
Egyptian fractions: from Rhind Mathematical
Papyrus to Erdős and Tao
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Fractions in Egypt
powers of two
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Egyptian Fraction Expansion (EFE)

EFE
Given a/b ∈ Q>, an Egyptian Fraction Expansion of a/b with
length k is the expression

a
b = 1

x1
+ 1

x2
+ · · ·+ 1

xk

where x1, . . . , xk ∈ N

Every a/b ∈ Q> has an EFE with distinct x1, . . . , xn!!
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The Greedy Algorithm

Fibonacci (1200’s)

Given 0 < a/b < 1, the identity:

a
b = 1

b1
+ a1

bb1

can be found with
1 b1, a1 ∈ N
2 1 ≤ a1 < a
3 b1 > 1,

Hence we can iterate the process to
obtain EFE for a/b
a
b = 1

b1
+ 1

b2
+ a2

bb1b2
=

= 1
b1

+ 1
b2

+ 1
b3

+ a3
bb1b2b3

= · · ·
it takes at most a steps
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The Greedy Algorithm
Euclidean Division to find a1 and b1

Euclid (≈ 300 BC )

Given a, b ∈ N, ∃q, r ∈ N s.t.

b = aq + r , 0 ≤ r < a

a quick computation shows

a
b = 1

q + 1 + a − r
b(q + 1)

Hence
1 b1 = q + 1 > 1;
2 0 < a1 = a − r < a

since gcd(a, b) = 1
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The Greedy Algorithm

Example: The Greedy Algorithm at work

5
121 = 1

25 + 4
3025

= 1
25 + 1

757 + 3
2289925

= · · ·

= 1
25 + 1

757 + 1
763309 + 1

873960180913+

+ 1
1527612795642093418846225

However,
5

121 = 1
33 + 1

121 + 1
363

Lahore, October 13, 2018 One Day Symposium on Algebra & Number Theory



The Takenouchi Algorithm (1921)

how Takenouchi Algorithm works
1 based on the identity:

1
b + 1

b =


1

b/2 if 2 | b
1

b+1
2

+ 1
b(b+1)

2
otherwise

2 Write a
b =

a−times︷ ︸︸ ︷
1
b + · · ·+ 1

b
3 Apply the above identity [a/2] times

a
b =

a/2−times︷ ︸︸ ︷
1

b+1
2

+ · · ·+ 1
b+1

2
+

a/2−times︷ ︸︸ ︷
1

b(b+1)
2

+ · · ·+ 1
b(b+1)

2

4 reiterate using the first identity
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The Takenouchi Algorithm (1921)

Example:

5
121 = 1

121 + 1
121 + 1

121 + 1
121 + 1

121
= 1

121 + 1
61 + 1

61 + 1
61× 121 + 1

61× 121

= 1
121 + 1

31 + 1
1891 + 1

3691 + 1
27243271

However it is still worse than,

5
121 = 1

33 + 1
121 + 1

363
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Minimizing length & Denominators’ sizes

Theorem (Tenenbaum – Yokota (1990))
Given a/b ∈ Q ∩ (0, 1), ∃ EFE s.t.

it has length O(
√

log b);
each denominator is O

(
b log b(log log b)4(log log log b)2)
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thinking at ESE-expansion as a Waring problem with
negative exponent...

Theorem (Graham (1964))
Given a/b ∈ Q>,

a
b = 1

y2
1

+ · · ·+ 1
y2

k

admits a solution in distinct integers
y1, . . . , yk

⇐⇒ a/b ∈ (0, π2/6−1)∪[1, π2/6)

Note: Graham result is quite general ... for example
a
b = 1

y2
1

+ · · ·+ 1
y2

k
with y2

j ≡ 4 mod 5 distinct ⇔ 5 - b and
a/b ∈ (0, α− 13

36) ∩ [ 1
9 , α−

1
4) ∩ [ 1

4 , α−
1
9) ∩ [α, 13

36)
where α = 2(5−

√
5)π2/125
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The Erdős-Strauß Conjecture

Erdős-Strauß Conjecture (ESC) (1950):
∀n > 2,

4
n = 1

x + 1
y + 1

z

admits a solution in
positive distinct integers
x , y , z

Note:
enough to consider (for prime p ≥ 3), 4

p = 1
x + 1

y + 1
z

many computations. Record (2012) (Bello–Hernández, Benito
and Fernández): ESC holds for n ≤ 2× 1014
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The Schinzel Conjecture

Schinzel Conjecture:

given a ∈ N, ∃Na s.t. if n > Na,

a
n = 1

x + 1
y + 1

z

admits a solution in distinct integers x , y , z

Theorem (Vaughan (1970):)

#
{

n ≤ T :
a
n = 1

x + 1
y + 1

z
has no solution

}
� T

ec log2/3 T

Elsholtz – Tao (2013): new results about ESC ... later
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Fixing the denominator

Definition (Enumerating functions for fixed denominator)
Fix n ∈ N and set

1 Ak(n) =
{

a ∈ N : a
n = 1

x1
+ · · ·+ 1

xk
,∃x1, . . . , xk ∈ N

}
2 A∗k(n) = {a ∈ Ak(n) : gcd(a, n) = 1}
3 Ak(n) = #Ak(n)
4 A∗k(n) = #A∗k(n)

Note that:
Ak(n) =

∑
d |n

A∗k(d)
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Fixing the denominator

Numerics:
n A2(n) A3(n) n A2(n) A3(n) n A2(n) A3(n) n A2(n) A3(n)
2 4 6 27 18 41 52 27 68 77 25 75
3 5 8 28 23 49 53 10 36 78 39 101
4 7 11 29 10 26 54 35 82 79 12 45
5 6 11 30 29 58 55 24 65 80 49 118
6 10 16 31 8 27 56 36 85 81 28 81
7 6 13 32 23 51 57 21 62 82 18 59
8 11 19 33 18 44 58 18 53 83 14 50
9 10 19 34 17 42 59 14 41 84 60 139
10 12 22 35 20 49 60 51 109 85 22 78
11 8 16 36 34 69 61 6 28 86 19 62
12 17 29 37 6 27 62 18 56 87 25 77
13 6 18 38 17 45 63 33 86 88 39 105
14 13 26 39 20 51 64 32 81 89 14 48
15 14 29 40 33 71 65 22 69 90 58 138
16 16 31 41 10 29 66 36 89 91 20 79
17 8 21 42 34 74 67 8 39 92 29 86
18 20 38 43 8 30 68 30 79 93 21 75
19 8 22 44 25 61 69 25 70 94 21 69
20 21 41 45 28 69 70 39 98 95 24 82
21 17 37 46 17 47 71 14 42 96 59 143
22 14 32 47 12 36 72 54 121 97 8 47
23 10 25 48 41 87 73 6 36 98 32 94
24 27 51 49 14 46 74 17 57 99 36 107
25 12 33 50 27 67 75 33 91 100 48 126
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Fixing the denominator - the binary case

Croot, Dobbs, Friedlander, Hetzel, FP (2000):

1 ∀ε > 0,

A2(n)� nε

2 T log3 T �
∑
n≤T

A2(n)� T log3 T
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Fixing the denominator - the binary case

Lemma (Rav Criterion (1966))
Let a, n ∈ N s.t. (a, n) = 1.

a
n = 1

x + 1
y

has solution x , y ∈ N ⇔ ∃(u1, u2) ∈ N2 with
(u1, u2) = 1,

u1u2|n and a |u1 + u2

Consequence: let τ(n) be number of divisors of n and [m, n] be
the lowest common multiple of n and m

A∗2(pk) = τ([pk + 1, pk−1 + 1, . . . , p + 1])
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Fixing the denominator - the general case

Theorem (Croot, Dobbs, Friedlander, Hetzel, FP (2000))

∀ε > 0, A3(n)�ε n1/2+ε

by an induction argument, ∀ε > 0,

Ak(n)�ε nαk+ε

where αk = 1− 2/(3k−2 + 1)

Theorem (Banderier, Luca, FP (2018))

∀ε > 0, A3(n)�ε n1/3+ε

by an induction argument, ∀ε > 0,

Ak(n)�ε nβk+ε

where βk = 1− 2/(2 · 3k−3 + 1)
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Fixing the denominator - the general case
generalizing Rav criterion

Lemma
Let a/n ∈ Q>. a/n = 1/x + 1/y + 1/z for some x , y , z ∈ N
⇔ ∃ six positive integers D1,D2,D3, v1, v2, v3 with

(i) [D1,D2,D3] | n;
(ii) v1v2v3 | D1v1 + D2v2 + D3v3;

(iii) a | (D1v1 + D2v2 + D3v3)/(v1v2v3)

Conversely, if there are such integers, then by putting
E = [D1,D2,D3], f1 := n/E, f2 = (D1v1 + D2v2 + D3v3)/(av1v2v3)
and f = f1f2, a representation is

a
n = 1

(E/D1)v2v3f + 1
(E/D2)v1v3f + 1

(E/D3)v1v2f
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back to Erdős-Strauß Conjecture
the polynomial families of solution

Polynomial families of solutions
4
n = 1

n + 1
(n + 1)/3 + 1

n(n + 1)/3
=⇒ if n ≡ 2 mod 3, ESC holds for n

4
n = 1

n/3 + 1
4n/3 + 1

4n
=⇒ if n ≡ 0 mod 3, ESC holds for n

Need to solve ESC for n ≡ 1 mod 3
idea can be pushed: 4/n requires four terms with the greedy
algorithm if and only if n ≡ 1 or 17(mod24)
example if n = 5 + 24t

4
n = 1

6t + 1 + 1
(2 + 8t)(6t + 1) + 1

(5 + 24t)(6t + 1)(2 + 8t)
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back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/z

(Another) example (n ≡ 7 mod 24)

4
7 + 24t = 1

6t + 2+ 1
(8 + 24t)(6t + 2)+ 1

(7 + 24t)(8 + 24t)(6t + 2)

Definition (solvable congruences)
We say that r(modq) ∈ Z/qZ∗ is solvable by polynomials if
∃P1,P2,P3 ∈ Q[x ] which take positive integer values for
sufficiently large integer argument and such that for all
n ≡ r(modq):

4
n = 1

P1(n) + 1
P2(n) + 1

P3(n)
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back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/z

Theorem (Elsholtz–Tao (2013))

There is a classification of
solvable conguences by
polynomials

Theorem (Mordell (1969))

All (primitive) congruence classes r(mod840)
are solvable by polynomials unless r is a
perfect square

(i.e. r = 12, 112, 132, 172, 192, 232)
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back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/z

Remarks & Definitions:
Up to reordering, solutions of 4

p = 1
x + 1

y + 1
z are of two types:

I. p | x & p - yz
II. p | gcd(x , y) & p - z

in analogy, we say that, up to reordering, a solutions of
4
n = 1

x + 1
y + 1

z is of type:
I. if n | x & gcd(n, yz) = 1

II. n | gcd(x , y) & gcd(n, z) = 1
f (n) be the number of solutions of 4/n = 1/x + 1/y + 1/z
Set fI(n) (resp fII(n)) be the number of solutions of type I
(resp II) of 4/n = 1/x + 1/y + 1/z
f (p) = 3fI(p) + 3fII(p)
f (n) ≥ 3fI(n) + 3fII(n)
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back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/z
Elsholtz – Tao paper

Theorem (some of Elsholtz – Tao’s results)

fI(n)� n3/5+ε, fII(n)� n2/5+ε

N log3 N �
∑
n≤N

fI(n)� N log3 N

N log3 N �
∑
n≤N

fII(n)� N log3 N

N log2 N �
∑
p≤N

fI(p)�N log2 N log log N

N log2 N �
∑
p≤N

fII(p)� N log2 N

f (n)� e
(

(log 3+o(1)) log n
log log n

)
for ∞ n

f (n)� (log n)0.54 for almost all n
f (p)� (log p)0.54 for almost all p
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back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/z
A key idea on the Elsholtz – Tao paper

Let Sm,n = {(x , y , z) ∈ C3 : mxyz = nyz + nxy + nxz} ⊂ C3.
A3(n) equals the number of m ∈ N s.t. Sm,n ∩ N3 6= ∅. Set

ΣI
m,n =


(a, b, c, d , e, f ) ∈ C6 :

mabd = ne + 1, ce = a + b
mabcd = n(a + b) + c
macde = ne + ma2d + 1
mbcde = ne + mb2d + 1
macd = n + f , ef = ma2d + 1
bf = na + c
n2 + mc2d = f (mbcd − n)


which is a 3-dimensional algebraic variety. The map

πI
m,n : ΣI

m,n −→ Sm,n, (a, b, c, d , e) 7→ (abdn, acd , bcd)

is well defined after quotienting by the dilation symmetry
(a, b, c, d , e, f ) 7→ (λa, λb, λc, λ−2d , e, f ) this map is bijective
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back to A3(p)
Adapting Elsholtz – Tao construction

Theorem (Banderier, Luca, FP (2018))

∑
p≤N

AII,3(p)� N log2 N log log N

where AII,3(p) is the number of a ∈ N
s.t.

a
p = 1

px + 1
py + 1

z
admits a solution x , y , z ∈ N
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back to A3(p)
what goes into the proof...

these are classical elementary analytic number theory proof:

Dirichlet average divisor in special
sparse sequences
Prime in arithmetic progression
Brun Titchmarsh estimates
Bombieri–Vinogradov Theorem
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