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Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B

P1 = (x1, y1),P2 = (x2, y2) ∈ E(k) \ {O},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒
P1 +E P2 = O

• x1 6= x2

λ =
y2 − y1

x2 − x1
ν =

y1x2 − y2x1

x2 − x1

• If P1 = P2

• y1 = 0 ⇒
P1 +E P2 = 2P1 = O

• y1 6= 0

λ =
3x2

1 + A

2y1
, ν = −

x3
1 − Ax1 − 2B

2y1

Then

P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)
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Properties of the operation “+E ”

Theorem

The addition law on E(k) has the following properties:

(a) P +E Q ∈ E(k) ∀P,Q ∈ E(k)

(b) P +E O = O +E P = P ∀P ∈ E(k)

(c) P +E (−P) = O ∀P ∈ E(k)

(d) P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E(k)

(e) P +E Q = Q +E P ∀P,Q ∈ E(k)

• (E(k),+E ,O) commutative group
• −P = −(x1, y1) = (x1,−y1)

• All group properties are easy except associative law (d)
• Today we shall discuss three proofs:

1 Computer assisted proof
2 Combinatorial incidence Geometry proof
3 Algebraic proof via the Picard group

• If L/k is a field extension, we can E(L) also if E is defined over k ; Theorem holds for (E(L),+E )

• In particular, if E/k , can consider the groups E(k).
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Computer assited proof of the associativity
We need to explain to the computer how to check that:

P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E

In the case when either one of P,Q,R,P +E Q or Q +E R equals O the above identity is clearly satisfied. Here
we deal with the generic case. i.e. All the points ±P,±R,±Q,±(Q +E R),±(P +E Q) all different.We have
the following

Lemma

Let P1 = (x1, y1),P2 = (x2, y2),P3 = (x3, y3) ∈ k2 distinct. Suppose there exists an elliptic curve E such that
P1,P2,P2 ∈ E(k) \ {O} and P1 + P2 + P3 = O

=⇒ det

∣∣∣∣∣1 x1 x3
1 − y2

1
1 x2 x3

2 − y2
2

1 x3 x3
3 − y2

3

∣∣∣∣∣ = 0.

Mathematica code
L[x_,y_,r_,s_]:=(s-y)/(r-x);
M[x_,y_,r_,s_]:=(yr-sx)/(r-x);
A[{x_,y_},{r_,s_}]:={(L[x,y,r,s])2-(x+r),

-(L[x,y,r,s])3+L[x,y,r,s](x+r)-M[x,y,r,s]}
Together[A[A[{x,y},{u,v}],{h,k}]-A[{x,y},A[{u,v},{h,k}]]]
det = Det[({{1,x1,x

3
1-y

2
1},{1,x2,x

3
2-y

2
2},{1,x3,x

3
3-y

2
3}})]

PolynomialQ[Together[Numerator[Factor[res[[1]]]]/det],
{x1,x2,x3,y1,y2,y3}]

PolynomialQ[Together[Numerator[Factor[res[[2]]]]/det],

{x1,x2,x3,y1,y2,y3}]

One more case:
P+E 2Q = (P+E Q)+E Q
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Combinatorial incidence Geometry

We specialize to the case k = C
If P ∈ C[x, y ] has degree d , we consider the affine curve VP = {(x0, y0) ∈ C2 : P(x0, y0) = 0} and the
associated projective curve

PVFP = {[x0, y0, zo] ∈ P2(C) : FP (x0, y0, z0) = 0}

where FP (X ,Y , Z ) := Z d P(X/Z ,Y/Z ) is the corresponding homogenized polynomial.

1 A curve (affine or projective) of degree one is a line PVFP : aX + bY + cZ = 0

2 A curve (affine or projective) of degree two is called a quadric

PVFP : aX 2 + bXY + cXZ + dY 2 + eYZ + fZ 2 = 0

3 A curve (affine or projective) of degree three is called a cubic

PVFP : aX 3 + bX 2Y + cX 2Y + dXY 2 + eXYZ + fXZ 2 + gY 3 + hY 2Z + jYZ 2 + kZ 3 = 0

4 A curve my have multiple components when P (or FP ) is not irreducible. When P is irreducible (so is FP ),
VP (and PVFP ) are called irreducible

5 Examples: Q : X 2 − XY = 0 is a reducible quadric; C : X(X 2 + Y 2 + Z 2) = 0 is a reducible cubic. In
this case we writeQ ∩ C = `. Where ` : {X = 0} is a common component.

6 An irreducible quadric is called a conic

7 A cubic which is irreducible, smooth and is also called elliptic curve
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Bézout Theorem

We shall use the fundamental:

Theorem (Bézout Theorem)

Any two (projective) curves with degrees d and d ′ without common components, meet in exactly dd ′ points
counted with moltiplicity.

For example if there are no common components, a line meets a curve of degree d in d points and a quadric
curve meets it in 2d points. Two cubic (irreducible or not) meet in 9 points and so on.

Note (Consequences of Linear Algebra)

A line depends on 3 parameters; A quadric depends on 6 parameters; A cubic depends on 10,...A curve of
degree d, depends on (d + 1)(d + 2)/2 parameters.
Hence, applying linear algebra:

1 Through any 2 given points in P2(C) it passes a line

2 Through any 5 given points in P2(C) it passes a quadric

3 Through any 9 given points in P2(C) it passes a cubic

4 Through any d(d + 3)/2 given in P2(C) points it passes a curve of degree d
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Note (Example)

Given [Xj ,Yj , Zj ] ∈ P2(C), j = 1, 2, 3, 4, 5, solve for a, b, c, d, e, f the linear system:
aX 2

1 + bX1Y1 + cX1Z1 + dY 2
1 + eY1Z1 + fZ 2

1 = 0
aX 2

2 + bX2Y2 + cX2Z2 + dY 2
1 + eY2Z2 + fZ 2

2 = 0
aX 2

3 + bX3Y3 + cX3Z3 + dY 2
3 + eY3Z3 + fZ 2

3 = 0
aX 2

4 + bX4Y4 + cX4Z4 + dY 2
4 + eY4Z1 + fZ 2

4 = 0
aX 2

5 + bX5Y5 + cX5Z5 + dY 2
5 + eY5Z5 + fZ 2

5 = 0

1 For degree 1, if the points are distinct, the line is unique
2 For degree 2

• if 5 points are collinear, then there are infinitely many quadric (all reducible) through the 5 points
• if 3 points are collinear, then there exists no conic through the 5 points (Bezout Theorem) but only union of lines

3 For degree 3
• if 8 points are in a quadric, then there are infinitely many cubic (all reducible) through the 9 points
• if 7 points are in a quadric, then there exists no irreducible cubic through the 9 points (Bezout Theorem) but only union

of a quadric and a line
• if 4 points are collinear, then there exists no irreducible cubic through the 9 points (Bezout Theorem) but only union of a

quadric and a line

The notion of General Position may be introduced to recover uniqueness? For example: If five point of P2(C) are
such that no three of them are collinear, then the quadric is unique and it is a conic.
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Proof of the associativity (from T. Tao post of 7/15/2011)
Unifying Statement of Incidence Geometry

Theorem (Cayley-Bacharah)

Let P0,P1 ∈ C[X ,Y , Z ] be two cubic homogeneous polynomials and consider The two curves:
C0 : {P0 = 0} and C1 : {P1(x, y) = 0}.

Assume that C0 and C1 intersect (over C) in precisely 9 distinct points A1,A2, . . . ,A9 ∈ P2(C).
If P is a cubic homogeneous polynomials that vanishes on eight of these points (say A1,A2, . . . ,A8). Then P is
a linear combination of P0 and P1 and in particular it vanishes also on the ninth point A9.

Proof of the Cayley-Bacharah Theorem.

Some preliminary observations on the points A1,A2, . . . ,A9:

(a) no 4 (four) of the 9 points are collinear (otherwise Bézout fails)

(b) no 7 (seven) of the 9 points lie on a quadric (otherwise Bézout fails)

(c) any 5 (seven) of the 9 points determine a unique quadric σ

if the quadrics were two σ and σ′, then (by Bézout) they would share a common line `.

such a line can contain most three points (by Bézout). So the line `′ through the other two points is such that

σ = ` · `′ = σ′
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Proof of the Cayley-Bacharah Theorem (continues).

Further observations on the points A1,A2, . . . ,A9:

1 no 3 (three) of the first 8 points (say A1,A2,A3) are collinear (lying on a line `, say):

Suppose A4,A5, . . . ,A8 do not lie on ` and let σ be the unique quadric containing them

If B is another point on ` and C a point not on ` ∪ σ. By linear algebra we can find a cubic homogeneous
polynomial Q = aP + bP0 + cP1 such that Q vanishes on B and C.

Hence Q vanishes on A1,A2,A3 and on B so it contains ` and a quadric curve.

Such a quadric curve passes thought A4,A5, . . . ,A8 so in coincides with σ.

This contradicts the fact that Q vanishes on C.

2 no 6 (six) of the first 8 points (say A1, . . . ,A6) lie on a quadric σ.

Note that σ would not be the union of two lines. Otherwise there would be three collinear points

Let ` be the line through A7 and A8.

If B is another point on σ and C a point not on ` ∪ σ. By linear algebra we can find a cubic homogeneous
polynomial Q = aP + bP0 + cP1 such that Q vanishes on B and C.

As CQ vanishes on seven of its points, it contains σ as a component. Hence CQ = σ · ` which contradicts
the fact that C is in Q.
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Proof of the Cayley-Bacharah Theorem (conclusion).

Let ` = `A1,A2 and σ = σA3,...,A7 the unique quadric.

σ is a conic (otherwise three point are collinear) and A8 6∈ ` ∪ σ.

Let B,C ∈ ` \ σ and let Q = aP + bP0 + cP1 a cubic vanishing on B and C.

CQ vanishes on four point of ` and goes through A3, . . . ,A7, hence CQ = ` ∪ σ. But then it does not pass
through A8 which is a cotraddiction.
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Theorem (Pappus)

Let ` and `′ be distinct lines. Let A1,A2,A3 distict points of ` not on `′ and let B1,B2,B3 distict points of `′ not
on `′. Then the three points

C12 = `A1,B2 ∩ `A2,B1 , C23 = `A2,B3 ∩ `A3,B2 , and C31 = `A3,B1 ∩ `A1,B3

are collinear �

Assume C12,C23 and C31 distinct otherwise the
statement is obvious. Consider the three cubics:

γ0 = `A1,B2 · `A2,B3 · `A3,B1 (purple lines),

γ1 = `A2,B1 · `A3,B2 · `A1,B3 (dark blue lines),

γ2 = ` · `′ · `C12,C23
.

A1,A2,A3,B1,B2,B3,C12,C23,C13 are in γ0 and γ1.

A1,A2,A3,B1,B2,B3,C12,C23 is in γ2.

Cayley-Bacharah implies that C31 is also in γ2.

Finally, since C31 is not in ` and not in `′, C31 is in
`C12,C23

which is the claim. �
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Theorem (Pascal)

Let A1,A2,A3,B1,B2,B3 distict points of a conic σ. Then the three points

C12 = `A1,B2 ∩ `A2,B1 , C23 = `A2,B3 ∩ `A3,B2 , and C31 = `A3,B1 ∩ `A1,B3

are collinear

Assume C12,C23 and C31 distinct otherwise the
statement is obvious. Consider the three cubics:

γ0 = `A1,B2 · `A2,B3 · `A3,B1 (purple lines),

γ1 = `A2,B1 · `A3,B2 · `A1,B3 (dark blue lines),

γ2 = σ · `C12,C23
.

A1,A2,A3,B1,B2,B3,C12,C23,C13 are in γ0 and γ1.

A1,A2,A3,B1,B2,B3,C12,C23 is in γ2.

Cayley-Bacharah implies that C31 is also in γ2.

Finally, since C31 is not in σ since σ meets any line in at
most two points, C31 is in `C12,C23

which is the claim. �

Pappus’s Theorem is a degenerate case of Pascal’s Theorem.
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Theorem (Associativity of the elliptic curve law)

Let E be a projective elliptic curve where O = [0, 1, 0] is the point at infinity. Let A,B,C be points of an elliptic
curve E. Then

A +E (B +E C) = (A +E B) +E C.

Assume that O, A, B, C, A + B, B + C, −(A + B),
−(B + C) are all distinct and all different from
−((A + B) + C) and from −(A + (B + C)).Let

γ1 = `A,B · `C,(A+B) · `O,(B+C)(purple lines),

γ2 = `O,(A+B) · `B,C · `A,(B+C)(green lines)

By construction, E and γ1 are cubic with no common
component that meet in nine distinct points O, A, B, C,
A + B, B + C, −(A + B), −(B + C), −((A + B) + C).
The cubic γ2 goes through the first eight points. By
Cayley-Bacharah also goes through the ninth point
−((A + B) + C).
The line `A,(B+C) (which is a component of γ2) meets E
both in −((A + B) + C) and in −(A + (B + C)). So,
this two points must be equal. �

Pappus’s Theorem and Pascal’s Theorem are degenerate cases of
the above.
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Facts about A := k [x, y ]/(w)
Analogies with Z[i]

Let E : w = y2 − x3 − a4x − a6 be an elliptic curve with a4, a6 ∈ k . Consider the ring

A := k [x, y ]/(w)

if we set v = x3 + a4x + a6 ∈ k [x ] and the coset y := y + (w). Hence

Z[T ]/(T 2 + 1) =: Z[i] = {a + ib : a, b ∈ Z}

A := k [x, y ]/(w) = k [x ][y ]/(y2 − v) = {f + gy : f , g ∈ k [x ]}.

Analogies:

1 i and y satisfy: T 2 + 1 = (T − i)(T + i) T 2 − v = (T − y)(T − y) where y = u − y

2 Conjugation map: a + ib 7→ a + ib = a− ib f + gy 7→ f + gy = f + gy

3 Norm functions: N(a + ib) = (a + ib)(a− ib) = a2 + b2 N(f + gy) = (f + gy)(f + gy) = f 2 − g2v

4 Norm properties: N(α) = |Z[i]/(α)|∀α ∈ Z[i], deg N(α) = dimk (A/(α))∀α ∈ A

5 |Z[i]/(α)| = N(α) dimk (A/(α)) = deg(N(α))

same proof: R = Z[i], S = Z R = A, S = k [x ]

a) |R/(α)| = |R/(α)| as g + (α) 7→ g + (α) defines an isomorphism R/(α) ∼= R/(α);
b) N(αβ) = N(α)N(β) because of the exact sequence 0→ R/(α)→ R/(αβ)→ R/(β)→ 0.
c) ∀m ∈ S, from R/(m) ∼= S/(m)⊕ S/(m)

if R = Z[i], N(m) = m2, if R = A, dimk (A/m) = 2 deg m
d) Finally R/(α)2 ∼= R/(α)⊕ R/(α) ∼= R/(αα),
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The degree of the norm

It is quite simple to see that for α = f + gy ∈ A,

dimk (A/(α)) = deg(αα) = deg(f 2 − g2v) = max{2 deg f , 3 + 2 deg g}.

This immediately implies that A is a domain. Furthermore

Theorem

The elements e0, e2, e3, e4, · · · of A defined by

e2j = x j
, e3+2j = yx j (j ≥ 0)

form a k–basis of A over k and for α =
∑

i 6=1
cj ej ∈ A (with cj ∈ K not all zero), one has

deg(N(α)) = max{j : cj 6= 0}

Note (The absense of e1 implies that A is not Eucledean with the norm N)

If A euclidean and β ∈ A \ k of mininum norm, degk (A/(β)) = 1 since ∀α ∈ A, α = qβ + ρ =⇒ ρ ∈ k . Hence
deg N(β) = 1→←
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The algebraic proof of associativity
(following H. Lenstra)

∀P = [α : β : 1] ∈ E(k) a ring homomorphism

ϕP : A −→ k,X 7→ α,Y 7→ β.

1 mP = m = kerϕP =⇒ A/m ∼= k =⇒ dimk A/m = 1

2 P 7→ mP is one to one correspondence between E(k) \ {O = [0 : 1 : 0]} and the set of ideal m ⊂ A s. t.
dimk A/m = 1

3 We extended to all of E(k) by O 7→ (1) = A

4 1-1 map:

E(k)←→ P(A) := {m ⊂ A : m is an ideal and dimk A/m ≤ 1}

5 Need to define a group ooperation on P(A) which is compatible with +E

6 We are done!

7 in which sense compatible?
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Compatibility with the group law of the elliptic curve

Proposition

(i) Let P1 = (x1, y1),P2 = (x2, y2),P3 = (x3, y3) ∈ E(k) \ {O} and let mj = (X − xj ,Y − yj ) ∈ P(A) be
the ideal associated to Pj .Then

P1 +E P2 +E P3 = O =⇒ m1 ·m2 ·m3 = (rX + sY + t) ⊂ A

where rX + sY + t = 0 is the line through P1,P2 and P3.

(ii) Let P = (xP , yP ) ∈ E(k) \ {O}.Then

mPm−P = (x − xP ) ⊂ A

Proof.

(i): first assume Pj ’s distinct. Enough to show mj ⊃ (rX + sY + t) for j = 1, 2, 3. This implies
(rX + sY + t) ⊆ m1m2m3.

Since dimk (A/mj ) = 1 and deg(N(rX + sY + t)) = 3.
Just rite (rX + sY + t) = ((yj − yj′ )(X − xj ) + (xj − xj′ )(Y − yj )).
Next assume P1 = P2 and let 2y1(y − y1)− (3x2

1 + A)(x − x1) = 0 the tangent line to E at P1. Argument above
extends except that has to show that dimk A/m2 = 2 or equivalently that dimk m/m2 = 1. This follows from the
fact that P1 is non singular.
(ii): Analogue. Observing that 2yP (X − xP ) = (Y + yP )(X − xP )− (Y − yP )(X − xP )
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The Picard group

Definition

Let B be a domain. Then

1 An ideal a ⊂ A is said invertible if there exists some ideal b ⊂ B such that ab = (α) for some α ∈ B
non-zero.

2 Two ideals a and b are equivalent (a ∼ b) if there exists non-zero α, β ∈ B with βa = αb.

3 The Picard group is the quotient

Pic(B) = {a ⊂ B : a invertible ideal}/ ∼

4 The elements of Pic(B) are ideal classes [a] and the multiplication of classes is defined by [a][b] = [ab].

5 Pic(B) is an abelian group under the multiplication of classes of ideas with [(1)] as the neutral element.

Corollary (The map Φ : E(k)→ Pic(A), P 7→ [(X − xp, Y − yp ],O 7→ [(1)] is multiplicative)
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Note (Strategy)

1 First bijection

Ψ : E(k) −→ P(A) := {n ⊂ A : m ideal with dimk (A/m) ≤ 1},P 7→ mP = (X − xP ,Y − yP )

2 Second bijection

Φ : P(A) −→ Pic(A),m 7→ [m]

3 The composition is compatible with the operations (i.e. Φ(Ψ(P +E Q)) = [mP ][mQ ])

4 Need to show that Φ is a bijection.
5 Strategy:

-a- prove: dimk (A/m) = 1 =⇒ m is invertible (i.e. Φ is well defined)
a technical Lemma

-b- prove: ∀[a] ∈ Pic(A), ∃!m ∈ S s.t. ([a][m] = 1) (i.e. am principal)
poor man’s Riemann–Roch Theorem



Elliptic curves over Fq

Formulas for Addition

Computer assited proof of
associativity

Proof of associativity via
combinatorial incidence
Geometry

Bezout Theorem

Cayley-Bacharah Theorem

Pappus Theorem

Pascal’s Theorem

Associativity

The algebraic proof of
associativity

the ring of functions on the
elliptic curve

from points to maximal ideal

Poor Man’s Riemann Rock

Theorem

∀a ⊂ A ideal, ∃! principal (α) ⊂ a, s.t. dimk a/(α) ≤ 1.

Proof.

1 dimk (A/a) = m (say) is finite:

Let β ∈ a, β 6= 0. Then A/(β) � A/a. Since dimk A/(β) = deg(N(β)) <∞, dimk A/a <∞
2 Since e0, e2, . . . , em+1 are linear independent in A/a. Let

α =
∑

j≤m+1
j 6=1

cj ej cj ’s not all zero

degk (N(α)) ≤ m + 1 =⇒ dimk (a/(α) = dimk (A/(α))− dimk (A/a) ≤ 1

3 α is unique: Suppose that there exists β with the same properties. If degk a/(α) = dimk a/(β) = 0, then
necessarilty (α) = (β) = a.

4 In can be excluded that degk a/(α) = 0 and dimk a/(β) = 1. In fact, if it was the case, then we would
have dimk (α)/(β) = dimk (A/(α/β) = deg(N(α/β)) = 1 which is impossible.

5 if degk a/(α) = dimk a/(β) = 1, then write α =
∑

λj ej and β =
∑

µj ej with λm+1 6= 0 and µm+1 6= 0.
But this implies that τ = µm+1α− λm+1β ∈ a has degree ≤ m. Finally we are lead to the impossible
situation above.

From the above, one can deduce that A is a PID if and only if E(k) = {O} is the trivial group.
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The technical Lemma

Theorem

Let m = (α, β) ⊂ A maximal ideal, Then m is invertible⇐⇒ dimA/m m/m2 = 1.

Proof.

=⇒: use that a 7→ am gives a bijection
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