points $E[2] = \{P \in E(\overline{\mathbb{F}_p}) : 2P = \infty\}.$

FACTS:

$$E[2] \cong \begin{cases} C_2 \oplus C_2 & \text{if } p > 2\\ C_2 & \text{if } p = 2, E : y^2 + xy = x^3 + a_4x + a_6\\ \{\infty\} & \text{if } p = 2, E : y^2 + a_3y = x^3 + a_2x^2 + a_6 \end{cases}$$

Each curve $/\mathbb{F}_2$ has cyclic $E(\mathbb{F}_2)$.

E	E (F ₂)	$ E(\mathbb{F}_2) $
$y^2 + xy = x^3 + x^2 + 1$	$\{\infty, (0, 1)\}$	2
$y^2 + xy = x^3 + 1$	$\{\infty, (0, 1), (1, 0), (1, 1)\}$	4
$y^2 + y = x^3 + x$	$\{\infty, (0, 0), (0, 1), (1, 0), (1, 1)\}$	5
$y^2 + y = x^3 + x + 1$	$\{\infty\}$	1
$y^2 + y = x^3$	$\{\infty, (0, 0), (0, 1)\}$	3

Determining points of order 3

FACTS (from yesterday):

- $\psi_3(x) := 3x^4 + 6Ax^2 + 12Bx A^2$ called the 3rd *division* polynomial
- ${oldsymbol 2}$ $(x_1,y_1)\in E({\Bbb F}_p)$ has order ${oldsymbol 3}$ $\Rightarrow \psi_3(x_1)=0$
- **3** $E(\mathbb{F}_p)$ has at most 8 points of order 3
- **(b)** If p = 3, $E : y^2 = x^3 + Ax^2 + Bx + C$ and $P = (x_1, y_1)$ has order 3, then

•
$$Ax_1^3 + AC - B^2 = 0$$

• $E[3] \cong C_3$ if $A \neq 0$ and $E[3] = \{\infty\}$ otherwise

Determining points of order 3 (continues)

FACTS: $E[3] \cong \begin{cases} C_3 \oplus C_3 & \text{if } p \neq 3 \\ C_3 & \text{if } p = 3, E : y^2 = x^3 + Ax^2 + Bx + C, A \neq 0 \\ \{\infty\} & \text{if } p = 3, E : y^2 = x^3 + Bx + C \end{cases}$

Example: inequivalent curves $/\mathbb{F}_7$ with $\#\mathcal{E}(\mathbb{F}_7) = 9$.

E	$\psi_{3}(x)$	$E[3] \cap E(\mathbb{F}_7)$	$E(\mathbb{F}_7)\cong$
$y^2 = x^3 + 2$	x(x+1)(x+2)(x+4)	$\{\infty, (0, \pm 3), (-1, \pm 1), (5, \pm 1), (3, \pm 1)\}$	$C_3 \oplus C_3$
$y^2 = x^3 + 3x + 2$	$(x+2)(x^3+5x^2+3x+2)$	$\{\infty, (5, \pm 3)\}$	C_9
$y^2 = x^3 + 5x + 2$	$(x+4)(x^3+3x^2+5x+2)$	$\{\infty, (3, \pm 3)\}$	C_9
$y^2 = x^3 + 6x + 2$	$(x + 1)(x^3 + 6x^2 + 6x + 2)$	$\{\infty,$ (6, \pm 3) $\}$	C_9

One count the number of inequivalent E/\mathbb{F}_p with $\#E(\mathbb{F}_p) = r$

Example (A curve over $\mathbb{F}_4 = \mathbb{F}_2(\xi), \xi^2 = \xi + 1;$ $E : y^2 + y = x^3$) We know $E(\mathbb{F}_2) = \{\infty, (0, 0), (0, 1)\} \subset E(\mathbb{F}_4).$ $E(\mathbb{F}_4) = \{\infty, (0, 0), (0, 1), (1, \xi), (1, \xi + 1), (\xi, \xi), (\xi, \xi + 1), (\xi + 1, \xi), (\xi + 1, \xi + 1)\}$ $\psi_3(x) = x^4 + x = x(x + 1)(x + \xi)(x + \xi + 1) \Rightarrow E(\mathbb{F}_4) \cong C_3 \oplus C_3$

Determining points of order (dividing) m

Group Structure of $E(\mathbb{F}_{p})$

Corollary

Let E/\mathbb{F}_p . $\exists n, k \in \mathbb{N}$ are such that

 $E(\mathbb{F}_p)\cong C_n\oplus C_{nk}$

Proof.

From classification Theorem of finite abelian group

 $E(\mathbb{F}_{p})\cong C_{n_{1}}\oplus C_{n_{2}}\oplus\cdots\oplus C_{n_{r}}$

with $n_i|n_{i+1}$ for $i \ge 1$. Hence $E(\mathbb{F}_p)$ contains n_1^r points of order dividing n_1 . From *Structure of Torsion Theorem*, $\#E[n_1] \le n_1^2$. So $r \le 2$

Theorem

Let
$$E/\mathbb{F}_p$$
 and $n, k \in \mathbb{N}$ s.t. $E(\mathbb{F}_p) \cong C_n \oplus C_{nk}$. Then $n \mid p - 1$.

The division polynomials

Definition (Division Polynomials of $E: y^2 = x^3 + Ax + B (p > 3)$)

$$\psi_0 = 0, \ \psi_1 = 1, \ \psi_2 = 2y, \ \psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2$$

 $\psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3)$

$$\begin{split} \psi_{2m+1} = & \psi_{m+2}\psi_m^3 - \psi_{m-1}\psi_{m+1}^3 & \text{for } m \ge 2\\ \psi_{2m} = & \left(\frac{\psi_m}{2y}\right) \cdot (\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2) & \text{for } m \ge 3 \end{split}$$

The polynomial $\psi_m \in \mathbb{Z}[x, y]$ is called the *m*th *division polynomial*

FACTS:

•
$$\psi_{2m+1} \in \mathbb{Z}[x]$$
 and $\psi_{2m} \in 2y\mathbb{Z}[x]$ $\psi_m = \begin{cases} y(mx^{(m^2-4)/2} + \cdots) & \text{if } m \text{ is even} \\ mx^{(m^2-1)/2} + \cdots & \text{if } m \text{ is odd.} \end{cases}$

•
$$\psi_m^2 = m^2 x^{m^2-1} + \cdots$$

Remark.

- $E[2m+1] \setminus \{\infty\} = \{(x, y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0\}$
- $E[2m] \setminus E[2] = \{(x, y) \in E(\bar{K}) : y^{-1}\psi_{2m}(x) = 0\}$

Example

$$\psi_4(x) = 2y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4BAx - A^3 - 8B^2)$$

$$\psi_{5}(x) = 5x^{12} + 62Ax^{10} + 380Bx^{9} - 105A^{2}x^{8} + 240BAx^{7} + (-300A^{3} - 240B^{2})x^{6} - 696BA^{2}x^{5} + (-125A^{4} - 1920B^{2}A)x^{4} + (-80BA^{3} - 1600B^{3})x^{3} + (-50A^{5} - 240B^{2}A^{2})x^{2} + (-100BA^{4} - 640B^{3}A)x + (A^{6} - 32B^{2}A^{3} - 256B^{4})$$

$$\begin{split} \mu_{6}(x) =& 2y(6x^{16} + 144Ax^{14} + 1344Bx^{13} - 728A^2x^{12} + \left(-2576A^3 - 5376B^2\right)x^{10} - 9152BA^2x^9 + \left(-1884A^4 - 39744B^2A\right)x^8 \\ &+ \left(1536BA^3 - 44544B^3\right)x^7 + \left(-2576A^5 - 5376B^2A^2\right)x^6 + \left(-6720BA^4 - 32256B^3A\right)x^5 \\ &+ \left(-728A^6 - 8064B^2A^3 - 10752B^4\right)x^4 + \left(-3584BA^5 - 25088B^3A^2\right)x^3 + \left(144A^7 - 3072B^2A^4 - 27648B^4A\right)x^2 \\ &+ \left(192BA^6 - 512B^3A^3 - 12288B^6\right)x + \left(6A^8 + 192B^2A^5 + 1024B^4A^2\right)) \end{split}$$

Theorem (E : $Y^2 = X^3 + AX + B$ elliptic curve, $P = (x, y) \in E$ **)**

$$m(x,y) = \left(x - \frac{\psi_{m-1}\psi_{m+1}}{\psi_m^2(x)}, \frac{\psi_{2m}(x,y)}{2\psi_m^4(x)}\right) = \left(\frac{\phi_m(x)}{\psi_m^2(x)}, \frac{\omega_m(x,y)}{\psi_m^3(x,y)}\right)$$

where

$$\phi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1}, \omega_m = \frac{\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2}{4y}$$

FACTS:

•
$$\phi_m(x) = x^{m^2} + \cdots$$
 $\psi_m(x)^2 = m^2 x^{m^2-1} + \cdots \in \mathbb{Z}[x]$

- $\omega_{2m+1} \in \mathbf{y}\mathbb{Z}[\mathbf{x}], \, \omega_{2m} \in \mathbb{Z}[\mathbf{x}]$
- $\frac{\omega_m(x,y)}{\psi_m^3(x,y)} \in \mathbf{y}\mathbb{Z}(x)$
- $gcd(\psi_m^2(x), \phi_m(x)) = 1$
- $E[2m+1] \setminus \{\infty\} = \{(x, y) \in E(\overline{K}) : \psi_{2m+1}(x) = 0\}$
- $E[2m] \setminus E[2] = \{(x, y) \in E(\overline{K}) : y^{-1}\psi_{2m}(x) = 0\}$

Theorem (Hasse)

Let *E* be an elliptic curve over the finite field \mathbb{F}_q . Then the order of $E(\mathbb{F}_q)$ satisfies

 $|q+1-\#E(\mathbb{F}_q)|\leq 2\sqrt{q}.$

So $\#E(\mathbb{F}_q) \in [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$ the Hasse interval \mathcal{I}_q

Example (Hasse Intervals)

\mathcal{I}_q
$\{1, 2, 3, 4, 5\}$
$\{1, 2, 3, 4, 5, 6, 7\}$
$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
$\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
$\{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$
{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
$\{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$
$\{9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25\}$
$\{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26\}$
$\{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28\}$
$\{15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33\}$
$\{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36\}$
$\{18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38\}$
$\{20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40\}$
$\{21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43\}$
$\{22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\}$