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Reminder

If P,Q ∈ E(Fq), rP,Q :

{
line through P and Q if P 6= Q
tangent line to E at P if P = Q,

rP,∞ : vertical line through P
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−P := P′

rP,Q ∩ E(Fq) = {P,Q,R}  
P +E Q := −R
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Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B

P1 = (x1, y1),P2 = (x2, y2) ∈ E(Fq) \ {∞},
Addition Laws for the sum of affine points
• If P1 6= P2

• x1 = x2 ⇒ P1 +E P2 =∞
• x1 6= x2

λ =
y2 − y1

x2 − x1
ν =

y1x2 − y2x1

x2 − x1

• If P1 = P2

• y1 = 0 ⇒ P1 +E P2 = 2P1 =∞
• y1 6= 0

λ =
3x2

1 + A
2y1

, ν = −x3
1 − Ax1 − 2B

2y1

Then
P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)



The division polynomials

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0, ψ1 = 1, ψ2 = 2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y (x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)
...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =
(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x , y ] is the mth division polynomial

Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x , y ) ∈ E)

m(x , y ) =
(

x − ψm−1ψm+1

ψ2
m(x) , ψ2m(x,y )

2ψ4
m(x)

)
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Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N.

E [m] ∼=
{

Cm ⊕ Cm if p = char(K ) - m
Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′ if m = pr m′,p - m′

FACTS:

• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
• Corollary (Theorem of Torsion) ∃n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk

• Further Property n | q − 1.



Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N.

E [m] ∼=
{

Cm ⊕ Cm if p = char(K ) - m
Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′ if m = pr m′,p - m′

FACTS:

• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
• Corollary (Theorem of Torsion) ∃n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk

• Further Property n | q − 1.



Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N.

E [m] ∼=
{

Cm ⊕ Cm if p = char(K ) - m
Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′ if m = pr m′,p - m′

FACTS:
• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}

• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
• Corollary (Theorem of Torsion) ∃n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk

• Further Property n | q − 1.



Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N.

E [m] ∼=
{

Cm ⊕ Cm if p = char(K ) - m
Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′ if m = pr m′,p - m′

FACTS:
• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}

• Corollary (Theorem of Torsion) ∃n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk

• Further Property n | q − 1.



Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N.

E [m] ∼=
{

Cm ⊕ Cm if p = char(K ) - m
Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′ if m = pr m′,p - m′

FACTS:
• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
• Corollary (Theorem of Torsion) ∃n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk

• Further Property n | q − 1.



Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N.

E [m] ∼=
{

Cm ⊕ Cm if p = char(K ) - m
Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′ if m = pr m′,p - m′

FACTS:
• E [2m + 1] \ {∞} = {(x , y ) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y ) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
• Corollary (Theorem of Torsion) ∃n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk

• Further Property n | q − 1.



Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq. Then the order of E(Fq) satisfies

|q + 1− #E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq

2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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Theorem (Waterhouse)

Let q = pn and let N = q + 1− a.
∃E/Fq s.t.#E(Fq) = N ⇔ |a| ≤ 2

√
q and

one of the following is satisfied:

(i) gcd(a,p) = 1;
(ii) n even and one of the following is satisfied:

1 a = ±2
√

q;
2 p 6≡ 1 (mod 3), and a = ±√q;
3 p 6≡ 1 (mod 4), and a = 0;

(iii) n is odd, and one of the following is satisfied:

1 p = 2 or 3, and a = ±p(n+1)/2;
2 a = 0.

Example (q prime ∀N ∈ Iq , ∃E/Fq , #E(Fq) = N. q not prime:)
q a ∈

4 = 22 {−4,−3,−2,−1, 0, 1, 2, 3, 4}
8 = 23 {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}
9 = 32 {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}
16 = 24 {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
25 = 52 {−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
27 = 33 {−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
32 = 25 {−11,−10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
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Theorem (Rück)

Suppose N is a possible order of an elliptic curve /Fq, q = pn. Write
N = pen1n2, p - n1n2 and n1 | n2 (possibly n1 = 1).

There exists E/Fq s.t.
E(Fq) ∼= Cn1 ⊕ Cn2pe

if and only if
1 n1 = n2 in the case (ii).1 of Waterhouse’s Theorem;

2 n1|q − 1 in all other cases of Waterhouse’s Theorem.

Example

• If q = p2n and #E(Fq) = q + 1± 2
√

q = (pn ± 1)2, then
E(Fq) ∼= Cpn±1 ⊕ Cpn±1.

• Let N = 100 and q = 101 ⇒ ∃E1,E2,E3,E4/F101 s.t.
E1(F101) ∼= C10 ⊕ C10 E2(F101) ∼= C2 ⊕ C50

E3(F101) ∼= C5 ⊕ C20 E4(F101) ∼= C100
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Subfield curves

Definition

Let E/Fq and write E(Fq) = q + 1−a, (|a| ≤ 2
√

q). The characteristic polynomial of E is

PE (T ) = T 2 − aT + q ∈ Z[T ].

and its roots:
α =

1
2

(
a +

√
a2 − 4q

)
β =

1
2

(
a−

√
a2 − 4q

)
are called characteristic roots of Frobenius

Theorem

∀n ∈ N
#E(Fqn ) = qn + 1− (αn + βn).
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Subfield curves (continues)
E(Fq) = q + 1− a ⇒ E(Fqn ) = qn + 1− (αn + βn)

where PE (T ) = T 2 − aT + q = (T − α)(T − β) ∈ Z[T ]

Curves /F2 E a PE (T ) (α, β)

y2 + xy = x3 + x2 + 1 1 T 2 − T + 2 1
2 (1±

√
−7)

y2 + xy = x3 + 1 −1 T 2 + T + 2 1
2 (−1±

√
−7)

y2 + y = x3 + x −2 T 2 + 2T + 2 −1± i

y2 + y = x3 + x + 1 2 T 2 − 2T + 2 1± i

y2 + y = x3 0 T 2 + 2 ±
√
−2

E : y2 + xy = x3 + x2 + 1 ⇒ E(F2100 ) = 2100 + 1−
(

1+
√
−7

2

)100
−
(

1−
√
−7

2

)100

=1267650600228229382588845215376
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Subfield curves

E(Fq) = q + 1− a ⇒ E(Fqn ) = qn + 1− (αn + βn)
where PE (T ) = T 2 − aT + q = (T − α)(T − β) ∈ Z[T ]

Curves /F3 i Ei a PEi (T ) (α, β)
1 y2 = x3 + x 0 T 2 + 3 ±

√
−3

2 y2 = x3 − x 0 T 2 + 3 ±
√
−3

3 y2 = x3 − x + 1 −3 T 2 + 3T + 3 1
2 (−3±

√
−3)

4 y2 = x3 − x − 1 3 T 2 − 3T + 3 1
2 (3±

√
−3)

5 y2 = x3 + x2 − 1 1 T 2 − T + 3 1
2 (1±

√
−11)

6 y2 = x3 − x2 + 1 −1 T 2 + T + 3 1
2 (−1±

√
−11)

7 y2 = x3 + x2 + 1 −2 T 2 + 2T + 3 −1±
√
−2

8 y2 = x3 − x2 − 1 2 T 2 − 2T + 3 1±
√
−2

Lemma

Let sn = αn +βn where αβ = q and α+β = a. Then s0 = 2, s1 = a and sn+1 = asn−qsn−1
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Legendre Symbols
Recall the Finite field Legendre symbols: let x ∈ Fq,

(
x
Fq

)
=


+1 if t2 = x has a solution t ∈ F∗q
−1 if t2 = x has no solution t ∈ Fq

0 if x = 0

Theorem

Let E : y2 = x3 + Ax + B over Fq. Then
#E(Fq) = q + 1 +

∑
x∈Fq

(
x3+Ax+B

Fq

)

Proof.

Note that

1 +
(

x3
0 +Ax0+B

Fq

)
=


2 if ∃y0 ∈ F∗q s.t. (x0,±y0) ∈ E(Fq)
1 if (x0,0) ∈ E(Fq)
0 otherwise

Hence #E(Fq) = 1 +
∑

x∈Fq

(
1 +

(
x3+Ax+B

Fq

))
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Corollary

Let E : y2 = x3 + Ax + B over Fq and Eµ : y2 = x3 + µ2Ax + µ3B, µ ∈ F∗q \ (F∗q)2 its twist.
Then

#E(Fq) = q + 1− a ⇔ #Eµ(Fq) = q + 1 + a

and
#E(Fq2) = #Eµ(Fq2).

Proof.

#Eµ(Fq) = q + 1 +
∑
x∈Fq

(
x3 + µ2Ax + µ3B

Fq

)

= q + 1 +
(
µ

Fq

) ∑
x∈Fq

(
x3 + Ax + B

Fq

)

and
(
µ
Fq

)
= −1
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