
Basic Algorithms in Number Theory Algorithmic Complexity ... 1

Basic Algorithms in Number Theory

Francesco Pappalardi

Algorithmic Complexity & more.

July 19th 2010

Basic Algorithms in Number Theory Algorithmic Complexity ... 2

�� ��What is an algorithm and what is its complexity?

+ An algorithm takes Inputs and produces Outputs

+ The Complexity (or running time) of an algorithm A is a function

CA(n) = max {cost of running A in I | I is an input of size ≤ n} .

+ The cost of running depends on the context.

It is measured in terms of the number of elementary operations that the

algorithm performs.

+ The input size also depends on the context

(many times we will use the number of digits)

+ All these concepts can be formalized. However, we adopt a naive

approach and we immediately specialize to the number theoretic set up.

Basic Algorithms in Number Theory Algorithmic Complexity ... 3

�� ��What is the size of an integer?

If x ∈ Z, the sizeb(x) is the number of digits of x in base b. That is

sizeb(x) := 1 + dlogb(1 + |x|)e

where logb denotes the logarithm in base b and due is the ceiling of u (i.e. the

smallest integer greater than or equal to u.

We have that sizeb(x) = O(log |x|).

We write that g(x) = O(f(x)) if there exists C > 0 such that |g(x)| ≤ C|f(x)|
for all sufficiently large x.

Note that if a, b > 1 are fixed, then loga(|x|) = O(logb(|x|). Therefore when

using the O–notation the choice of b is irrelevant.

We use the O–notation to estimate the complexity of Algorithms. We say that

an algorithm runs in polynomial time if its complexity on inputs of size up to

n, is O(nk) for some k > 0.

Basic Algorithms in Number Theory Algorithmic Complexity ... 4

�� ��PROBLEM 1. Multiplication: for x, y ∈ Z, find x · y.

• School Multiplication Algorithm: It requires about n2 digit-sized

multiplications followed by n sums of integers of size about n.

– Since to add two n–sized integers, about n

digit-sized operations are necessary,

– The complexity to multiply two n-sized integers using the School

Multiplication Algorithm is O(n2) + nO(n) = O(n2).

• Karatsuba Multiplication Algorithm (1960):

It uses multiplication of polynomials

(a + bX)(c + dX) = ac + (ad + bc)X + bdX2 = ac + ((a + b)(c + d) − ac − bd)X + bdX2

It has complexity O(nlog2 3).

• Schönhage Multiplication (1971): It has complexity

O(n log n log log n) on n–digit number (algorithms that use it are said to

use fast arithmetics;(sometimes we write O(n1+ε)).

Basic Algorithms in Number Theory Algorithmic Complexity ... 5

�� ��PROBLEM 2. Exponentiation: for x ∈ Z and n ∈ N, find xn.

Here we assume that x is fixed and we review algorithms whose complexity

depends on the size of n. (It is easy to check that the complexity of

exponentiation is O(n)).

Example: To compute x16 are clearly enough 15 multiplications. However

since

x16 =

(((
x2
)2)2)2

,

only 4 squaring are enough!!

The binary expansion of n has a role in efficient exponentiation.

If n =
∑
ai2

i with ai ∈ 0, 1, then

xn = xa0(x2)a1(x4)a2 · · · .

The idea also works when x is the element of any multiplicative group (or a

monoid).

Basic Algorithms in Number Theory Algorithmic Complexity ... 6�� ��Right-to-Left Exponentiation

Input: x in a fixed group and n ∈ N
Output: xn

1. y := 1

2. While n > 0,

if n is odd y := x · y
x := x2, n := bn/2c

3. Return y

where the floor buc of u denotes the largest integer less than or equal to u.

The proof is by induction and gives the recursive algorithm

Exp(x, n) =


1 if n = 0,

Exp(x2, n/2) if n > 0 is even,

xExp(x2, (n− 1)/2) if n is odd.

Complexity is O(log n). Very important applications in Number Theory.

Basic Algorithms in Number Theory Algorithmic Complexity ... 7�� ��Left-to-Right Exponentiation

Using the mathematical equivalence of algorithms:

Exp(x, n) =


1 if n = 0,

Exp(x, n/2)2 if n > 0 is even,

xExp(x, (n− 1)/2)2 if n is odd.

and unfolding it into an iterative algorithms:

Input: x in a fixed group, n ∈ N and

m = 2a with m/2 ≤ n < m

Output: xn

1. y := 1

2. While m > 1,

m := m/2, y := y2

if n ≥ m y := x · y, n := n−m
3. Return y

Basic Algorithms in Number Theory Algorithmic Complexity ... 8

�� ��The ring Z/mZ (m > 1)

The cost of computing xn is O(log n) if the cost of multiplication in the

monoid G is bounded.

A very important case is when G = (Z/mZ)∗.

The ring Z/mZ is the ring whose elements are the arithmetic progressions

modulo m.

We know that Z/mZ has m elements, namely k +mZ where

k = 0, 1, . . . ,m− 1.

Sometimes we abuse the notation and write Z/mZ = {0, 1, . . . ,m− 1}. With

this abused notation we have, for a, b ∈ Z/mZ

a+m b :=

a+ b if a+ b < m

a+ b−m otherwise
and a×m b := a · b mod m.

Basic Algorithms in Number Theory Algorithmic Complexity ... 9

�� ��The ring Z/mZ continues

a+m b :=

a+ b if a+ b < m

a+ b−m otherwise
and a×m b := a · b mod m

The symbol u mod m denoted the remainder of the division of u by m. That

is the unique integer r such that

1. 0 ≤ r < m,

2. u = qm+ r for some q ∈ Z.

It can be shown that, if u,m ∈ Z, m > 1 then u = qm+ r can be computed in

time O((logm)(log q)) = O(log2 max(|u|,m)) with naive algorithms and in

time O(log1+ε max(|u|,m)) using fast arithmetics.

Basic Algorithms in Number Theory Algorithmic Complexity ... 10

�� ��The ring Z/mZ continues

CONSEQUENCE: Operations in Z/mZ can be performed in time

(scholarly) (fast arithmetics)

addition O(logm)

multiplication O(log2m) O(log1+εm)

exponentiation by n O(log n log2m) O(log n log1+εm)

inverses O(log2m) O(log1+εm)

NOTE. There is also an efficient old method to compute the inverses in

(Z/mZ)∗ = {a ∈ Z/mZ such that there exists b with ab ≡ 1 mod n}.

This will be one of the highlights of tomorrow’s lecture.

Basic Algorithms in Number Theory Algorithmic Complexity ... 11

�� ��PROBLEM 3. GCD: Given a, b ∈ N find gcd(a, b)

The non negative gcd(a, b) is the greatest common divisor of a and b. Note

that

gcd(a, 0) = a and gcd(a, b) = gcd(b, a mod b).

This observation leads to the algorithm:

Input: a, b ∈ N
Output: gcd(a, b)

While b > 0,

{a, b} := {b, a mod b}
Return a

Since the number of times the loop is iterated in O(log max{a, b}), the

complexity of this algorithm is certainly O(k3) on k-bits integers but we will

do much better tomorrow.

Basic Algorithms in Number Theory Algorithmic Complexity ... 12

�� ��PROBLEM 4. Primality: Given n ∈ N odd, determine if it is prime

This is our first example of decision problem, for which the Output is “yes” or

“no”.

It is easy to check if a number is prime with trial division. The complexity of

such an algorithm is O(
√
n) which is exponential.

Fermat Little Theorem. If n is prime and a ∈ (Z/nZ)∗, then the

multiplicative order of a divides n− 1 (i.e. an−1 ≡ 1 mod n).

Note that FTL can be checked on n in time O(log3 n) so it provides (often) a

good way to check that a number is composite.

Example: 21000 mod 1001 = 561 implies that 1001 is not prime and we haven’t

even tried to factor it

Basic Algorithms in Number Theory Algorithmic Complexity ... 13�� ��Primality continues

However from the idea of FLT we deduce a primality test:

Theorem. If n is an integer and a ∈ (Z/nZ)∗ such that an−1 ≡ 1 mod n, and

a(n−1)/q 6≡ 1 mod n for all prime divisors of n− 1, then n is prime.

Proof. The statement is just rephrasing of the fact that (Z/nZ)∗ is cyclic

(generated by a) and has order n− 1.

Since #(Z/nZ)∗ = ϕ(n) (the Euler function), the conclusion follows from the

fact the ϕ(n) = n− 1 iff n is prime. �

Note: FLT is of any use to determine primality only if we can factor n− 1.

For example it can be shown that n = 15× 21518 + 1 is prime since

11n−1 mod n = 1 and

11
n−1
2 mod n = 137919 · · · , 11

n−1
3 mod n = 79851 · · · and 11

n−1
5 mod n = 134287 · · ·

However it is seldom the case that n− 1 can be factored.
Exercise: find large primes that can be proved prime via the above Theorem.

Basic Algorithms in Number Theory Algorithmic Complexity ... 14�� ��Primality continues

A “more” useful result:

Theorem (Pocklington). If n is an integer, a ∈ (Z/nZ)∗ and m is a divisor

of n− 1 with m >
√
n such that an−1 ≡ 1 mod n, and gcd(a(n−1)/q − 1, n) = 1

for all prime divisors of m, then n is prime.

Therefore proving Primality is easy if n− 1 can be “half factored”

Assuming that an−1 mod n is a random integer modulo n, one could think

that the above idea could be pushed further. However there are composite

number, called Carmichael numbers such that

an−1 ≡ 1 mod n ∀a ∈ (Z/nZ)∗.

For example 561 = 3× 11× 17 is the smallest Carmichael number.

Theorem (AGP).(Alford, Granville, Pomerance (1994)) There are infinitely

many Carmichael numbers.

If p is an odd prime, then a(p−1)/2 ≡ ±1 mod p since Z/pZ is a field!!

Basic Algorithms in Number Theory Algorithmic Complexity ... 15�� ��Legendre Symbols

We take the “square root” of the Fermat congruence.

Definition. a ∈ Z is a quadratic residue modulo a prime p if ∃x ∈ Z not

divisible by p such that a ≡ x2 mod p. (i.e. a is a square modulo p).

Furthermore the Legendre symbol

(
a

p

)
=


0 if p divides a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

Theorem (Euler).
(
a
p

)
≡ a(p−1)/2 mod p.

The above can be checked (scholarly) in time O(log3 p)

We want to extend the definition of
(
a
p

)
to the case when p non necessarily

prime but still odd.

Basic Algorithms in Number Theory Algorithmic Complexity ... 16

�� ��Jacobi Symbols

Definition. Let a, b ∈ Z with b > 1 odd. The Jacobi symbol is defined as(a
b

)
=
∏
pαp‖b

(
a

p

)αp
.

Properties of the Jacobi Symbols:

1. if b is prime, the Jacobi symbols and Legendre’s symbols are the same,

2. Jacobi symbols are multiplicative in the numerators and denominators,

3.
(
a
b

)
=
(
a mod b

b

)
; so that

(
a
b

)
= 0 iff gcd(a, b) 6= 1,

4. (Quadratic Reciprocity)
(
a
b

) (
b
a

)
= (−1)(a−1)(b−1)/4

5.
(−1
b

)
= (−1)(b−1)/2,

(
2
b

)
= (−1)(b

2−1)/8

From the above we can extract an algorithm to compute the Jacobi symbol

without factoring the denominator!

Basic Algorithms in Number Theory Algorithmic Complexity ... 17�� ��Computation of Jacobi (and Legendre) symbols

Input: a ∈ Z, b ∈ N odd

Output:
(
a
b

)
∈ {0, 1,−1}

(X,Y, Z) := (a, b, 1);

1. if X = 0 or X = 1, Return X · Z,
2. if X < 0, (X,Y, Z) = (−X,Y, Z · (−1)(Y−1)/2),

3. if X ≥ Y , (X,Y, Z) = (X mod Y, Y, Z),

4. if X is even, (X,Y, Z) = (X/2, Y, Z · (−1)(Y
2−1)/8),

5. if X is odd (X,Y, Z) = (Y mod X,X,Z · (−1)(X−1)(Y−1)/4),

6. Goto 1

The algorithm, incidentally, also checks if gcd(a, b) = 1 (i.e. if a and b are

coprime)

It requires only: reductions, division by 2, sign changes. Its complexity is

really equivalent to the complexity of the gcd-algorithm (with some

bookkeeping) which is O(k3) (scholarly) on integers of size ≤ k.

Basic Algorithms in Number Theory Algorithmic Complexity ... 18

�� ��Primality continues

We want to apply Jacobi symbols to primality.

Exercise: Prove that the Fermat number Fk := 22
k

+ 1 is prime iff

32
2k−1 ≡ −1 mod Fk.

Definition. A probabilistic (or randomized) algorithm is an algorithm where

a “coin flip” is allowed (typically a the cost of 1 unit of running time) and it

makes the next move depending on the result. The probability of correctness of

a probabilistic algorithm is the proportion of the possible inputs of the

algorithm for which it provides the correct answer.

This definition may look vague. However randomized algorithm are

ubiquitous in Number Theory. They are so at the level that we will refer to

deterministic algorithm as those that are NOT probabilistic.

It is best to review a famous example.

Basic Algorithms in Number Theory Algorithmic Complexity ... 19�� ��Solovay–Strassen Primality Test

Input: k ∈ N>1 and n ∈ N odd (to be tested)

Output: ‘‘Prime’’ or ‘‘Composite’’

1. For i = 1, . . . , k

Choose a randomly from Z/nZ = {0, 1, · · · , n− 1}
if gcd(a, n) 6= 1 then

Output ‘‘Composite’’ and halt.

if
(
a
n

)
6≡ a(n−1)/2 mod n then

Output ‘‘Composite’’ and halt.

2. Output ‘‘Prime’’.

Theorem. The Solovay–Strassen algorithm returns “Prime” if n is prime

and returns “Composite” with probability ≥ 1− 2−k if n is composite. It has

polynomial complexity in k and log n.
Here we will say nothing more about primality. For more:. . . next week course

on primality tests (P.Arnoux) We will say nothing at all about random

numbers. . . . next week course on pseudo-random sequences (C.Mauduit)

Basic Algorithms in Number Theory Algorithmic Complexity ... 20�� ��Famous quotation!!!

Un phénomène dont la probabilité est 10−50 ne se produira donc jamais, au

moins ne sarait jamais observé.

- Émil Borel (Les probabilités et sa vie)

Basic Algorithms in Number Theory Algorithmic Complexity ... 21�� ��PROBLEM 5. Quadratic Nonresidues:

It illustrates why a deterministic life is sometimes unreasonable.

PROBLEM 5. Quadratic Nonresidues:Given an odd prime p, find a

quadratic non residue mod p.

If p is prime then #{a |1 ≤ a < p, a is a quadratic residue } =
p− 1

2
and the

same for nonresidues.

Any a has 50% chance of being a quadratic nonresidue

Checking for quadratic residuosity if quite cheap (i.e. fast) via Jacobi symbols.

However no deterministic polynomial time algorithm is known. Nothing seems

better then testing a = 2, 3, 5, 6, 7, 8 . . . until arriving to a nonresidue.

• best known result: least quadratic nonresidue is O(p1/4);

• believed that: least quadratic nonresidue is O(log1+ε p);

• (Bach 1990): ERH implies least quadratic nonresidue is ≤ 2 log2 p. (for

more on the Riemann Hypothesis see the course on the Riemann zeta

function next week by S. Kanemitsu)

Basic Algorithms in Number Theory Algorithmic Complexity ... 22

�� ��PROBLEM 6. Power Test: Given n ∈ N, determine if n = bk(∃k > 1)

This is a mandatory preliminary check in several algorithms

• If n = bk, then 1 < k ≤ log2 n;

• for each k = 1, . . . , blog2 nc, Newton’s method for finding roots can be

applied to xk − n so to check if there is an integer root.

• This is central in the course Selected Numerical Methods by R. Ferretti.

• here we will assume that it is doable in polynomial time.

Basic Algorithms in Number Theory Algorithmic Complexity ... 23

�� ��PROBLEM 7. Factoring: Given n ∈ N, find a proper divisor of n

• A very old problem and a difficult one;

• Trial division requires O(
√
n) division which is an exponential time

(i.e. impractical)

• Several different algorithms

• A very important one uses elliptic curves. . .

see next week course by J. Jimenez Urroz.

• we review the elegant Pollard ρ method.

Suppose n is not a power and consider the function:

f : Z/nZ −→ Z/nZ, x 7→ f(x) = x2 + 1.

The k-th iterate of f is fk(x) = fk−1(f(x)) with f1(x) = f(x).

If x0 ∈ Z/nZ is chosen “sufficiently randomly”, the sequence {fk(x0)} behaves

as a random sequence of elements of Z/nZ and we exploit this fact.

Basic Algorithms in Number Theory Algorithmic Complexity ... 24

�� ��Pollard ρ factoring method

Input: n ∈ N odd and not a perfect power (to be factored)

Output: a non trivial factor of n

1. Choose at random x ∈ Z/nZ = {0, 1, . . . , n− 1}
2. For i = 1, 2

g := gcd(f i(x)− f2i(x), n)

If g = 1, goto next i

If 1 < g < n then output g and halt

If g = n then go to Step 1 and choose another x.
What is going on here?
Is is obviously a probabilistic algorithm but it is not even clear that it will

ever terminate.

But in fact it terminates with complexity O(4
√
n) which is attained in the

worst case (i.e. when n is an RSA module (for RSA see course in

Cryptography by K. Chakraborty).

Basic Algorithms in Number Theory Algorithmic Complexity ... 25

�� ��The birthday paradox

Elementary Probability Question: what is the chance that in a sequence

of k elements (where repetitions are allowed) from a set of n elements, there is

a repetition?

Answer: The chance is 1− n!

nk(n− k)!
≈ 1− e−k(k−1)/2n

In a party of 23 friends there 50.04% chances that 2 have the same birthday!!

Relevance to the ρ-Factoring method:

If d is a divisor of n, then in O(
√
d) = O(4

√
n) steps there is a high chance

that in the sequence {fk(x0) mod d} there is a repetition modulo d.

Remark (WHY ρ). If y1, . . . , ym, ym+1, . . . , ym+k = ym, ym+k+1 = ym+1,

and i is the smallest multiple of k with i ≥ m, then yi = y2i (the Floyd’s cycle

trick).

Basic Algorithms in Number Theory Algorithmic Complexity ... 26�� ��References for this course
[1] J. Buhler & S. Wagon Basic algorithms in number theory Algorithmic Number

Theory, MSRI Publications Volume 44, 2008

http://www.msri.org/communications/books/Book44/files/02buhler.pdf

[2] C. Pomerance Smooth numbers and the quadratic sieve Algorithmic Number

Theory, MSRI Publications Volume 44, 2008

http://www.msri.org/communications/books/Book44/files/03carl.pdf

[3] R. Crandall and C. Pomerance, Prime numbers, 2nd ed., Springer-Verlag, New

York, 2005.

[4] E. Bach and J. Shallit, Algorithmic number theory, I: Efficient algorithms, MIT

Press, Cambridge, MA, 1996.

[5] J. von zur Gathen and J. Gerhard, Modern computer algebra, 2nd ed.,

Cambridge University Press, Cambridge, 2003.

[6] V. Shoup, A computational introduction to number theory and algebra,

Cambridge University Press, Cambridge, 2005.

[7] These notes

http://www.mat.uniroma3.it/users/pappa/KU2010/NEPAL2010_1.pdf

http://www.msri.org/communications/books/Book44/files/02buhler.pdf
http://www.msri.org/communications/books/Book44/files/02buhler.pdf
http://www.msri.org/communications/books/Book44/files/03carl.pdf
http://www.msri.org/communications/books/Book44/files/03carl.pdf
http://www.mat.uniroma3.it/users/pappa/KU2010/NEPAL2010_1.pdf
http://www.mat.uniroma3.it/users/pappa/KU2010/NEPAL2010_1.pdf

