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3.2

The division polynomials

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0, ψ1 = 1, ψ2 = 2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)

...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =

(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x , y ] is the mth division polynomial

Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x , y) ∈ E)

mP = m(x , y) =
(
φm(x)

ψ2
m(x)

, ωm(x,y)

ψ3
m(x,y)

)
,

where φm = xψ2
m − ψm+1ψm−1, ωm =

ψm+2ψ
2
m−1−ψm−2ψ

2
m+1

4y
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3.3

Points of order m

Definition (m–torsion point)

Let E/K and let K̄ an algebraic closure of K .

E [m] = {P ∈ E(K̄ ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′,p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

Idea of the proof:

Let [m] : E → E ,P 7→ mP. Then

#E [m] = # Ker[m] ≤ ∂φm = m2

equality holds iff p - m.
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3.4

Remark.

• E [2m + 1] \ {∞} = {(x , y) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x , y) ∈ E(K̄ ) : y−1ψ2m(x) = 0}

Example
ψ4(x) =2y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4BAx +

(
−A3 − 8B2

)
)

ψ5(x) =5x12 + 62Ax10 + 380Bx9 − 105A2x8 + 240BAx7

+
(
−300A3 − 240B2

)
x6 − 696BA2x5

+
(
−125A4 − 1920B2A

)
x4 +

(
−80BA3 − 1600B3

)
x3

+
(
−50A5 − 240B2A2

)
x2 +

(
−100BA4 − 640B3A

)
x

+
(

A6 − 32B2A3 − 256B4
)

ψ6(x) =2y(6x16 + 144Ax14 + 1344Bx13 − 728A2x12 +
(
−2576A3 − 5376B2

)
x10

− 9152BA2x9 +
(
−1884A4 − 39744B2A

)
x8 +

(
1536BA3 − 44544B3

)
x7

+
(
−2576A5 − 5376B2A2

)
x6 +

(
−6720BA4 − 32256B3A

)
x5

+
(
−728A6 − 8064B2A3 − 10752B4

)
x4 +

(
−3584BA5 − 25088B3A2

)
x3

+
(

144A7 − 3072B2A4 − 27648B4A
)

x2

+
(

192BA6 − 512B3A3 − 12288B5
)

x +
(

6A8 + 192B2A5 + 1024B4A2
)

)
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3.5

Group Structure of E(Fq)

Exercise

Use division polynomials in Sage to write a list of all curves E
over F103 such that E(F103) ⊃ E [6]. Do the same for curves
over F54 .

Corollary (Corollary of the Theorem of Structure for torsion)

Let E/Fq . ∃n, k ∈ N are such that

E(Fq) ∼= Cn ⊕ Cnk

Theorem

Let E/Fq and n, k ∈ N such that E(Fq) ∼= Cn ⊕ Cnk . Then
n | q − 1.
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3.6

Weil Pairing
Let E/K and m ∈ N s.t. p - m. Then

E [m] ∼= Cm ⊕ Cm

We set

µm := {x ∈ K̄ : xm = 1}

µm is a cyclic group with m elements(since p - m)

Theorem (Existence of Weil Pairing)

There exists a pairing em : E [m]× E [m]→ µm called Weil
Pairing, s.t. ∀P,Q ∈ E [m]

1 em(P +E Q,R) = em(P,R)em(Q,R) (bilinearity)
2 em(P,R) = 1∀R ∈ E [m] ⇒ P =∞ (non degeneracy)
3 em(P,P) = 1
4 em(P,Q) = em(Q,P)−1

5 em(σP, σQ) = σem(P,Q) ∀σ ∈ Gal(K̄/K )

6 em(α(P), α(Q)) = em(P,Q)degα ∀α separable
endomorphism

The last one needs to be discussed further!!!
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3.7

Properties of Weil pairing

1 E [m] ∼= Cm ⊕ Cm ⇒ E [m] has a Z/mZ–basis

i.e. ∃P,Q ∈ E [m] : ∀R ∈ E [m],∃!α, β ∈ Z/mZ,R = αP + βQ

2 If (P,Q) is a Z/mZ–basis, then ζ = em(P,Q) ∈ µm is primitive
(i.e. ord ζ = m)

Proof. Let d = ord ζ. Then 1 = em(P,Q)d = em(P,dQ).
∀R ∈ E [m], em(R,dQ) = em(P,dQ)αem(Q,Q)dβ = 1.
So dQ =∞ ⇒ m | d .

3 E [m] ⊂ E(K ) ⇒ µm ⊂ K

Proof. Let σ ∈ Gal(K̄/K ) since the basis (P,Q) ⊂ E(K ),
σ(P) = P, σ(Q) = Q. Hence
ζ = em(P,Q) = em(σP, σQ) = σem(P,Q) = σζ

So ζ ∈ K̄ Gal(K̄/K ) = K ⇒ µn = 〈ζ〉 ⊂ K ∗

4 if E(Fq) ∼= Cn ⊕ Ckn ⇒ q ≡ 1 mod n

Proof. E [n] ⊂ E(Fq)⇒ µn ⊂ F∗q ⇒ n | q − 1

5 If E/Q ⇒ E [m] 6⊆ E(Q) for m ≥ 3
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3.8

Endomorphisms

Definition

A map α : E(K̄ )→ E(K̄ ) is called an endomorphism if
• α(P +E Q) = α(P) +E α(Q) (α is a group homomorphism)
• ∃R1,R2 ∈ K̄ (x , y) s.t.
α(x , y) = (R1(x , y),R2(x , y)) ∀(x , y) 6∈ Ker(α)

(K̄ (x , y) is the field of rational functions, α(∞) =∞ )

Exercise (Show that we can always assume)

α(x , y) = (r1(x), yr2(x)), ∃r1, r2 ∈ K̄ (x)

Hint: use y2 = x3 + Ax + B and α(−(x , y)) = −α(x , y),

Remarks/Examples:

• if r1(x) = p(x)/q(x) with gcd(p,q) = 1 and (x0, y0) ∈ E(K̄ )
with q(x0) = 0⇒ α(x0, y0) =∞

• [m](x , y) =
(
φm
ψ2

m
, ωm
ψ3

m

)
is an endomorphism ∀m ∈ Z

• Φq : E(F̄q))→ E(F̄q)), (x , y) 7→ (xq , yq) is called
Frobenius Endomorphism
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3.9

Endomorphisms (continues)

Theorem

If α 6= [0] is an endomorphism, then it is surjective.

Sketch of the proof.

Assume p > 3, α(x , y) = (p(x)/q(x), yr2(x) and (a,b) ∈ E(K̄ ).

• If p(x)− aq(x) is not constant, let x0 be one of its roots.
Choose y0 a square root of x2

0 + AX0 + B.

Then either α(x0, y0) = (a,b) or α(x0,−y0) = (a,b).

• If p(x)− aq(x) is constant,
this happens only for one value of a!

Let (a1, b1) ∈ E(K̄ ):
(a1, b1) 6= (a,±b) and (a1, b1) +E (a, b) 6= (a,±b).

Then (a1, b1) = α(P1) and (a1, b1) +E (a, b) = α(P2)

Finally (a, b) = α(P2 − P1)
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3.10

Endomorphisms (continues)

Definition

Suppose α : E → E , (x , y) = (r1(x), yr2(x)) endomorphism.
Write r1(x) = p(x)/q(x) with gcd(p(x),q(x)) = 1.

• The degree of α is degα := max{deg p,deg q}
• α is said separable if (p′(x),q′(x)) 6= (0,0) (identically)

Lemma

• Φq(x , y) = (xq , yq) is a non separable endomorphism of
degree q

• [m](x , y) =
(
φm
ψ2

m
, ωm
ψ3

m

)
has degree m2

• [m] separable iff p - m.

Proof.

First: Use the fact that x 7→ xq is the identity on Fq hence it
fixes the coefficients of the Weierstraß equation.Second:
already done. Third See [8, Proposition 2.28]
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3.11

Endomorphisms (continues)

Theorem

Let α 6= 0 be an endomorphism. Then

# Ker(α)

{
= degα if α is separable
< degα otherwise

Proof.

It is same proof as #E [m] = # Ker[m] ≤ ∂φm = m2

(equality for p - m)

Definition

Let E/K . The ring of endomorphisms

End(E) := {α : E → E , α is an endomorphism}.

where for all α1, α2 ∈ End(E),
• (α1 + α2)P := α1(P) +E α2(P)

• (α1α2)P = α1(α2(P))
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3.12

Endomorphisms (continues)

Properties of End(E):

• [0] : P 7→ ∞ is the zero element
• [1] : P 7→ P is the identity element
• Z ↪→ End(E), m 7→ [m]

• End(E) is not necessarily commutative
• if K = Fq , Φq ∈ End(E). So Z[Φq] ⊂ End(E)

Recall that α ∈ End(E) is said separable if
(p′(x),q′(x)) 6= (0,0) where α(x , y) = (p(x)/q(x), yr(x)).

Lemma

Let Φq : (x , y) 7→ (xq , yq) be the Frobenius endomorphism and
let r , s ∈ Z. Then

rΦq + s ∈ End(E) is separable ⇔ p - s

Proof.

See [8, Proposition 2.29]
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3.13

Recall that the degree if α is degα := max{deg p,deg q}
where α(x , y) = (p(x)/q(x), yr(x)).

Lemma

∀r , s ∈ Z and ∀α, β ∈ End(E),
deg(rα + sβ) = r 2 degα + s2 degβ + rs(deg(α + β)− degα− degβ)

Proof.

Let m ∈ N with p - m and fix a basis P,Q of E [m] ∼= Cm ⊕ Cm.
Then α(P) = aP + bQ and α(Q) = cP + dQ with

αm =

(
a b
c d

)
with entries in Z/mZ.

We claim that deg(α) ≡ detαm mod m. In fact if ζ = em(P,Q)
is the Weil pairing (primitive root).
ζdeg(α) = em(α(P), α(Q)) = em(aP + bQ, cP + dQ) = ζad−bc

So
deg(α) ≡ ad − bc = detαm(modm).

A calculation shows
det(rαm + sβm) = r2 detαm + s2 det βm + rs det(αm + βm)− detαm − det βm)

So deg(rα + sβ) ≡ r2 degα + s2 deg β + rs deg(α + β)− degα− deg β mod m

Since it holds for∞–many m’s the above is an equality.
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3.14

Theorem (Hasse)

Let E be an elliptic curve over the finite field Fq . Then the order
of E(Fq) satisfies

|q + 1−#E(Fq)| ≤ 2
√

q.

So #E(Fq) ∈ [(
√

q − 1)2, (
√

q + 1)2] the Hasse interval Iq

Example (Hasse Intervals)
q Iq
2 {1, 2, 3, 4, 5}
3 {1, 2, 3, 4, 5, 6, 7}
4 {1, 2, 3, 4, 5, 6, 7, 8, 9}
5 {2, 3, 4, 5, 6, 7, 8, 9, 10}
7 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
8 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
9 {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
11 {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
13 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}
16 {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}
17 {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}
19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}
23 {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}
25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
27 {18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}
29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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3.15

The Frobenius endomorphism Φq

Φq : F̄q → F̄q , x 7→ xq is a field automorphism

Given α ∈ F̄q ,

α ∈ Fqn ⇔ Φn
q(α) = αqn

= α

Fixed points of powers of Φq are exactly elements of Fqn

Φq : E(F̄q)→ E(F̄q), (x , y) 7→ (xq , yq),∞ 7→ ∞

Properties of Φq

• Φq ∈ End(E), it is not separable and has degree q
• Φq(x , y) = (x , y) ⇐⇒ (x , y) ∈ E(Fq)

• Ker(Φq − 1) = E(Fq)

• # Ker(Φq − 1) = deg(Φq − 1) (since Φq − 1 is separable)
• if we can compute deg(Φq − 1), we can compute #E(Fq)

• Φn
q(x , y) = (xqn

, yqn
) so Φn

q(x , y) = (x , y)⇔ (x , y) ∈ Fqn

• Ker(Φn
q − 1) = E(Fqn )
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3.16

Proof of Hasse’s Theorem

Lemma

Let E/Fq and write a = q + 1−#E(Fq) = q + 1− deg(Φq − 1).
Then ∀r , s ∈ Z, gcd(q, s) = 1,

deg(rφ+ s) = r2q + s2 − rsa

Proof.

Proof of the Lemma From a previous proposition, we know that
deg(rΦq + s) = r2 deg(Φq) + s2 deg([−1])− rs(deg(Φq − 1)− deg(Φq)− deg([−1]))

But
deg(Φq) = q, deg([−1]) = 1 and deg(Φq − 1)− q − 1 = −a

Proof of Hasse’s Theorem.

q
( r

s

)2 − a
( r

s

)
+ 1 =

deg(rΦq+s)
s2 ≥ 0

on a dense set of rational numbers.
This implies ∀X ∈ R, X 2 − aX + q ≥ 0.So

a2 − 4q ≤ 0 ⇔ |a| ≤ 2
√

q!!
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3.17

Proof of Hasse’s Theorem (continues)

Ingredients for the proof:

1 E(Fq) = Ker(Φq − 1)

2 Φq − 1 is separable
3 # Ker(Φq − 1) = deg(Φq − 1)

Corollary

Let a = q + 1−#E(Fq). Then

1
Φ2

q − aΦq + q = 0

is an identity of endomorphisms.
2 a ∈ Z is the unique integer k such that Φ2

q − kΦq + q = 0

3
a ≡ Tr((Φq)m) mod m ∀m s.t. gcd(m,q) = 1
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3.18

Sketch of the Proof of Corollary.

Let m ∈ N s.t. gcd(m,q) = 1. Choose a basis for E [m] and
write

(Φq)m =

(
s t
u v

)
Φq − 1 separable implies

# Ker(Φq − 1) = deg(Φq − 1) ≡ det((Φq)m − I))

= det((Φq)m)− Tr((Φq)m) + 1(modm).

Hence
Tr((Φq)m) ≡ a(modm)

By Cayley–Hamilton

(Φq)2
m − a(Φq)m + qI ≡ 0(modm)

Since this happens for infinitely many m’s,

Φ2
q − aΦq + q = 0

as endomorphism.
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3.19

Subfield curves (continues)

Definition

Let E/Fq and write E(Fq) = q + 1− a, (|a| ≤ 2
√

q). The
characteristic polynomial of E is

PE (T ) = T 2 − aT + q ∈ Z[T ].

and its roots:

α =
1
2

(
a +

√
a2 − 4q

)
β =

1
2

(
a−

√
a2 − 4q

)
are called characteristic roots of Frobenius (PE (Φq) = 0).

Theorem

∀n ∈ N
#E(Fqn ) = qn + 1− (αn + βn).
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3.20

Subfield curves (continues)

Theorem

∀n ∈ N #E(Fqn ) = qn + 1− (αn + βn).

Proof.

Note that
1 Result is true for n = 1, α + β = a
2 αn + βn ∈ Z, (αβ)n = qn

3 f (X ) = (X n−αn)(X n−βn) = X 2n−(αn +βn)X n +qn ∈ Z[X ]

4 f (X ) is divisible by X 2 − aX + q = (X − α)(X − β)

5 (Φq)n|F̄qn = Φqn : (x , y) 7→ (xqn
, yqn

)

6 (Φn
q)2 − (αn + βn)Φn

q + qn = Q(Φq))(Φ2
q − aΦq + q) = 0

where f (X ) = Q(X )(X 2 − aX + q)

Hence Φn
q satisfies

X 2 − ((αn + βn))X + q.
So

αn + βn = qn + 1−#E(Fqn ).
Characteristic polynomial of Φqn : X 2 − (αn + βn)X + qn
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3.21

Subfield curves (continues)

E(Fq) = q + 1− a ⇒ E(Fqn ) = qn + 1− (αn + βn)
where PE (T ) = T 2 − aT + q = (T − α)(T − β) ∈ Z[T ]

Curves /F2

E a PE (T ) (α, β)

y2 + xy = x3 + x2 + 1 1 T 2 − T + 2 1
2 (1±

√
−7)

y2 + xy = x3 + 1 −1 T 2 + T + 2 1
2 (−1±

√
−7)

y2 + y = x3 + x −2 T 2 + 2T + 2 −1± i

y2 + y = x3 + x + 1 2 T 2 − 2T + 2 1± i

y2 + y = x3 0 T 2 + 2 ±
√
−2

E : y2 + xy = x3 + x2 + 1 ⇒

E(F
2100 ) = 2100 + 1 −

(
1+

√
−7

2

)100

−

(
1−
√
−7

2

)100

= 1267650600228229382588845215376
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Subfield curves
E(Fq) = q + 1− a ⇒ E(Fqn ) = qn + 1− (αn + βn)

where PE (T ) = T 2 − aT + q = (T − α)(T − β) ∈ Z[T ]

Curves /F2

i Ei a PEi (T ) (α, β)

1 y2 = x3 + x 0 T 2 + 3 ±
√
−3

2 y2 = x3 − x 0 T 2 + 3 ±
√
−3

3 y2 = x3 − x + 1 −3 T 2 + 3T + 3 1
2 (−3±

√
−3)

4 y2 = x3 − x − 1 3 T 2 − 3T + 3 1
2 (3±

√
−3)

5 y2 = x3 + x2 − 1 1 T 2 − T + 3 1
2 (1±

√
−11)

6 y2 = x3 − x2 + 1 −1 T 2 + T + 3 1
2 (−1±

√
−11)

7 y2 = x3 + x2 + 1 −2 T 2 + 2T + 3 −1±
√
−2

8 y2 = x3 − x2 − 1 2 T 2 − 2T + 3 1±
√
−2

Lemma

Let sn = αn + βn where αβ = q and α + β = a. Then

s0 = 2, , s1 = a and sn+1 = asn − qsn−1
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Legendre Symbols
Recall the Finite field Legendre symbols: let x ∈ Fq ,

(
x
Fq

)
=


+1 if t2 = x has a solution t ∈ F∗q
−1 if t2 = x has no solution t ∈ Fq

0 if x = 0

Theorem

Let E : y2 = x3 + Ax + B over Fq . Then

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3+Ax+B

Fq

)
Proof.

Note that

1 +
(

x3
0 +Ax0+B

Fq

)
=


2 if ∃y0 ∈ F∗q s.t. (x0,±y0) ∈ E(Fq)

1 if (x0,0) ∈ E(Fq)

0 otherwise
Hence

#E(Fq) = 1 +
∑

x∈Fq

(
1 +

(
x3+Ax+B

Fq

))
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Last Slide

Corollary

Let E : y2 = x3 + Ax + B over Fq and
Eµ : y2 = x3 + µ2Ax + µ3B, µ ∈ F∗q \ (F∗q)2 its twist. Then

#E(Fq) = q + 1− a ⇔ #Eµ(Fq) = q + 1 + a

and
#E(Fq2 ) = #Eµ(Fq2 ).

Proof.

#Eµ(Fq) = q + 1 +
∑
x∈Fq

(
x3 + µ2Ax + µ3B

Fq

)

= q + 1 +

(
µ

Fq

)∑
x∈Fq

(
x3 + Ax + B

Fq

)

and
(
µ
Fq

)
= −1
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