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The division polynomials

Elliptic curves over F,

| Reminder from Yesterday
Definition (Division Polynomials of £ : y?> = x® + Ax + B (p > 3))

Points of finite order

The group structure
o =0,v%1 = 1,12 =2y

Weil Pairing

Endomorphisms
s =3x* + 6AXZ + 12Bx — A?

Separability

the degree of
g =4y(x® + 5Ax* + 20Bx® — 5A°X® — 4ABx — 88° — A®)

endomorphism

Hasse's Theorem
Frobenius endomorphism
proof

. Legendre Symbols
3 3 Further reading
Yomit =Pmio¥y — Ym—1¥m 4 form > 2
Ym 2 2
om = (5 - (Ymi2¥m_y — Ym—2¥pyq) form>3

The polynomial v, € Z[x, y] is the m™" division polynomial

Theorem (£ : Y2 = X° + AX + Belliptic curve, P = (x, y) € E)

VE()" Bh(y)

2 P 2’#,2,,, - 721#,2"
where ¢m = Xty — Ymi1hm—1, wm = ———I=tr

mP:m(X7y):(¢ s umx,y)?




Elliptic curves over F

Points of order m
Reminder from Yesterday

The group structure

Definition (m-torsion point) Weil Pairing

Let E/K and let K an algebraic closure of K. Endomorphems
Separability

— he di f

E[m] = {P € E(K) : mP = oo} J T

Hasse's Theorem

Frobenius endomorphism
proof

Theorem (Structure of Torsion Points) e Gt

LetE/K and m € N. If p = char(K) { m, Etieisadnn
E[m] = Cn @ Cn J

Ifm=p'm,ptm,

IR

E[m] =2 Cyn @ Cv or E[m| = Cmn @ Cnw J

Idea of the proof:
Let[m] : E — E, P — mP. Then
#E[m] = # Ker[m] < 0¢m = m?

equality holds iff p t m.




Elliptic curves over F,
Remark.

Reminder from Yesterday
* E[2m + 1] \ {OO} - {(va) E E(K) : w2m+1 (X) - 0} The group structure
o E[2m]\ E[2] = {(x.¥) € E(K) : y~"em(x) = 0} WellPaig
ety
the degree of
Example

endomorphism
Hasse’s Theorem
Frobenius endomorphism

proof
pa(x) =2y(x® + 5Ax* + 20Bx> — 54°x* — 4BAx — A® — 8B°) PRI

Further reading

s(x) =5x"2 + 62Ax"® 4 380Bx° — 1054%x% + 240BAX” + (—300A3 — 24052) x® — 696BA°X° + (—125A" — 192082A) x*

4 (—eaoBA3 - 160033) e (750A5 - 24032A2) X+ (71OOBA4 - 64033A) X+ (A6 — 3282A° — 2563“)

We(x) =2y(6x'® + 144Ax™ + 1344Bx"® — 728A2x"2 + (—2576A3 - 537682) X0 — 9152BA%x° + (71884A4 - 3974452A) X
4 (15365A3 - 4454453) X+ (—2576A5 - 537652A2) X+ (—67205A“ - 3225653A) X
+ (7728As — 8064B°A° — 1075213“) X+ (73584BA5 - 2508833A2) X+ (144A7 — 3072B8°A" — 276483“A) X

+ (192.‘3A6 — 5128%4° — 1228855) X+ (eAE + 19282 A° + 1024B“A2))



Group Structure of E(Fg)

Exercise

Use division polynomials in Sage to write a list of all curves E over Fqg3 such that E(F1o3) D E[6]. Do the same

for curves over Fs;.

Corollary (Corollary of the Theorem of Structure for torsion)

Let E/Fq. 3n, k € N are such that

E(Fq)

= Cn (7] an

Theorem

Let E/Fq and n, k € N such that E(Fq) = Cy & Cpx-

Thenn|q—1.
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Weil Pairing

Let E/Kand m € Ns.t. pt m. Then

We set

E[ml = Cy & Cn

pumi={x € K:x"=1}

J

um is a cyclic group with m elements(since p t m)

Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m] x E[m] — pm called Weil Pairing, s.t. VP, Q € E[m]

0 en(P+e Q,R) = en(P, R)en(Q, R) (bilinearity)

em(P, P) =1
en(P, Q) = en(Q, P)~"

® 6 00

The last one needs to be discussed further!!!

em(P, R) = 1VR € E[m] = P = oo (non degeneracy)

em(cP,5Q) = cem(P, Q) Vo € Gal(K/K)
en(a(P), 2(Q)) = en(P, Q)% Ya separable endomorphism

Elliptic curves over F,

Reminder from Yesterday
Points of finite order
The group structure

Endomorphisms
Separability

the degree of
endomorphism
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proof
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Properties of Weil pairing

0 E[m = Cn ® Cn = E[m] has a Z/mZ-basis

ie. 3P, Q € E[m] : VR € E[m], 3o, B € Z/mZ, R = aP + BQ

@ If (P, Q) is a Z/mZ-basis, then ¢ = en(P, Q) € um is primitive
(i.e. ord¢ = m)

Proof. Let d = ord ¢. Then 1 = en(P, Q)7 = en(P, dQ).
VR € E[m], en(R, dQ) = en(P, dQ)*en(Q, Q)% = 1.
SodQ =00 = m|d.

@ E[ml C E(K) = pum CK

Proof. Let o € Gal(K/K) since the basis (P, Q) C E(K),
o(P) = P,o(Q) = Q. Hence
¢ =en(P,Q) =en(cP,cQ) = cen(P,Q) = o
So ¢ € KGWK/K) — K = 1, = (¢) C K*

0 ifE(Fq) = Ch® Cky = qg=1modn

Proof. E[n] C E(Fg) = un CFy = n|q—1

e IfE/Q = E[m] £ E(Q)form >3
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Endomorphisms

Definition
Amap o : E(K) — E(K) is called an endomorphism if

o a(P+e Q) = a(P) +£ a(Q) (« is a group homomorphism)
e 3R, R € R(ny) st a(x,y) = (Ri(x,¥), Ra(x, y)) v(x,y) & Ker(a)

(K(x, y) is the field of rational functions, a(co) = oo )

Exercise (Show that we can always assume)

O‘(va) = (r1(x)7yr2(x)), ar, r € R(X) J

Hint: use y? = x° + Ax + Band a(—(x, y)) = —a(x, ),

Remarks/Examples:

e if ri(x) = p(x)/q(x) with gcd(p, g) = 1 and (xo, o) € E(K) with g(x) = 0 = a(x0, Yo) = o0

o [m](x,y) = (%, %) is an endomorphism Vm € Z
o o, : E(Fg)) — E(Fq)), (x,y) — (x%, y9) is called Frobenius Endomorphism
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Endomorphisms (continues)

Theorem
If « # [0] is an endomorphism, then it is surjective.

Sketch of the proof.
Assume p > 3, a(x, y) = (p(x)/q(x), yr2(x) and (a, b) € E(K).

o If p(x) — ag(x) is not constant, let xo be one of its roots. Choose y, a square root of xo2 + AXy + B.
Then either a(xo, yo) = (a, b) or a(xo, —yo) = (&, b).

o If p(x) — aq(x) is constant,
this happens only for one value of a!

Let (ar, by) € E(K):
(ar, by) # (a, £b) and (a1, by) +£ (a, b) # (a, £b).

Then (a1, bi) = «(P1) and (a1, bi) +£ (a, b) = a(Pz)

Finally (a, b) = (P> — Py)
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Endomorphisms (continues)

Definition
Suppose « : E — E, (x,y) = (r1(x), yr2(x)) endomorphism. Write r1(x) = p(x)/q(x) with

ged(p(x), q(x)) = 1.
e The degree of a is deg o := max{deg p, deg g}
e «is said separable if (p’(x), g’ (x)) # (0, 0) (identically)

Lemma
o d4(x,y) = (x9,y%) is a non separable endomorphism of degree q
o [m](x,y) = (%, ;—g’) has degree m?

o [m] separable iff p t m.

Proof.

equation.Second: already done. Third See [8, Proposition 2.28]

First: Use the fact that x — x9 is the identity on Fq hence it fixes the coefficients of the WeierstraB
O
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Endomorphisms (continues)

Theorem
Let oo # 0 be an endomorphism. Then

=dega ifa is separable
K
# Ker(a) {< deg o otherwise

Proof.

It is same proof as #E[m] = # Ker[m] < 8¢m = m?
(equality for p t m)

Definition
Let E/K. The ring of endomorphisms

End(E) := {a : E — E, o is an endomorphism}.

where for all a1, oz € End(E),
o (a1 4+ az)P := a1(P) +£ a(P)
o (a1o2)P = ai(a2(P))
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Elliptic curves over F,

Endomorphisms (continues)

Reminder from Yesterday
Points of finite order
The group structure
Properties of End(E): Weil Pairing

Endomorphisms
e [0] : P oo is the zero element
e [1]: P — Pis the identity element

the degree of
endomorphism

Hasse's Theorem

e 7 — End(E), m — [m] Frobenius endomorphism
roof

e End(E) is not necessarily commutative L:genmeswm

o if K =Fq, ®q € End(E). So Z[®4] C End(E) Rz

Recall that o € End(E) is said separable if (p'(x), g’ (x)) # (0, 0) where a(x, y) = (p(x)/q(x), yr(x)).

Lemma
Letdg : (x,y) — (x9, y?) be the Frobenius endomorphism and letr, s € Z. Then

ré, + s € End(E) is separable < pts J

Proof.
See [8, Proposition 2.29] O



Elliptic curves over F

Recall that the degree if a is deg o :— max{deg p, deg q} where a(x, y) = (p(x)/q(x), yr(x)). e —

The group structure

Lemma Weil Pairing
Endomorphisms
Vr,s € Z andVea, 8 € End(E), e

deg(ra + sB) = r?deg o + s? deg 8 + rs(deg(a + 8) — deg o — deg 3)

Hasse's Theorem
Frobenius endomorphism

Proof.

roof
Let m € N with p  m and fix a basis P, Q of E[m] = Cy, ® Cp. L:ge,,d,esymm,‘s
Then a(P) = aP + bQ and «(Q) = cP + dQ with Further reading

a b\ . L
am = (c d) with entries in Z/mZ. J

We claim that deg(«) = det a;, mod m. In fact if ¢ = en(P, Q) is the Weil pairing (primitive root).
¢9%9() = g, (a(P), (Q)) = em(aP + bQ, cP + dQ) = ¢#—°
de = ad — bc = det modm).
So 9(e) al ) Jcalculation shows

det(ran, + sBy) = r? det oy, + 5° det B, + rsdet(cay, + By) — det o, — det )

So deg(ra + sB) = r?deg  + s® deg B + rsdeg(c + B) — deg o — deg 3 mod m
Since it holds for co-many m’s the above is an equality. O



Theorem (Hasse)

Let E be an elliptic curve over the finite field F . Then the order of E(Fy) satisfies

lg +1— #E(Fq)| <2V

So #E(Fy) € [(v/q — 1)?, (v/G + 1)?] the Hasse interval Z,

Example (Hasse Intervals)

9 Zq

2 {1,2,3,4,5}

3 {1,2,3,4,5,6,7}

4 {1,2,3,4,5,6,7,8,9}

5 {2,3,4,5,6,7,8,9,10}

7 {3,4,5,6,7,8,9,10, 11,12, 13}

8 {4,5,6,7,8,9,10, 11,12, 13, 14}

9 {4,5,6,7,8,9,10,11,12,13,14,15,16}

11 {6,7,8,9,10,11,12,13,14,15,16, 17,18}

13 | {7,8,9,10,11,12,13,14, 15,16, 17, 18,19,20,21}

16 | {9,10,11,12,13,14,15,16,17, 18,19, 20, 21, 22, 23, 25}

17 | {10,11,12,13,14, 15,16, 17, 18,19, 20, 21, 22, 23, 24, 25, 26}

19 | {12,13,14,15,16, 17,18, 19,20, 21, 22, 23, 24, 25, 26, 27, 28}

23 {15, 16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

25 {16,17,18, 19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,36 }

27 | {18,19,20,21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}

29 | {20,21,22,23,24,25,26,27, 28,29, 30, 31,32, 33, 34, 35, 36, 37, 38, 39, 40}

31 {21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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Elliptic curves over F,

The Frobenius endomorphism ¢,

Reminder from Yesterday
Points of finite order

g : Fqg — Fq, x — x%is a field automorphism J The group siructure
. _ Weil Paiting
Given o € Ty, Endomorphisms
Separability
n _ A the degree of
a€Fyp & dgla)=a? =a J

endomorphism

. . Hasse’s Theorem
Fixed points of powers of ¢, are exactly elements of [Fgn

proof

¢q . E(IF‘q) — E(]Fq), (X,y) — (Xq, yq)’ 00 > 0O J Legendre Symbols

Further reading

Properties of ¢,

e &, € End(E), it is not separable and has degree g

o Og(x,y) = (x,y) < (x,) € E(Fy)

o Ker(®g — 1) = E(Fq)

o #Ker(dy — 1) = deg(Py — 1) (since ¢4 — 1 is separable)
o if we can compute deg(®4 — 1), we can compute #E(Fq)
o Opx,y) = (x7,y7)s0 Of(x,y) = (X,¥) & (x,¥) € Fyr
o Ker(og — 1) = E(Fqn)



Proof of Hasse’s Theorem

Lemma
LetE/Fq and writtea = q+ 1 — #E(Fq) = q+ 1 — deg(®q — 1). ThenVr,s € 7, gcd(q, s) =1,

deg(r¢ + s) = r’q+ s — rsa J

Proof.

Proof of the Lemma From a previous proposition, we know that
deg(rdg + s)

But

r* deg(®q) + s° deg([—1]) — rs(deg(®q — 1) — deg(®q) — deg([—11))

deg(®q) = g, deg([—1]) = 1 and deg(®q — 1) —q— 1= —a

Proof of Hasse’s Theorem.

9(5) - a(5) +1= 2 2 0
on a dense set of rational numbers.
This implies VX € R, X> — aX + g > 0.So
& —-49<0 < |a <2,q!
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Proof of Hasse’s Theorem (continues)

Ingredients for the proof:
0 E(Fq) = Ker(dq — 1)
@ &, — 1is separable
@ #Ker(dg — 1) =deg(dy — 1)

Corollary
Leta= q+1— #E(Fq). Then

®2 —ab,+qg=0
° q qt+4d J

@ a € Z is the unique integer k such that <b§ — ko, +g=0

a = Tr((®q)m) mod mVm s.t. ged(m, q) = 1
(3]

is an identity of endomorphisms.
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Elliptic curves over F

Sketch of the Proof of Corollary. Reminder from Yesterday
Points of finite order

Let m € Ns.t. gcd(m, g) = 1. Choose a basis for E[m] and write The group siructure
Weil Pairing

Endomorphisms
@ S t Separability
(Pg)m = u v the degree of

endomorphism

Hasse's Theorem
Frobenius endomorphism

&, — 1 separable implies
#Ker(®g — 1) = deg(Pq — 1) = det((Pq)m — /) ——
= det((®q)m) — Tr((®q)m) + 1(modm).

Hence
Tr((®q)m) = a(modm)

By Cayley—Hamilton
(Pg)5 — a(®q)m + gl = 0(modm)

Since this happens for infinitely many m’s,
¢2 —abg+g=0

as endomorphism. O



Subfield curves (continues)

Definition
Let E/Fq and write E(Fq) = g+ 1 — a, (|a| < 2./9). The characteristic polynomial of E is

Pe(T) = T? — aT + q € Z[T].

and its roots: 1 1
a:E(a+\/a2—4q) B:E(a—\/az—4q)

are called characteristic roots of Frobenius (Pg(®4) = 0).

Theorem

Vn € N
H#HEFqg) =q" +1— (" +8").
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Subfield curves (continues)

Theorem
vn € N#E[Fqg)=q"+1— (" + B").

Proof.
Note that
@ Resultistrueforn=1,a+ 8 =a
an_,’_ﬁn €z, (O‘B)n — qn
f(X) = (X" = a")(X" = ") = X*" — (" + B")X" + q" € Z[X]
f(X) is divisible by X — aX + g = (X — a)(X — B)
(®0)"lz,, = Par = (x,¥) = (X, y¥)
6 (P7)° — (o + B")P] + q" = Q(dg))(P5 — adg + g) = 0 where f(X) = Q(X)(X* — aX + q)
Hence &g satisfies

® 0 0 0

X2 — ((a" + B")X + q.
So
a4+ p" = q” 4+ 1 — #E(]Fqn).
Characteristic polynomial of ®gr: X% — (a” + 8")X + q"
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Subfield curves (continues)

E(Fg) =q+1—a =

E(Fg)=q"+1—(a"+ 8"
where Pg(T) = T2 — aT + g = (T — a)(T — B) € Z[T]

Curves /F,

E a | Pe(7) (o, 8)

Y24+ xy =x3 4+ x% +1 1 T2—T+2 11 £ v=7)
Y24+ xy = x5 +1 | T2+ T+2 H(—=1£V=7)
yHy=x3+x —2 | T242T+2 | 14
VP4+y=x3+x+1 2 | TP—2T+2 | 1+i
v+y=x 0 | T°+2 +v/—2

E: y2+xy = x3+x2+1 =

E(Fzmo) = 21OO+1 — (

100
1+ \/—7)
2

-

1—=7

2
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100
) = 1267650600228229382588845215376



Subfield curves

E(Fg)=qg+1—a =

E(Fp)=q"+1—(a"+8")
where Pe(T) = T2 —aT + q = (T — a)(T — B) € Z[T]

Curves /F»

i a Pe,(T) (o, B)

1 Yy =x4+x| 0 T2 +3 ++/-3

2 v=x>-x| 0 T° +3 +v/—3

3| y¥*=x"-x+1] -8 T°+38T+3 | 1(-83+/-9)
4 yP=x3_—x—-1 3 | TP—-3T+3 13+ V-9)
51 y¥P=x+x° 1 TP —T+3 11 £ v/-11)
6 | yP=x>—x° 1| TP+T7+3 | I(-1+£v=-11)
7 yP=x+x2 —2 [ T°+2T+3 —14++/-2
8 | yP=x—x*-1 2 T2 — 2T +3 142
Lemma

Lets, = o" + " where a3 = g and a + 3 = a. Then

So =2,

,$1=a and Spi1 = asp — QSp—1
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Elliptic curves over F

Legendre Symbols

Reminder from Yesterday

Recall the Finite field Legendre symbols: let x € Fq, Points offinie order

The group structure

i 42 . e Weil Paiting

+1 if ¥ = x has a solution t € ]Fq Endomorphisms

(ﬁ) =<{ —1 if 2 = x has no solution t € Fy (She::;:*:'e‘:vof
0 ifx=0 endomorphism

Hasse's Theorem
Frobenius endomorphism

Theorem proof
[ Legendre Symools
LetE : y? = x® + Ax + B overFy. Then

Further reading
#E(FQ) =q+1+3, , (T5=F) J

q

Proof.
Note that
s 2 if 3yo € Fy s.t. (X, £y0) € E(Fg)
X +A%+B Y\ A
1+ (T) =<1 if(x,0) € E(Fq)
0 otherwise
Hence

#EF) =1+, o (14 (=)



Elliptic curves over F

Last Slide

Reminder from Yesterday
Points of finite order

Corollary The group structure

LetE : y* = x* + Ax + BoverFq and E,, : y* = x* + pPAx + 1i°B, p € F; \ (F)? its twist. Then Wel Paing
Endomorphisms
Separabili

#E([Fg) =q+1—a & #E.(Fq) =qg+1+a J th:degre;yof

endomorphism

and Hasse's Theorem
Frobenius endomorphism

#E(]qu) = #EN(IE‘qz). J proof
[ Legendre Sympols

Further reading

Proof.

3 2 3
Xx° + p Ax + p°B
#E.(Fq) =q+1+ Z (]F
q
)(E]F,7
3
“w x°+ Ax + B
—g+1+(— Z rorare
q ( Fq ) < Fq
xEF,
) =
and (#£) = —1 i
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