Egyptian fractions: from Rhind Mathematical Papyrus to Erdős and Tao

Francesco Pappalardi

COMSATS University Islamabad, Lahore Campus

October 10, 2018

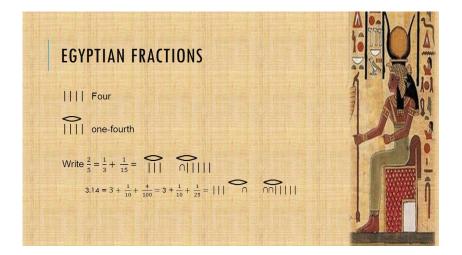
The Rhind Mathematical Papyrus

British Museum

Lahore, October 13, 2018 One Day Symposium on Algebra & Number Theory

Lahore, October 13, 2018

One Day Symposium on Algebra & Number Theory





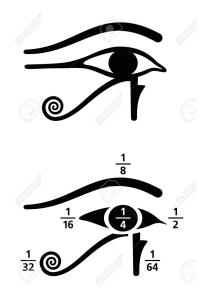
Egyptian fractions

the Ancient Egyptians only used unit numerator fractions

they turned other fractions into sums of two or more fractions, all with a numerator of **1**

(apart from ²/₃)

they used fractions with different denominators



EFE

Given $a/b \in \mathbb{Q}^>$, an Egyptian Fraction Expansion of a/b with length k is the expression

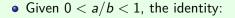
$$\frac{a}{b} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_k}$$

where $x_1, \ldots, x_k \in \mathbb{N}$

Every $a/b \in \mathbb{Q}^>$ has an EFE with distinct x_1, \ldots, x_n !!

The Greedy Algorithm

Fibonacci (1200's)



$$\frac{a}{b} = \frac{1}{b_1} + \frac{a_1}{bb_2}$$

1
$$b_1, a_1 \in \mathbb{N}$$

2 $1 \le a_1 < a$
3 $b_1 > 1$,

• Hence we can iterate the process to obtain EFE for *a/b*

•
$$\frac{a}{b} = \frac{1}{b_1} + \frac{1}{b_2} + \frac{a_2}{bb_1b_2} =$$

= $\frac{1}{b_1} + \frac{1}{b_2} + \frac{1}{b_3} + \frac{a_3}{bb_1b_2b_3} = \cdots$

• it takes at most a steps

Euclid (\approx 300 BC)

• Given $a, b \in \mathbb{N}$, $\exists q, r \in \mathbb{N}$ s.t.

$$b = aq + r, \qquad 0 \le r < a$$

• a quick computation shows

$$rac{a}{b}=rac{1}{q+1}+rac{a-r}{b(q+1)}$$

Hence

b₁ = q + 1 > 1;
 0 < a₁ = a - r < a since gcd(a, b) = 1

The Greedy Algorithm

Example: The Greedy Algorithm at work

$$\begin{aligned} \frac{5}{121} &= \frac{1}{25} + \frac{4}{3025} \\ &= \frac{1}{25} + \frac{1}{757} + \frac{3}{2289925} \\ &= \cdots \\ &= \frac{1}{25} + \frac{1}{757} + \frac{1}{763309} + \frac{1}{873960180913} + \\ &\qquad + \frac{1}{1527612795642093418846225} \end{aligned}$$

However,

$$\frac{5}{121} = \frac{1}{33} + \frac{1}{121} + \frac{1}{363}$$

The Takenouchi Algorithm (1921)

how Takenouchi Algorithm works

based on the identity:

$$rac{1}{b}+rac{1}{b}=egin{cases} rac{1}{b/2} & ext{if } 2\mid b \ rac{1}{rac{b+1}{2}}+rac{1}{rac{b(b+1)}{2}} & ext{otherwise} \end{cases}$$

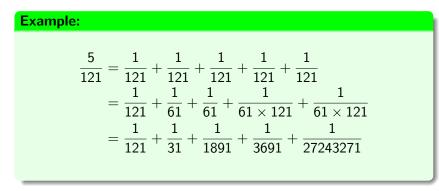
Write
$$\frac{a}{b} = \underbrace{\frac{1}{b} + \dots + \frac{1}{b}}_{a}$$

3 Apply the above identity [a/2] times

$$\frac{a}{b} = \underbrace{\frac{1}{\frac{b+1}{2}} + \dots + \frac{1}{\frac{b+1}{2}}}_{a} + \underbrace{\frac{1}{\frac{b(b+1)}{2}} + \dots + \frac{1}{\frac{b(b+1)}{2}}}_{a}$$

• reiterate using the first identity

The Takenouchi Algorithm (1921)



However it is still worse than,

$$\frac{5}{121} = \frac{1}{33} + \frac{1}{121} + \frac{1}{363}$$

Minimizing length & Denominators' sizes

Theorem (Tenenbaum – Yokota (1990))

Given $a/b \in \mathbb{Q} \cap (0,1)$, $\exists EFE s.t.$

- it has length $O(\sqrt{\log b})$;
- each denominator is $O(b \log b(\log \log b)^4(\log \log \log b)^2)$

thinking at ESE-expansion as a Waring problem with negative exponent...

Theorem (Graham (1964))

Given $a/b \in \mathbb{Q}^>$,

$$\frac{a}{b} = \frac{1}{y_1^2} + \dots + \frac{1}{y_k^2}$$

admits a solution in distinct integers y_1, \ldots, y_k

$$\iff a/b \in (0, \pi^2/6 - 1) \cup [1, \pi^2/6)$$

Note: Graham result is quite general ... for example

$$\begin{array}{l} \frac{a}{b} = \frac{1}{y_1^2} + \dots + \frac{1}{y_k^2} \text{ with } y_j^2 \equiv 4 \mod 5 \text{ distinct} \Leftrightarrow 5 \nmid b \text{ and} \\ a/b \in (0, \alpha - \frac{13}{36}) \cap [\frac{1}{9}, \alpha - \frac{1}{4}) \cap [\frac{1}{4}, \alpha - \frac{1}{9}) \cap [\alpha, \frac{13}{36}) \\ \text{where } \alpha = 2(5 - \sqrt{5})\pi^2/125 \end{array}$$

The Erdős-Strauß Conjecture

Erdős-Strauß Conjecture (ESC) (1950):

 $\forall n > 2$,

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

admits a solution in positive distinct integers x, y, z

Note:

- enough to consider (for prime $p \ge 3$), $\frac{4}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$
- many computations. Record (2012) (Bello–Hernández, Benito and Fernández): ESC holds for $n \le 2 \times 10^{14}$

The Schinzel Conjecture

Schinzel Conjecture:

given
$$a \in \mathbb{N}$$
, $\exists N_a$ s.t. if $n > N_a$,

$$\frac{a}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$$

admits a solution in distinct integers x, y, z

Theorem (Vaughan (1970):)

$$\left\{ n \leq T : \frac{a}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \\ has no solution \right\} \ll \frac{T}{e^{c \log^{2/3} T}}$$

Elsholtz – Tao (2013): new results about ESC ... later

Lahore, October 13, 2018 One Day Symposium on Algebra & Number Theory

Definition (Enumerating functions for fixed denominator)

Fix
$$n \in \mathbb{N}$$
 and set
a $\mathcal{A}_k(n) = \left\{ a \in \mathbb{N} : \frac{a}{n} = \frac{1}{x_1} + \dots + \frac{1}{x_k}, \exists x_1, \dots, x_k \in \mathbb{N} \right\}$
a $\mathcal{A}_k^*(n) = \{ a \in \mathcal{A}_k(n) : \gcd(a, n) = 1 \}$
b $\mathcal{A}_k(n) = \# \mathcal{A}_k(n)$
c $\mathcal{A}_k^*(n) = \# \mathcal{A}_k^*(n)$

Note that:

$$A_k(n) = \sum_{d|n} A_k^*(d)$$

Numerics:

n	$A_2(n)$	A ₃ (n)	n	$A_2(n)$	$A_3(n)$	n	$A_2(n)$	$A_3(n)$	n	$A_2(n)$	A ₃ (n)	
2	4	6	27	18	41	52	27	68	77	25	75	
3	5	8	28	23	49	53	10	36	78	39	101	
4	7	11	29	10	26	54	35	82	79	12	45	
5	6	11	30	29	58	55	24	65	80	49	118	
6	10	16	31	8	27	56	36	85	81	28	81	
7	6	13	32	23	51	57	21	62	82	18	59	
8	11	19	33	18	44	58	18	53	83	14	50	
9	10	19	34	17	42	59	14	41	84	60	139	
10	12	22	35	20	49	60	51	109	85	22	78	
11	8	16	36	34	69	61	6	28	86	19	62	
12	17	29	37	6	27	62	18	56	87	25	77	
13	6	18	38	17	45	63	33	86	88	39	105	
14	13	26	39	20	51	64	32	81	89	14	48	
15	14	29	40	33	71	65	22	69	90	58	138	
16	16	31	41	10	29	66	36	89	91	20	79	
17	8	21	42	34	74	67	8	39	92	29	86	
18	20	38	43	8	30	68	30	79	93	21	75	
19	8	22	44	25	61	69	25	70	94	21	69	
20	21	41	45	28	69	70	39	98	95	24	82	
21	17	37	46	17	47	71	14	42	96	59	143	
22	14	32	47	12	36	72	54	121	97	8	47	
23	10	25	48	41	87	73	6	36	98	32	94	
24	27	51	49	14	46	74	17	57	99	36	107	
25	12	33	50	27	67	75	33	91	100	48	126	
_												

Croot, Dobbs, Friedlander, Hetzel, IP (2000):

• $\forall \varepsilon > 0,$ $A_2(n) \ll n^{\epsilon}$ • $T \log^3 T \ll \sum_{n \leq T} A_2(n) \ll T \log^3 T$

Lemma (Rav Criterion (1966)) Let $a, n \in \mathbb{N}$ s.t. (a, n) = 1. $\frac{a}{n} = \frac{1}{x} + \frac{1}{y}$ has solution $x, y \in \mathbb{N} \iff \exists (u_1, u_2) \in \mathbb{N}^2$ with $(u_1, u_2) = 1$, $u_1 u_2 | n \text{ and } a | u_1 + u_2$

Consequence: let $\tau(n)$ be number of divisors of n and [m, n] be the lowest common multiple of n and m

$$A_2^*(p^k) = \tau([p^k+1, p^{k-1}+1, \dots, p+1])$$

Fixing the denominator - the general case

Theorem (Croot, Dobbs, Friedlander, Hetzel, IP (2000))

•
$$\forall \varepsilon > 0$$
, $A_3(n) \ll_{\epsilon} n^{1/2+\epsilon}$

• by an induction argument, $\forall \varepsilon > 0$,

$$A_k(n) \ll_{\epsilon} n^{\alpha_k + \epsilon}$$

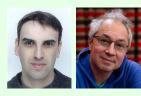
where
$$\alpha_k = 1 - 2/(3^{k-2} + 1)$$

Theorem (Banderier, Luca, IP (2018))

- $\forall \varepsilon > 0$, $A_3(n) \ll_{\epsilon} n^{1/3+\epsilon}$
- by an induction argument, $\forall \varepsilon > 0$,

$$A_k(n) \ll_{\epsilon} n^{\beta_k + \epsilon}$$

where
$$\beta_k = 1 - 2/(2 \cdot 3^{k-3} + 1)$$



Fixing the denominator - the general case generalizing Rav criterion

Lemma

Let
$$a/n \in \mathbb{Q}^{>}$$
. $a/n = 1/x + 1/y + 1/z$ for some $x, y, z \in \mathbb{N}$

 $\Leftrightarrow \exists$ six positive integers $D_1, D_2, D_3, v_1, v_2, v_3$ with

(i)
$$[D_1, D_2, D_3] \mid n;$$

(ii)
$$v_1v_2v_3 \mid D_1v_1 + D_2v_2 + D_3v_3;$$

(iii)
$$a \mid (D_1v_1 + D_2v_2 + D_3v_3)/(v_1v_2v_3)$$

Conversely, if there are such integers, then by putting $E = [D_1, D_2, D_3]$, $f_1 := n/E$, $f_2 = (D_1v_1 + D_2v_2 + D_3v_3)/(av_1v_2v_3)$ and $f = f_1f_2$, a representation is

$$\frac{a}{n} = \frac{1}{(E/D_1)v_2v_3f} + \frac{1}{(E/D_2)v_1v_3f} + \frac{1}{(E/D_3)v_1v_2f}$$

back to Erdős-Strauß Conjecture

the polynomial families of solution

Polynomial families of solutions

•
$$\frac{4}{n} = \frac{1}{n} + \frac{1}{(n+1)/3} + \frac{1}{n(n+1)/3}$$
$$\implies \text{if } n \equiv 2 \mod 3, \text{ ESC holds for } n$$
$$• \frac{4}{n} = \frac{1}{n/3} + \frac{1}{4n/3} + \frac{1}{4n}$$
$$\implies \text{if } n \equiv 0 \mod 3, \text{ ESC holds for } n$$

- Need to solve ESC for $n \equiv 1 \mod 3$
- idea can be pushed: 4/n requires four terms with the greedy algorithm if and only if $n \equiv 1$ or $17 \pmod{24}$
- **example** if n = 5 + 24t

$$\frac{4}{n} = \frac{1}{6t+1} + \frac{1}{(2+8t)(6t+1)} + \frac{1}{(5+24t)(6t+1)(2+8t)}$$

(Another) example (
$$n \equiv 7 \mod 24$$
)
$$\frac{4}{7+24t} = \frac{1}{6t+2} + \frac{1}{(8+24t)(6t+2)} + \frac{1}{(7+24t)(8+24t)(6t+2)}$$

Definition (solvable congruences)

We say that $r(\mod q) \in \mathbb{Z}/q\mathbb{Z}^*$ is solvable by polynomials if $\exists P_1, P_2, P_3 \in \mathbb{Q}[x]$ which take positive integer values for sufficiently large integer argument and such that for all $n \equiv r(\mod q)$:

$$\frac{4}{n} = \frac{1}{P_1(n)} + \frac{1}{P_2(n)} + \frac{1}{P_3(n)}$$

back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/z

Theorem (Elsholtz–Tao (2013))

There is a classification of solvable conguences by polynomials

Theorem (Mordell (1969))

All (primitive) congruence classes r(mod840) are solvable by polynomials unless r is a perfect square

(i.e.
$$r = 1^2, 11^2, 13^2, 17^2, 19^2, 23^2$$
)

Remarks & Definitions:

• Up to reordering, solutions of $\frac{4}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ are of two types:

$$I. p \mid gcd(x, y) \& p \nmid z$$

• in analogy, we say that, up to reordering, a solutions of $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is of type:

I. if
$$n \mid x \& gcd(n, yz) = 1$$

- II. $n \mid \gcd(x, y) \& \gcd(n, z) = 1$
- f(n) be the number of solutions of 4/n = 1/x + 1/y + 1/z
- Set $f_l(n)$ (resp $f_{ll}(n)$) be the number of solutions of type I (resp II) of 4/n = 1/x + 1/y + 1/z

•
$$f(p) = 3f_l(p) + 3f_{ll}(p)$$

• $f(n) \ge 3f_I(n) + 3f_{II}(n)$

back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/zElsholtz – Tao paper

Theorem (some of Elsholtz – Tao's results)

•
$$f_{I}(n) \ll n^{3/5+\varepsilon}$$
, $f_{II}(n) \ll n^{2/5+\varepsilon}$
• $N \log^{3} N \ll \sum_{n \leq N} f_{I}(n) \ll N \log^{3} N$
• $N \log^{3} N \ll \sum_{n \leq N} f_{II}(n) \ll N \log^{3} N$
• $N \log^{2} N \ll \sum_{p \leq N} f_{I}(p) \ll N \log^{2} N \log \log N$
• $N \log^{2} N \ll \sum_{p \leq N} f_{II}(p) \ll N \log^{2} N$
• $f(n) \gg e^{((\log 3 + o(1)) \frac{\log n}{\log \log n})}$ for ∞n
• $f(n) \gg (\log n)^{0.54}$ for almost all n

• $f(p) \gg (\log p)^{0.54}$ for almost all p

back to Erdős-Strauß Conjecture 4/n = 1/x + 1/y + 1/zA key idea on the Elsholtz – Tao paper

Let
$$S_{m,n} = \{(x, y, z) \in \mathbb{C}^3 : mxyz = nyz + nxy + nxz\} \subset \mathbb{C}^3$$
.
 $A_3(n)$ equals the number of $m \in \mathbb{N}$ s.t. $S_{m,n} \cap \mathbb{N}^3 \neq \emptyset$. Set

$$\Sigma_{m,n}^{I} = \begin{cases} mabd = ne + 1, ce = a + b \\ mabcd = n(a + b) + c \\ macde = ne + ma^{2}d + 1 \\ macd = ne + mb^{2}d + 1 \\ macd = n + f, ef = ma^{2}d + 1 \\ bf = na + c \\ n^{2} + mc^{2}d = f(mbcd - n) \end{cases}$$

which is a 3-dimensional algebraic variety. The map

$$\pi_{m,n}^{\mathrm{I}}: \Sigma_{m,n}^{\mathrm{I}} \longrightarrow S_{m,n}, (a, b, c, d, e) \mapsto (abdn, acd, bcd)$$

is well defined after quotienting by the dilation symmetry $(a, b, c, d, e, f) \mapsto (\lambda a, \lambda b, \lambda c, \lambda^{-2}d, e, f)$ this map is bijective

Theorem (Banderier, Luca, IP (2018))

$$\sum_{p \le N} A_{II,3}(p) \ll N \log^2 N \log \log N$$

where
$$A_{II,3}(p)$$
 is the number of $a \in \mathbb{N}$
s.t.
 $\frac{a}{p} = \frac{1}{px} + \frac{1}{py} + \frac{1}{z}$

admits a solution $x, y, z \in \mathbb{N}$

these are classical *elementary analytic number theory* proof:

- Dirichlet average divisor in special sparse sequences
- Prime in arithmetic progression
- Brun Titchmarsh estimates
- Bombieri–Vinogradov Theorem

