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Elliptic curves over Fq

Definition (Elliptic curve)

An elliptic curve over a field K is the data of a non singular Weierstraß equation
E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, ai ∈ K

If p = char K > 3,

∆E :=
1
24

(
−a5

1a3a4 − 8a3
1a2a3a4 − 16a1a2

2a3a4 + 36a2
1a2

3a4

− a4
1a2

4 − 8a2
1a2a2

4 − 16a2
2a2

4 + 96a1a3a2
4 + 64a3

4+

a6
1a6 + 12a4

1a2a6 + 48a2
1a2

2a6 + 64a3
2a6 − 36a3

1a3a6

−144a1a2a3a6 − 72a2
1a4a6 − 288a2a4a6 + 432a2

6

)
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Elliptic curves over K

After applying a suitable affine transformation we can always assume that E/K has a Weierstraß equation of the
following form

Example (Classification (p = char K ))

E p ∆E

y2 = x3 + Ax + B ≥ 5 4A3 + 27B2

y2 + xy = x3 + a2x2 + a6 2 a2
6

y2 + a3y = x3 + a4x + a6 2 a4
3

y2 = x3 + Ax2 + Bx + C 3 4A3C − A2B2 − 18ABC
+4B3 + 27C2

Let E/Fq elliptic curve,∞ an extra point. Set
E(Fq) = {(x, y) ∈ F2

q : y2 = x3 + Ax + B} ∪ {∞}
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If P,Q ∈ E(Fq), rP,Q :

{
line through P and Q if P 6= Q
tangent line to E at P if P = Q,

rP,∞ : vertical line through P

P

¥¥

¥

-P

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-x y + y2 + y � x3 - 3 x2 + x + 1

P

Q

R

P+ Q

-2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-x y + y2
+ y � x3

- 3 x2
+ x + 1

rP,∞ ∩ E(Fq) = {P,∞,P′}  
−P := P′

rP,Q ∩ E(Fq) = {P,Q,R}  
P +E Q := −R
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Theorem

The addition law on E/K (K field) has the following properties:

(a) P +E Q ∈ E ∀P,Q ∈ E

(b) P +E ∞ =∞ +E P = P ∀P ∈ E

(c) P +E (−P) =∞ ∀P ∈ E

(d) P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E

(e) P +E Q = Q +E P ∀P,Q ∈ E

So (E(K̄ ),+E ) is an abelian group.

Remark:

If E/K ⇒ ∀L,K ⊆ L ⊆ K̄ ,E(L) is an abelian group.

−P = −(x1, y1) = (x1,−a1x1 − a3 − y1)
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Formulas for Addition on E (Summary)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

P1 = (x1, y1),P2 = (x2, y2) ∈ E(K ) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒
P1 +E P2 =∞

• x1 6= x2
λ = y2−y1

x2−x1
ν = y1x2−y2x1

x2−x1

• If P1 = P2

• 2y1 + a1x + a3 = 0 ⇒
P1 +E P2 = 2P1 =∞

• 2y1 + a1x + a3 6= 0

λ =
3x2

1
+2a2x1 +a4−a1y1

2y1 +a1x+a3
, ν = −

a3y1 +x3
1
−a4x1−2a6

2y1 +a1x1 +a3

Then

P1 +E P2 = (λ2 − a1λ− a2 − x1 − x2,−λ3 − a2
1λ + (λ + a1)(a2 + x1 + x2)− a3 − ν)
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Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B

P1 = (x1, y1),P2 = (x2, y2) ∈ E(K ) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒
P1 +E P2 =∞

• x1 6= x2
λ = y2−y1

x2−x1
ν = y1x2−y2x1

x2−x1

• If P1 = P2

• y1 = 0 ⇒
P1 +E P2 = 2P1 =∞

• y1 6= 0

λ =
3x2

1
+A

2y1
, ν = −

x3
1
−Ax1−2B

2y1

Then

P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, ∃n1, . . . , nk ∈ N>1 such that

1 n1 | n2 | · · · | nk

2 G ∼= Cn1 ⊕ · · · ⊕ Cnk

Furthermore n1, . . . , nk (Group Structure) are unique

Example (One can verify that:)

C2400 ⊕ C72 ⊕ C1440 ∼= C288 ⊕ C1800 ⊕ C480

Shall show that

E(Fq) ∼= Cn ⊕ Cnk ∃n, k ∈ N>0

(i.e. E(Fq) is either cyclic (n = 1) or the product of 2 cyclic groups)
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Proof of the associativity

P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E

We should verify the above in many different cases according if Q = R, P = Q, P = Q +E R, . . .
Here we deal with the generic case. i.e. All the points ±P,±R,±Q,±(Q +E R),±(P +E Q),∞ all different

Mathematica code
L[x_,y_,r_,s_]:=(s-y)/(r-x);
M[x_,y_,r_,s_]:=(yr-sx)/(r-x);
A[{x_,y_},{r_,s_}]:={(L[x,y,r,s])2-(x+r),

-(L[x,y,r,s])3+L[x,y,r,s](x+r)-M[x,y,r,s]}
Together[A[A[{x,y},{u,v}],{h,k}]-A[{x,y},A[{u,v},{h,k}]]]
det = Det[({{1,x1,x

3
1-y

2
1},{1,x2,x

3
2-y

2
2},{1,x3,x

3
3-y

2
3}})]

PolynomialQ[Together[Numerator[Factor[res[[1]]]]/det],
{x1,x2,x3,y1,y2,y3}]

PolynomialQ[Together[Numerator[Factor[res[[2]]]]/det],

{x1,x2,x3,y1,y2,y3}]

• runs in 2 seconds on a PC

• For an elementary proof: “An Elementary Proof of the Group Law for Elliptic Curves.” Department of Mathematics: Rice
University. Web. 20 Nov. 2009.

http://math.rice.edu/˜friedl/papers/AAELLIPTIC.PDF

• More cases to check. e.g P +E 2Q = (P +E Q) +E Q
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EXAMPLE: Elliptic curves over F2

From our previous list:

Groups of points

E E(F2) |E(F2)|

y2 + xy = x3 + x2 + 1 {∞, (0, 1)} 2

y2 + xy = x3 + 1 {∞, (0, 1), (1, 0), (1, 1)} 4

y2 + y = x3 + x {∞, (0, 0), (0, 1), (1, 0), (1, 1)} 5

y2 + y = x3 + x + 1 {∞} 1

y2 + y = x3 {∞, (0, 0), (0, 1)} 3

So for each curve E(F2) is cyclic except possibly for the second for which we need to distinguish between C4
and C2 ⊕ C2.

Note: each Ci , i = 1, . . . , 5 is represented by a curve /F2
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EXAMPLE: Elliptic curves over F3

From our previous list:

Groups of points

i Ei Ei (F3) Ei (F3)

1 y2 = x3 + x {∞, (0, 0), (2, 1), (2, 2)} C4

2 y2 = x3 − x {∞, (1, 0), (2, 0), (0, 0)} C2 ⊕ C2

3 y2 = x3 − x + 1 {∞, (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)} C7

4 y2 = x3 − x − 1 {∞} {1}
5 y2 = x3 + x2 − 1 {∞, (1, 1), (1, 2)} C3

6 y2 = x3 + x2 + 1 {∞, (0, 1), (0, 2), (1, 0), (2, 1), (2, 2)} C6

7 y2 = x3 − x2 + 1 {∞, (0, 1), (0, 2), (1, 1), (1, 2), } C5

8 y2 = x3 − x2 − 1 {∞, (2, 0))} C2

Note: each Ci , i = 1, . . . , 7 is represented by a curve /F3

Exercise: let
(

a
q

)
be the kronecker symbol. Show that the number of non–isomorphic (i.e. inequivalent) classes

of elliptic curves over Fq is

2q + 3 +

(−4
q

)
+ 2
(−3

q

)
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EXAMPLE: Elliptic curves over F5 and F4

∀E/F5 (12 elliptic curves), #E(F5) ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. ∀n, 2 ≤ n ≤ 10∃!E/F5 : #E(F5) = n with the
exceptions:

Example (Elliptic curves over F5)

• E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2 both order 6{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent over
F5[
√

3] = F25 (twists)

• E3 : y2 = x3 + x and E4 : y2 = x3 + x + 2 order 4

E3(F5) ∼= C2 ⊕ C2 E4(F5) ∼= C4

• E5 : y2 = x3 + 4x and E6 : y2 = x3 + 4x + 1 both order 8

E5(F5) ∼= C2 ⊕ C4 E6(F5) ∼= C8

• E7 : y2 = x3 + x + 1 order 9 and E7(F5) ∼= C9

Exercise: Classify all elliptic curves over F4 = F2[ξ], ξ2 = ξ + 1
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The j-invariant

Let E/K : y2 = x3 + Ax + B, p ≥ 5 and ∆E := 4A3 + 27B2.{
x ←− u−2x
y ←− u−3y

u ∈ K∗ ⇒ E −→ Eu : y2 = x3 + u4Ax + u6B

Definition

The j–invariant of E is j = j(E) = 1728 4A3

4A3+27B2

Properties of j–invariants

1 j(E) = j(Eu), ∀u ∈ K∗

2 j(E ′/K ) = j(E ′′/K ) ⇒ ∃u ∈ K̄∗ s.t. E ′′ = E ′u
if K = Fq can take u ∈ Fq12

3 j 6= 0, 1728⇒ E : y2 = x3 + 3j
1728−j x + 2j

1728−j , j(E) = j

4 j = 0 ⇒ E : y2 = x3 + B, j = 1728 ⇒ E : y2 = x3 + Ax

5 j : K ←→ {K̄ –affinely equivalent classes of E/K}.
6 p = 2, 3 different definition
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Examples of j invariants

From Friday E1 : y2 = x3 + 1 and E2 : y2 = x3 + 2

#E1(F5) = #E2(F5) = 6 and j(E1) = j(E2) = 0{
x ←− 2x
y ←−

√
3y

E1 and E2 affinely equivalent over
F5[
√

3] = F25 (twists)

Definition (twisted curve)

Let E/Fq : y2 = x3 + Ax + B, µ ∈ F∗q \ (F∗q )2.

Eµ : y2 = x3 + µ
2Ax + µ

3B

is called twisted curve.

Exercise: prove that

• j(E) = j(Eµ)

• E and Eµ are Fq [
√
µ]–affinely equivalent

• #E(Fq2 ) = #Eµ(Fq2 )

• usually #E(Fq) 6= #Eµ(Fq)
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Determining points of order 2

Let P = (x1, y1) ∈ E(Fq) \ {∞},

P has order 2 ⇐⇒ 2P =∞ ⇐⇒ P = −P

So

−P = (x1,−a1x1 − a3 − y1) = (x1, y1) = P =⇒ 2y1 = −a1x1 − a3

If p 6= 2, can assume E : y2 = x3 + Ax2 + Bx + C

−P = (x1,−y1) = (x1, y1) = P =⇒ y1 = 0, x3
1 + Ax2

1 + Bx1 + C = 0

Note

• the number of points of order 2 in E(Fq) equals the number of roots of X 3 + Ax2 + Bx + C in Fq

• roots are distinct since discriminant ∆E 6= 0
• E(Fq6 ) has always 3 points of order 2 if E/Fq

• E [2] := {P ∈ E(F̄q) : 2P =∞} ∼= C2 ⊕ C2
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Determining points of order 2 (continues)

• If p = 2 and E : y2 + a3y = x3 + a2x2 + a6

−P = (x1, a3 + y1) = (x1, y1) = P =⇒ a3 = 0

Absurd (a3 = 0) and there are no points of order 2.
• If p = 2 and E : y2 + xy = x3 + a4x + a6

−P = (x1, x1 + y1) = (x1, y1) = P =⇒ x1 = 0, y2
1 = a6

So there is exactly one point of order 2 namely (0,
√

a6)

Definition

2–torsion points
E [2] = {P ∈ E : 2P =∞}.

In conclusion

E [2] ∼=

{
C2 ⊕ C2 if p > 2
C2 if p = 2,E : y2 + xy = x3 + a4x + a6

{∞} if p = 2,E : y2 + a3y = x3 + a2x2 + a6
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Elliptic curves over F2, F3 and F5

Each curve /F2 has cyclic E(F2).

E E(F2) |E(F2)|
y2 + xy = x3 + x2 + 1 {∞, (0, 1)} 2
y2 + xy = x3 + 1 {∞, (0, 1), (1, 0), (1, 1)} 4
y2 + y = x3 + x {∞, (0, 0), (0, 1), (1, 0), (1, 1)} 5
y2 + y = x3 + x + 1 {∞} 1
y2 + y = x3 {∞, (0, 0), (0, 1)} 3

• E1 : y2 = x3 + x E2 : y2 = x3 − x

E1(F3) ∼= C4 and E2(F3) ∼= C2 ⊕ C2

• E3 : y2 = x3 + x E4 : y2 = x3 + x + 2

E3(F5) ∼= C2 ⊕ C2 and E4(F5) ∼= C4

• E5 : y2 = x3 + 4x E6 : y2 = x3 + 4x + 1

E5(F5) ∼= C2 ⊕ C4 and E6(F5) ∼= C8
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Determining points of order 3

Let P = (x1, y1) ∈ E(Fq)

P has order 3 ⇐⇒ 3P =∞ ⇐⇒ 2P = −P

So, if p > 3 and E : y2 = x2 + Ax + B

2P = (x2P , y2P ) = 2(x1, y1) = (λ2 − 2x1,−λ3 + 2λx1 − ν)

where λ =
3x2

1 +A
2y1

, ν = − x3
1−Ax1−2B

2y1
.

P has order 3 ⇐⇒ x2P = x1

Substituting λ, x2P − x1 =
−3x4

1−6Ax2
1−12Bx1+A2

4(x3
1

+Ax1+4B)
= 0

Note

• ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 the 3rd division polynomial
• (x1, y1) ∈ E(Fq) has order 3 ⇒ ψ3(x1) = 0
• E(Fq) has at most 8 points of order 3
• If p 6= 3, E [3] := {P ∈ E : 3P =∞} ∼= C3 ⊕ C3
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Determining points of order 3 (continues)

Exercise

Let E : y2 = x3 + Ax2 + Bx + C,A,B,C ∈ F3n . Prove that if P = (x1, y1) ∈ E(F3n ) has order 3, then

1 Ax3
1 + AC − B2 = 0

2 E [3] ∼= C3 if A 6= 0 and E [3] = {∞} otherwise

Example (from Friday)

If E : y2 = x3 + x + 1, then #E(F5) = 9.

ψ3(x) = (x + 3)(x + 4)(x2 + 3x + 4)

Hence
E [3] =

{
∞, (2,±1), (1,±

√
3), (1± 2

√
3,±(1±

√
3))
}

1 E(F5) = {∞, (2,±1), (0,±1), (3,±1), (4,±2)} ∼= C9

2 Since F25 = F5[
√

3] ⇒ E [3] ⊂ E(F25)

3 #E(F25) = 27 ⇒ E(F25) ∼= C3 ⊕ C9
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Determining points of order 3 (continues)

Inequivalent curves /F7 with #E(F7) = 9.

E ψ3(x) E [3] ∩ E(F7) E(F7) ∼=
y2 = x3 + 2 x(x + 1)(x + 2)(x + 4) {∞, (0,±3), (−1,±1), (5,±1), (3,±1)} C3 ⊕ C3

y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9

y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9

y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9

Can one count the number of inequivalent E/Fq with #E(Fq ) = r?

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0, 0), (0, 1)} ⊂ E(F4).
E(F4 ) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3

Exercise (Suppose (x0, y0) ∈ E/F2n has order 3. Show that)

1 E : y2 + a3y = x3 + a4x + a6 ⇒ x4
0 + a2

3x0 + (a4a3)2 = 0

2 E : y2 + xy = x3 + a2x2 + a6 ⇒ x4
0 + x3

0 + a6 = 0
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Determining points of order (dividing) m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′, p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

E/Fp is called

{
ordinary if E [p] ∼= Cp

supersingular if E [p] = {∞}
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Group Structure of E(Fq)

Corollary

Let E/Fq . ∃n, k ∈ N are such that

E(Fq) ∼= Cn ⊕ Cnk

Proof.

From classification Theorem of finite abelian group
E(Fq) ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with ni |ni+1 for i ≥ 1.
Hence E(Fq) contains nr

1 points of order dividing n1. From Structure of Torsion Theorem, #E [n1] ≤ n2
1 . So

r ≤ 2

Theorem (Corollary of Weil Pairing)

Let E/Fq and n, k ∈ N s.t. E(Fq) ∼= Cn ⊕ Cnk . Then n | q − 1.

We shall discuss the proof of the latter tomorrow
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Sketch of the proof of Structure Theorem of Torsion Points
The division polynomials

The proof generalizes previous ideas and determine the points P ∈ E(Fq) such that mP =∞ or equivalently
(m − 1)P = −P.

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0

ψ1 =1

ψ2 =2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)

...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =

(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x, y ] is called the mth division polynomial
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The division polynomials

Lemma

Let E : y2 = x3 + Ax + B, (p > 3) and let ψm ∈ Z[x, y ] the mth division polynomial. Then

ψ2m+1 ∈ Z[x ] and ψ2m ∈ 2yZ[x ]

Proof is an exercise.

True ψ0, ψ1, ψ2, ψ3, ψ4 and for the rest apply induction, the identity y2 = x3 + Ax + B · · · and consider the
cases m odd and m even.

Lemma

ψm =

{
y(mx (m2−4)/2 + · · · ) if m is even
mx (m2−1)/2 + · · · if m is odd.

Hence ψ2
m = m2xm2−1 + · · ·

Proof is another exercise on induction:
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Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x, y) ∈ E)

m(x, y) =

(
x −

ψm−1ψm+1

ψ2
m(x)

,
ψ2m(x, y)

2ψ4
m(x)

)
=

(
φm(x)

ψ2
m(x)

,
ωm(x, y)

ψ3
m(x, y)

)
where

φm = xψ2
m − ψm+1ψm−1, ωm =

ψm+2ψ
2
m−1−ψm−2ψ

2
m+1

4y

We will omit the proof of the above (see [8, Section 9.5])

Exercise (Prove that after substituting y2 = x3 + Ax + B)

1 φm(x) ∈ Z[x ]

2 φm(x) = xm2
+ · · · ψm(x)2 = m2xm2−1 + · · ·

3 ω2m+1 ∈ yZ[x ], ω2m ∈ Z[x ]

4
ωm(x,y)

ψ3
m(x,y)

∈ yZ(x)

5 gcd(ψ2
m(x), φm(x)) = 1

this is not really an exercise!! - see [8, Corollary 3.7]
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Lemma

#E [m] = #{P ∈ E(K̄ ) : mP =∞}

{
= m2 if p - m
< m2 if p | m

Proof.

Consider the homomorphism:
[m] : E(K̄ )→ E(K̄ ),P 7→ mP

If p - m, need to show that
# Ker[m] = #E [m] = m2

We shall prove that ∃P0 = (a, b) ∈ [m](E(K̄ )) \ {∞} s.t.
#{P ∈ E(K̄ ) : mP = P0} = m2

Since E(K̄ ) infinite, we can choose (a, b) ∈ [m](E(K̄ )) s.t.

1 ab 6= 0

2 ∀x0 ∈ K̄ : (φ′mψm − 2φmψ
′
m)(x0)ψm(x0) = 0⇒ a 6= φm(x0)

ψ2
m(x0)

if p - m, conditions imply that φm(x)− aψ2
m(x)

has m2 = ∂(φm(x)− aψ2
m(x)) distinct roots

in fact ∂φm(x) = m2 and ∂ψ2
m(x) = m2 − 1



Elliptic curves over Fq

Reminder from Last Lecture

Examples

Structure of E(F2 )

Structure of E(F3 )

Further Examples

the j-invariant

Points of finite order

Points of order 2

Points of order 3

Points of finite order

The group structure

sketch of proof

Important Results

Hasse’s Theorem

Waterhouse’s Theorem

Rück’s Theorem

Further reading

Proof continues.

Write

mP = m(x, y) =

(
φm(x)

ψ2
m(x)

,
ωm(x,y)

ψm(x)3

)
=

(
φm(x)

ψ2
m(x)

, yr(x)

)
The map

{α ∈ K̄ : φm(α)− aψm(α)2 = 0} ↔ {P ∈ E(K̄ ) : mP = (a, b)}
α0 7→ (α0, br(α0)−1)

is a well defined bijection.

Hence there are m2 points P ∈ E(K̄ ) with mP = (a, b)

So there are m2 elements in Ker[m].

If p | m, the proof is the same except that φm(x)− aψm(x)2 has multiple roots!!
In fact φ′m(x)− aψ′m(x)2 = 0
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From Lemma, Theorem follows:

If p - m, apply classification Theorem of finite Groups:

E [m] ∼= Cn1 ⊕ Cn2 ⊕ · · ·Cnk ,

ni | ni+1. Let ` | n1, then E [`] ⊂ E [m]. Hence `k = `2 ⇒ k = 2. So

E [m] ∼= Cn1 ⊕ Cn2

Finally n2 | m and n1n2 = m2 so m = n1 = n2.

If p | m, write m = pj m′, p - m′ and

E [m] ∼= E [m′]⊕ E [pj ] ∼= Cm′ ⊕ Cm′ ⊕ E [pj ]

The statement follows from:

E [pj ] ∼=

{
{∞}
Cpj

and Cm′ ⊕ Cpj ∼= Cm′pj

which is done by induction.
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From Lemma, Theorem follows (continues)

Induction base:

E [p] ∼=

{
{∞}
Cp

if follows from #E [p] < p2

• If E [p] = {∞} ⇒ E [pj ] = {∞} ∀j ≥ 2:
In fact if E [pj ] 6= {∞} then it would contain some element of order p(contradiction).

• If E [p] ∼= Cp , then E [pj ] ∼= Cpj ∀j ≥ 2:
In fact E [pj ] is cyclic (otherwise E [p] would not be cyclic!)

Fact: [p] : E(K̄ ) → E(K̄ ) is surjective (to be proven tomorrow)

If P ∈ E and ord P = pj−1 ⇒ ∃Q ∈ E s.t. pQ = P and Q = pj .
Hence E [pj ] ∼= Cpj since it contains an element of order pj .

Remark:

• E [2m + 1] \ {∞} = {(x, y) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x, y) ∈ E(K̄ ) : y−1ψ2m(x) = 0}
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Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq . Then the order of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq

2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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Theorem (Waterhouse)

Let q = pn and let N = q + 1− a.
∃E/Fq s.t.#E(Fq) = N ⇔ |a| ≤ 2

√
q and

one of the following is satisfied:

(i) gcd(a, p) = 1;
(ii) n even and one of the following is satisfied:

1 a = ±2
√

q;
2 p 6≡ 1 (mod 3), and a = ±√q;
3 p 6≡ 1 (mod 4), and a = 0;

(iii) n is odd, and one of the following is satisfied:
1 p = 2 or 3, and a = ±p(n+1)/2;
2 a = 0.

Example (q prime ∀N ∈ Iq , ∃E/Fq ,#E(Fq ) = N. q not prime:)

q a ∈
4 = 22 { − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4}
8 = 23 { − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5}
9 = 32 { − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6}
16 = 24 { − 8, − 7,−6, − 5, − 4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8}
25 = 52 { − 10, − 9, − 8, − 7, − 6, − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
27 = 33 { − 10, − 9, − 8, − 7,−6, − 5, − 4,−3, − 2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
32 = 25 { − 11,−10, − 9, − 8, − 7,−6, − 5,−4, − 3,−2, − 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
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Theorem (Rück)

Suppose N is a possible order of an elliptic curve /Fq , q = pn. Write
N = pen1n2, p - n1n2 and n1 | n2 (possibly n1 = 1).

There exists E/Fq s.t.
E(Fq) ∼= Cn1 ⊕ Cn2pe

if and only if

1 n1 = n2 in the case (ii).1 of Waterhouse’s Theorem;

2 n1|q − 1 in all other cases of Waterhouse’s Theorem.

Example

• If q = p2n and #E(Fq) = q + 1± 2
√

q = (pn ± 1)2, then
E(Fq) ∼= Cpn±1 ⊕ Cpn±1.

• Let N = 100 and q = 101 ⇒ ∃E1,E2,E3,E4/F101 s.t.
E1(F101) ∼= C10 ⊕ C10 E2(F101) ∼= C2 ⊕ C50

E3(F101) ∼= C5 ⊕ C20 E4(F101) ∼= C100
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