

ELLIPTIC CURVES CRYPTOGRAPHY

FRANCESCO PAPPALARDI

#4 - FOURTH LECTURE.

JUNE 18TH 2019

WAMS SCHOOL: O INTRODUCTORY TOPICS IN NUMBER THEORY AND DIFFERENTIAL GEOMETRY King Khalid University Abha, Saudi Arabia

Reminder

If
$$P, Q \in E(\mathbb{F}_q), r_{P,Q}$$
:

$$\begin{cases} \text{line through } P \text{ and } Q & \text{if } P \neq Q \\ \text{tangent line to } E \text{ at } P & \text{if } P = Q, \end{cases}$$

 $r_{P,\infty}$: vertical line through P

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reminder

$$\text{If } P, Q \in E(\mathbb{F}_q), r_{P,Q}: \begin{cases} \text{line through } P \text{ and } Q & \text{if } P \neq Q \\ \text{tangent line to } E \text{ at } P & \text{if } P = Q, \end{cases}$$

 $r_{P,\infty}$: vertical line through P

 $r_{P,Q} \cap E(\mathbb{F}_q) = \{P, Q, R\}$

Formulas for Addition on *E* (Summary for special equation)

$$E: y^2 = x^3 + Ax + B$$

$$P_{1} = (x_{1}, y_{1}), P_{2} = (x_{2}, y_{2}) \in E(\mathbb{F}_{q}) \setminus \{\infty\},$$
Addition Laws for the sum of affine points
$$If P_{1} \neq P_{2}$$

$$x_{1} = x_{2}$$

$$x_{1} = x_{2}$$

$$\lambda = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \quad \nu = \frac{y_{1}x_{2} - y_{2}x_{1}}{x_{2} - x_{1}}$$

$$If P_{1} = P_{2}$$

$$y_{1} = 0$$

$$y_{1} = 0$$

$$\lambda = \frac{3x_{1}^{2} + A}{2y_{1}}, \nu = -\frac{x_{1}^{3} - Ax_{1} - 2B}{2y_{1}}$$
Then
$$P_{1} + \varepsilon P_{2} = (\lambda^{2} - x_{1} - x_{2} - \lambda^{3} + \lambda(x_{1} + x_{2}) - \nu)$$

) 2 (~

The division polynomials

Definition (Division Polynomials of $E: y^2 = x^3 + Ax + B (p > 3)$)

$$\begin{split} \psi_{0} = 0, \psi_{1} = 1, \psi_{2} = 2y \\ \psi_{3} = 3x^{4} + 6Ax^{2} + 12Bx - A^{2} \\ \psi_{4} = 4y(x^{6} + 5Ax^{4} + 20Bx^{3} - 5A^{2}x^{2} - 4ABx - 8B^{2} - A^{3}) \\ \vdots \\ \psi_{2m+1} = \psi_{m+2}\psi_{m}^{3} - \psi_{m-1}\psi_{m+1}^{3} \quad \text{for } m \ge 2 \\ \psi_{2m} = \left(\frac{\psi_{m}}{2y}\right) \cdot (\psi_{m+2}\psi_{m-1}^{2} - \psi_{m-2}\psi_{m+1}^{2}) \quad \text{for } m \ge 3 \end{split}$$

The polynomial $\psi_m \in \mathbb{Z}[x, y]$ is the *m*th *division polynomial*

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The division polynomials

Definition (Division Polynomials of $E: y^2 = x^3 + Ax + B (p > 3)$)

$$\begin{split} \psi_{0} = 0, \psi_{1} = 1, \psi_{2} = 2y \\ \psi_{3} = 3x^{4} + 6Ax^{2} + 12Bx - A^{2} \\ \psi_{4} = 4y(x^{6} + 5Ax^{4} + 20Bx^{3} - 5A^{2}x^{2} - 4ABx - 8B^{2} - A^{3}) \\ \vdots \\ \psi_{2m+1} = \psi_{m+2}\psi_{m}^{3} - \psi_{m-1}\psi_{m+1}^{3} \quad \text{for } m \ge 2 \\ \psi_{2m} = \left(\frac{\psi_{m}}{2y}\right) \cdot (\psi_{m+2}\psi_{m-1}^{2} - \psi_{m-2}\psi_{m+1}^{2}) \quad \text{for } m \ge 3 \end{split}$$

The polynomial $\psi_m \in \mathbb{Z}[x, y]$ is the *m*th *division polynomial*

Theorem (E : $Y^2 = X^3 + AX + B$ elliptic curve, $P = (x, y) \in E$ **)**

$$m(x, y) = \left(x - \frac{\psi_{m-1}\psi_{m+1}}{\psi_m^2(x)}, \frac{\psi_{2m}(x, y)}{2\psi_m^4(x)}\right)$$

< u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u > < u

Definition (*m***-torsion point)**

Let E/K and let \overline{K} an *algebraic closure of K*.

 $E[m] = \{P \in E(\bar{K}) : mP = \infty\}$

Definition (*m***-torsion point)**

Let E/K and let \overline{K} an *algebraic closure of K*.

$$\boldsymbol{\mathsf{E}}[\boldsymbol{\mathsf{m}}] = \{ \boldsymbol{\mathsf{P}} \in \boldsymbol{\mathsf{E}}(\bar{K}) : \boldsymbol{\mathsf{mP}} = \infty \}$$

Let E/K and $m \in \mathbb{N}$.

$$E[m] \cong \begin{cases} C_m \oplus C_m & \text{if } p = \operatorname{char}(K) \nmid m \\ C_m \oplus C_{m'} & \text{or } E[m] \cong C_{m'} \oplus C_{m'} & \text{if } m = p'm', p \nmid m' \end{cases}$$

Definition (*m***-torsion point)**

Let E/K and let \overline{K} an *algebraic closure of K*.

$$\boldsymbol{E}[\boldsymbol{m}] = \{ \boldsymbol{P} \in \boldsymbol{E}(\bar{K}) : \boldsymbol{m}\boldsymbol{P} = \infty \}$$

Let E/K and $m \in \mathbb{N}$.

$$E[m] \cong \begin{cases} C_m \oplus C_m & \text{if } p = \operatorname{char}(K) \nmid m \\ C_m \oplus C_{m'} & \text{or } E[m] \cong C_{m'} \oplus C_{m'} & \text{if } m = p^r m', p \nmid m' \end{cases}$$

FACTS:

• $E[2m+1] \setminus \{\infty\} = \{(x, y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0\}$

Definition (*m***-torsion point)**

Let E/K and let \overline{K} an *algebraic closure of K*.

$$\boldsymbol{\mathsf{E}}[\boldsymbol{\mathsf{m}}] = \{ \boldsymbol{\mathsf{P}} \in \boldsymbol{\mathsf{E}}(\bar{K}) : \boldsymbol{\mathsf{mP}} = \infty \}$$

Let E/K and $m \in \mathbb{N}$.

$$E[m] \cong \begin{cases} C_m \oplus C_m & \text{if } p = \operatorname{char}(K) \nmid m \\ C_m \oplus C_{m'} & \text{or } E[m] \cong C_{m'} \oplus C_{m'} & \text{if } m = p^r m', p \nmid m' \end{cases}$$

FACTS:

- $E[2m+1] \setminus \{\infty\} = \{(x, y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0\}$
- $E[2m] \setminus E[2] = \{(x, y) \in E(\bar{K}) : y^{-1}\psi_{2m}(x) = 0\}$

Definition (*m***-torsion point)**

Let E/K and let \overline{K} an algebraic closure of K.

$$\boldsymbol{\mathsf{E}}[\boldsymbol{\mathsf{m}}] = \{ \boldsymbol{\mathsf{P}} \in \boldsymbol{\mathsf{E}}(\bar{K}) : \boldsymbol{\mathsf{mP}} = \infty \}$$

Let E/K and $m \in \mathbb{N}$.

$$E[m] \cong \begin{cases} C_m \oplus C_m & \text{if } p = \operatorname{char}(K) \nmid m \\ C_m \oplus C_{m'} & \text{or } E[m] \cong C_{m'} \oplus C_{m'} & \text{if } m = p^r m', p \nmid m' \end{cases}$$

FACTS:

- $E[2m+1] \setminus \{\infty\} = \{(x, y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0\}$
- $E[2m] \setminus E[2] = \{(x, y) \in E(\bar{K}) : y^{-1}\psi_{2m}(x) = 0\}$
- Corollary (Theorem of Torsion) $\exists n, k \in \mathbb{N}$ such that $E(\mathbb{F}_q) \cong C_n \oplus C_{nk}$

Definition (*m***-torsion point)**

Let E/K and let \overline{K} an algebraic closure of K.

$$E[m] = \{P \in E(\bar{K}) : mP = \infty\}$$

Theorem (Structure of Torsion Points)

Let E/K and $m \in \mathbb{N}$.

$$E[m] \cong \begin{cases} C_m \oplus C_m & \text{if } p = \operatorname{char}(K) \nmid m \\ C_m \oplus C_{m'} & \text{or } E[m] \cong C_{m'} \oplus C_{m'} & \text{if } m = p^r m', p \nmid m' \end{cases}$$

FACTS:

- $E[2m+1] \setminus \{\infty\} = \{(x, y) \in E(\bar{K}) : \psi_{2m+1}(x) = 0\}$
- $E[2m] \setminus E[2] = \{(x, y) \in E(\bar{K}) : y^{-1}\psi_{2m}(x) = 0\}$
- Corollary (Theorem of Torsion) $\exists n, k \in \mathbb{N}$ such that $E(\mathbb{F}_q) \cong C_n \oplus C_{nk}$
- Further Property $n \mid q 1$.

Theorem (Hasse)

Let *E* be an elliptic curve over the finite field \mathbb{F}_q . Then the order of $E(\mathbb{F}_q)$ satisfies

$$|q+1-\#E(\mathbb{F}_q)|\leq 2\sqrt{q}.$$

Theorem (Hasse)

Let *E* be an elliptic curve over the finite field \mathbb{F}_q . Then the order of $E(\mathbb{F}_q)$ satisfies

 $|q+1-\#E(\mathbb{F}_q)|\leq 2\sqrt{q}.$

So $\#E(\mathbb{F}_q) \in [(\sqrt{q}-1)^2, (\sqrt{q}+1)^2]$ the Hasse interval \mathcal{I}_q

Example (Hasse Intervals)

q	\mathcal{I}_q
2	$\{1, 2, 3, 4, 5\}$
3	$\{1, 2, 3, 4, 5, 6, 7\}$
4	$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
5	$\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$
7	$\{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}$
8	$\{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$
9	$\{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$
11	{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13	$\{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21\}$
16	$\{9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25\}$
17	$\{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26\}$
19	$\{12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28\}$
23	$\{15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33\}$
25	$\{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36\}$
27	{18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29	$\{20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40\}$
31	$\{21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43\}$
32	$\{22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44\}$

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q} \text{ and}$

one of the following is satisfied:

```
Let q = p^n and let N = q + 1 - a.
\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q} and one of the following is satisfied:
```

(i) gcd(a, p) = 1;

Let $q = p^n$ and let N = q + 1 - a. $\exists E/\mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \leq 2\sqrt{q} \text{ and }$

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) *n* even and one of the following is satisfied:

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q} \text{ and}$

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q} \text{ and}$

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$ **2** $n \neq 1 \pmod{2}$ and

2 $p \neq 1 \pmod{3}$, and $a = \pm \sqrt{q}$;

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q} \text{ and}$

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

```
1 a = \pm 2\sqrt{q};

2 p \neq 1 \pmod{3}, and a = \pm\sqrt{q};

3 p \neq 1 \pmod{4}, and a = 0;
```

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q} \text{ and}$

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$ **2** $p \not\equiv 1 \pmod{3}, \text{ and } a = \pm\sqrt{q};$ **3** $p \not\equiv 1 \pmod{4}, \text{ and } a = 0;$

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q}$ and

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$ **2** $p \neq 1 \pmod{3}, \text{ and } a = \pm\sqrt{q};$ **3** $p \neq 1 \pmod{4}, \text{ and } a = 0;$

```
1 p = 2 \text{ or } 3, and a = \pm p^{(n+1)/2};
```

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q}$ and

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$ **2** $p \neq 1 \pmod{3}, \text{ and } a = \pm\sqrt{q};$ **3** $p \neq 1 \pmod{4}, \text{ and } a = 0;$

```
• p = 2 \text{ or } 3, and a = \pm p^{(n+1)/2};

• a = 0.
```

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q}$ and

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$ **2** $p \neq 1 \pmod{3}, \text{ and } a = \pm\sqrt{q};$ **3** $p \neq 1 \pmod{4}, \text{ and } a = 0;$

```
1 p = 2 \text{ or } 3, and a = \pm p^{(n+1)/2};
2 a = 0.
```

Let $q = p^n$ and let N = q + 1 - a. $\exists E / \mathbb{F}_q \text{ s.t.} \# E(\mathbb{F}_q) = N \Leftrightarrow |a| \le 2\sqrt{q}$ and

one of the following is satisfied:

(i) gcd(a, p) = 1;

(ii) n even and one of the following is satisfied:

1 $a = \pm 2\sqrt{q};$ **2** $p \neq 1 \pmod{3}, \text{ and } a = \pm\sqrt{q};$ **3** $p \neq 1 \pmod{4}, \text{ and } a = 0;$

(iii) n is odd, and one of the following is satisfied:

1 p = 2 or 3, and $a = \pm p^{(n+1)/2}$; 2 a = 0.

Example (q prime $\forall N \in I_q, \exists E / \mathbb{F}_q, \#E(\mathbb{F}_q) = N. q$ not prime:)

q	$a \in$	
$4 = 2^2$	$\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$	
$8 = 2^3$	$\{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}$	
$9 = 3^2$	$\{-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$	
$16 = 2^4$	$\{-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$	
$25 = 5^2$	$\{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	
$27 = 3^3$	$\{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	
$32 = 2^5$	$\{-11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$	

Suppose N is a possible order of an elliptic curve $/\mathbb{F}_q$, $q = p^n$. Write $N = p^e n_1 n_2$, $p \nmid n_1 n_2$ and $n_1 \mid n_2$ (possibly $n_1 = 1$). There exists E/\mathbb{F}_q s.t.

$$E(\mathbb{F}_q)\cong \mathit{C}_{\mathit{n_1}}\oplus \mathit{C}_{\mathit{n_2}p^e}$$

if and only if

• $n_1 = n_2$ in the case (ii).1 of Waterhouse's Theorem;

Suppose N is a possible order of an elliptic curve $/\mathbb{F}_q$, $q = p^n$. Write $N = p^e n_1 n_2$, $p \nmid n_1 n_2$ and $n_1 \mid n_2$ (possibly $n_1 = 1$). There exists E/\mathbb{F}_q s.t.

 $E(\mathbb{F}_q)\cong C_{n_1}\oplus C_{n_2p^e}$

if and only if

• $n_1 = n_2$ in the case (ii).1 of Waterhouse's Theorem;

e $n_1|q-1$ in all other cases of Waterhouse's Theorem.

Suppose N is a possible order of an elliptic curve $/\mathbb{F}_q$, $q = p^n$. Write $N = p^e n_1 n_2$, $p \nmid n_1 n_2$ and $n_1 \mid n_2$ (possibly $n_1 = 1$). There exists E/\mathbb{F}_q s.t.

$$E(\mathbb{F}_q)\cong \mathit{C}_{\mathit{n_1}}\oplus \mathit{C}_{\mathit{n_2}p^e}$$

if and only if

• $n_1 = n_2$ in the case (ii).1 of Waterhouse's Theorem;

2 $n_1|q-1$ in all other cases of Waterhouse's Theorem.

Suppose N is a possible order of an elliptic curve $/\mathbb{F}_q$, $q = p^n$. Write $N = p^e n_1 n_2$, $p \nmid n_1 n_2$ and $n_1 \mid n_2$ (possibly $n_1 = 1$). There exists E/\mathbb{F}_q s.t.

$$E(\mathbb{F}_q)\cong \mathit{C}_{\mathit{n_1}}\oplus \mathit{C}_{\mathit{n_2}p^e}$$

if and only if

• $n_1 = n_2$ in the case (ii).1 of Waterhouse's Theorem;

2 $n_1|q-1$ in all other cases of Waterhouse's Theorem.

Example

• If $q = p^{2n}$ and $\#E(\mathbb{F}_q) = q + 1 \pm 2\sqrt{q} = (p^n \pm 1)^2$, then $E(\mathbb{F}_q) \cong C_{p^n \pm 1} \oplus C_{p^n \pm 1}$.

Suppose N is a possible order of an elliptic curve $/\mathbb{F}_q$, $q = p^n$. Write $N = p^e n_1 n_2$, $p \nmid n_1 n_2$ and $n_1 \mid n_2$ (possibly $n_1 = 1$). There exists E/\mathbb{F}_q s.t.

$$E(\mathbb{F}_q)\cong \mathit{C}_{n_1}\oplus \mathit{C}_{n_2p^e}$$

if and only if

• $n_1 = n_2$ in the case (ii).1 of Waterhouse's Theorem;

2 $n_1|q-1$ in all other cases of Waterhouse's Theorem.

Example

• If
$$q = p^{2n}$$
 and $\#E(\mathbb{F}_q) = q + 1 \pm 2\sqrt{q} = (p^n \pm 1)^2$, then
 $E(\mathbb{F}_q) \cong C_{p^n \pm 1} \oplus C_{p^n \pm 1}$.
• Let $N = 100$ and $q = 101 \Rightarrow \exists E_1, E_2, E_3, E_4/\mathbb{F}_{101}$ s.t.
 $E_1(\mathbb{F}_{101}) \cong C_{10} \oplus C_{10} \qquad E_2(\mathbb{F}_{101}) \cong C_2 \oplus C_5$
 $E_3(\mathbb{F}_{101}) \cong C_5 \oplus C_{20} \qquad E_4(\mathbb{F}_{101}) \cong C_{100}$

Definition

Let E/\mathbb{F}_q and write $E(\mathbb{F}_q) = q + 1 - a$, $(|a| \le 2\sqrt{q})$. The *characteristic* polynomial of *E* is

$$\mathcal{P}_{E}(T) = T^{2} - aT + q \in \mathbb{Z}[T].$$

and its roots:

$$\alpha = \frac{1}{2} \left(a + \sqrt{a^2 - 4q} \right) \qquad \beta = \frac{1}{2} \left(a - \sqrt{a^2 - 4q} \right)$$

are called characteristic roots of Frobenius

Definition

Let E/\mathbb{F}_q and write $E(\mathbb{F}_q) = q + 1 - a$, $(|a| \le 2\sqrt{q})$. The *characteristic* polynomial of *E* is

$$P_E(T) = T^2 - aT + q \in \mathbb{Z}[T].$$

and its roots:

$$\alpha = \frac{1}{2} \left(a + \sqrt{a^2 - 4q} \right) \qquad \beta = \frac{1}{2} \left(a - \sqrt{a^2 - 4q} \right)$$

are called characteristic roots of Frobenius

Theorem

 $\forall n \in \mathbb{N}$

$$#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$

$$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$$

where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$ where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

Curves $/\mathbb{F}_2$	E	а	$P_E(T)$	(lpha,eta)	
	$y^2 + xy = x^3 + x^2 + 1$	1	$T^2 - T + 2$	$\frac{1}{2}(1\pm\sqrt{-7})$	
	$y^2 + xy = x^3 + 1$	-1	$T^2 + T + 2$	$\frac{1}{2}(-1\pm\sqrt{-7})$	
	$y^2 + y = x^3 + x$	-2	$T^2 + 2T + 2$	$-1 \pm i$	
	$y^2 + y = x^3 + x + 1$	2	$T^2 - 2T + 2$	1 ± <i>i</i>	
	$y^2 + y = x^3$	0	$T^{2} + 2$	$\pm\sqrt{-2}$	

$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$ where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

Curves $/\mathbb{F}_2$	E	а	$P_E(T)$	(lpha,eta)	
	$y^2 + xy = x^3 + x^2 + 1$	1	$T^2 - T + 2$	$\frac{1}{2}(1\pm\sqrt{-7})$	
	$y^2 + xy = x^3 + 1$	-1	$T^2 + T + 2$	$\frac{1}{2}(-1\pm\sqrt{-7})$	
	$y^2 + y = x^3 + x$	-2	$T^2 + 2T + 2$	$-1 \pm i$	
	$y^2 + y = x^3 + x + 1$	2	$T^2 - 2T + 2$	1 ± <i>i</i>	
	$y^2 + y = x^3$	0	$T^{2} + 2$	$\pm\sqrt{-2}$	

 $E: y^{2} + xy = x^{3} + x^{2} + 1 \implies E(\mathbb{F}_{2^{100}}) = 2^{100} + 1 - \left(\frac{1 + \sqrt{-7}}{2}\right)^{100} - \left(\frac{1 - \sqrt{-7}}{2}\right)^{100}$

▶ Ξ ∽ Q ()

$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$ where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

Curves $/\mathbb{F}_2$	E	а	$P_E(T)$	(lpha,eta)	
	$y^2 + xy = x^3 + x^2 + 1$	1	$T^2 - T + 2$	$\frac{1}{2}(1\pm\sqrt{-7})$	
	$y^2 + xy = x^3 + 1$	-1	$T^2 + T + 2$	$\frac{1}{2}(-1\pm\sqrt{-7})$	
	$y^2 + y = x^3 + x$	-2	$T^2 + 2T + 2$	$-1 \pm i$	
	$y^2 + y = x^3 + x + 1$	2	$T^2 - 2T + 2$	1 ± <i>i</i>	
	$y^2 + y = x^3$	0	$T^{2} + 2$	$\pm\sqrt{-2}$	
					J

 $E: y^{2} + xy = x^{3} + x^{2} + 1 \implies E(\mathbb{F}_{2^{100}}) = 2^{100} + 1 - \left(\frac{1 + \sqrt{-7}}{2}\right)^{100} - \left(\frac{1 - \sqrt{-7}}{2}\right)^{100}$ = 1267650600228229382588845215376

$$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$$

where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

$$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$$

where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

$$E(\mathbb{F}_q) = q + 1 - a \Rightarrow E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n)$$

where $P_E(T) = T^2 - aT + q = (T - \alpha)(T - \beta) \in \mathbb{Z}[T]$

Lemma

Let $s_n = \alpha^n + \beta^n$ where $\alpha\beta = q$ and $\alpha + \beta = a$. Then $s_0 = 2$, $s_1 = a$ and $s_{n+1} = as_n - qs_{n-1}$

Recall the *Finite field Legendre symbols*: let $x \in \mathbb{F}_q$,

Recall the *Finite field Legendre symbols*: let $x \in \mathbb{F}_q$,

$$\begin{pmatrix} x \\ \mathbb{F}_q \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

Recall the *Finite field Legendre symbols*: let $x \in \mathbb{F}_q$,

$$\begin{pmatrix} x \\ \mathbb{F}_q \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

Theorem

Let $E: y^2 = x^3 + Ax + B$ over \mathbb{F}_q . Then

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

Recall the *Finite field Legendre symbols*: let $x \in \mathbb{F}_q$,

$$\begin{pmatrix} x \\ \mathbb{F}_q \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

Theorem

Let
$$E: y^2 = x^3 + Ax + B$$
 over \mathbb{F}_q . Then

$$#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

Proof.

Note that

$$1 + \left(\frac{x_0^3 + Ax_0 + B}{\mathbb{F}_q}\right) = \begin{cases} 2 & \text{if } \exists y_0 \in \mathbb{F}_q^* \text{ s.t. } (x_0, \pm y_0) \in E(\mathbb{F}_q) \\ 1 & \text{if } (x_0, 0) \in E(\mathbb{F}_q) \\ 0 & \text{otherwise} \end{cases}$$

Recall the *Finite field Legendre symbols*: let $x \in \mathbb{F}_q$,

$$\begin{pmatrix} x \\ \mathbb{F}_q \end{pmatrix} = \begin{cases} +1 & \text{if } t^2 = x \text{ has a solution } t \in \mathbb{F}_q^* \\ -1 & \text{if } t^2 = x \text{ has no solution } t \in \mathbb{F}_q \\ 0 & \text{if } x = 0 \end{cases}$$

Theorem

Let
$$E: y^2 = x^3 + Ax + B$$
 over \mathbb{F}_q . Then

$$#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right)$$

nan

Proof.

Note that

$$1 + \left(\frac{x_0^3 + Ax_0 + B}{\mathbb{F}_q}\right) = \begin{cases} 2 & \text{if } \exists y_0 \in \mathbb{F}_q^* \text{ s.t. } (x_0, \pm y_0) \in E(\mathbb{F}_q) \\ 1 & \text{if } (x_0, 0) \in E(\mathbb{F}_q) \\ 0 & \text{otherwise} \end{cases}$$

Hence
$$\#E(\mathbb{F}_q) = 1 + \sum_{x \in \mathbb{F}_q} \left(1 + \left(\frac{x^3 + Ax + B}{\mathbb{F}_q}\right)\right)$$

Last Slide

Corollary Let $E: y^2 = x^3 + Ax + B$ over \mathbb{F}_q and $E_\mu: y^2 = x^3 + \mu^2 Ax + \mu^3 B$, $\mu \in \mathbb{F}_q^* \setminus (\mathbb{F}_q^*)^2$ its twist. Then $\#E(\mathbb{F}_q) = q + 1 - a \Leftrightarrow \#E_\mu(\mathbb{F}_q) = q + 1 + a$ and $\#E(\mathbb{F}_{q^2}) = \#E_\mu(\mathbb{F}_{q^2}).$

Last Slide

Corollary Let $E: y^2 = x^3 + Ax + B$ over \mathbb{F}_a and $E_\mu: y^2 = x^3 + \mu^2 Ax + \mu^3 B$, $\mu \in \mathbb{F}_a^* \setminus (\mathbb{F}_a^*)^2$ its twist. Then $#E(\mathbb{F}_q) = q + 1 - a \Leftrightarrow #E_u(\mathbb{F}_q) = q + 1 + a$ and $#E(\mathbb{F}_{q^2}) = #E_{\mu}(\mathbb{F}_{q^2}).$ Proof. $#E_{\mu}(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + \mu^2 A x + \mu^3 B}{\mathbb{F}_q} \right)$ $= q + 1 + \left(\frac{\mu}{\mathbb{F}_q}\right) \sum_{w \in \mathbb{T}} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q}\right)$ and $\left(\frac{\mu}{\mathbb{R}_{+}}\right) = -1$ A B > A B A 王 Sac

Further Reading...

- IAN F. BLAKE, GADIEL SEROUSSI, AND NIGEL P. SMART, Advances in elliptic curve cryptography, London Mathematical Society Lecture Note Series, vol. 317, Cambridge University Press, Cambridge, 2005.
- J. W. S. CASSELS, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991.
 - JOHN E. CREMONA, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997.

ANTHONY W. KNAPP, Elliptic curves, Mathematical Notes, vol. 40, Princeton University Press, Princeton, NJ, 1992.

- NEAL KOBLITZ, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984.
- JOSEPH H. SILVERMAN, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.
- JOSEPH H. SILVERMAN AND JOHN TATE, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
- LAWRENCE C. WASHINGTON, Elliptic curves: Number theory and cryptography, 2nd ED. Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2008.
- HORST G. ZIMMER, Computational aspects of the theory of elliptic curves, Number theory and applications (Banff, AB, 1988) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 279–324.