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�� ��Yesterday’s Problems

1. Multiplication: for x, y ∈ Z, find x · y

2. Exponentiation: for x ∈ G (group) and n ∈ N, find xn (Complexity of

operations in Z/mZ)

3. GCD: Given a, b ∈ N find gcd(a, b)

4. Primality: Given n ∈ N odd, determine if it is prime (Legendre/Jacobi

Symbols - Probabilistic Algorithms with probability of error)

5. Quadratic Nonresidues: given an odd prime p, find a quadratic non

residue mod p.

6. Power Test: Given n ∈ N determine if n = bk(∃k > 1)

7. Factoring: Given n ∈ N, find a proper divisor of n
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�� ��Contemporary Factoring

Contemporary records in factoring are obtained by the Number Field Sieve

(NFS) which is an evolution of the Quadratic Sieve (QS). These (together

with the ECM-factoring) have sub-exponential heuristic complexity.

More precisely let:

Ln[a; c] = exp
(
((c+ o(1)(log n)a(log log n)1−a)

)
.

which is a quantity that oscillates between exponential (a = 1) and polynomial

(a = 0) as a function of log n. Then the complexities are respectively

ECM algorithm with heuristic complexity Ln[1/2, 1] (Lenstra 1987)

NFS algorithm with heuristic complexity Ln[1/3; 4/33/2] (Pollard)

QS algorithm with heuristic complexity Ln[1/2, 1] (Dickson, Pomerance)
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Given x in a cyclic group G = 〈g〉, find n such that x = gn.

• to make sense one has to specify how to make the operations in G

• If G = (Z/nZ,+) then discrete logs are very easy.

• If G = ((Z/nZ)∗,×) then we know that G is cyclic iff n = 2, 4, pα, 2 · pα

where p is an odd prime. This is a famous theorem of Gauß.

• Already in (Z/pZ)∗ there is no efficient algorithm to compute DL.

• It is already an interesting problem, given p, to compute a primitive root

g modulo p (i.e. to determine g ∈ (Z/pZ)∗ such that 〈g〉 = (Z/pZ)∗)

• The famous Artin Conjecture for primitive roots stated that any g

(except 0,±1 and perfect squares) is a primitive root for a positive

proportion of primes

• Known to be true assuming the GRH. It is also known that one out of

2, 3 and 5 is a primitive root for infinitely many primes.
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• Primordial public key cryptography is based on the difficulty of the

Discrete Log problem(Cryptography course from Kalyan Chakraborty)

• Several algorithms to compute discrete logarithms are known.

One for all is the Shanks Baby Step Giant Step algorithm.
Input: A group G = 〈g〉 and a ∈ G
Output: k ∈ Z/|G|Z such that a = gk

1. M := d
√
|G|e

2. For j = 0, 1, 2, . . . ,M.

Compute gj and store the pair (j, gj) in a table

3. A := g−M, B := a

5. For i = 0, 1, 2, . . . ,M − 1.

-1- Check if B is the second component (gj) of any

pair in the table

-2- If so, return iM + j and halt.

-3- If not B = B ·A
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�� ��Discrete Logarithms: continues

• The BSGS algorithm is a generic algorithm.

It works for every finite cyclic group.

• It is based on the fact that any x ∈ Z/nZ can be written as x = j + im

with m = d
√
ne, 0 ≤ j < m and 0 ≤ i < m− 1

• It is not necessary to know the order of the group G in advance.

The algorithm still works if an upper bound on the group order is known.

• Usually the BSGS algorithm is used for groups whose order is prime.

• The running time of the algorithm and the space complexity is O(
√
|G|),

much better than the O(|G|) running time of the naive brute force

• The algorithm was originally developed by Daniel Shanks.
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�� ��Discrete Logarithms: continues

In some groups Discrete logs are easy. For example if G is a cyclic group and

#G = 2m then we know that there are subgroups:

〈1〉 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = G

such that Gi is cyclic and #Gi = 2i. Furthermore

Gi =
{
y ∈ G such that y2

i

= 1
}
.

Hence if G = 〈g〉, for any a ∈ G, either a2
m−1

= 1 or (ga)2
m−1

= 1

From this property we deduce the algorithm:

Input: A group G = 〈g〉, |G| = 2m and a ∈ G
Output: k ∈ Z/|G|Z such that a = gk

1. A := a, K = 2m

2. For j = 1, 2, . . . ,m.

If A2m−j 6= 1, A := g2
j−1 ·A;K := K − 2j−1

3 Output K
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�� ��Discrete Logarithms: continues

• The above is a special case of the Pohlig-Hellman Algorithm which works

when |G| has only small prime divisors

• To avoid this situation one crucial requirement for a DL-resistent group

in cryptography is that #G has a large prime divisor.

• If p = 2k + 1 is a Fermat prime, then DL in (Z/pZ)∗ are easy.

• Classical algorithm for factoring have often analogues for computing

discrete logs. A very important one is the index calculus algorithm.
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�� ��PROBLEM 9. Square Roots Modulo a prime:

Given an odd prime p and a quadratic residue a, find x s. t. x2 ≡ a mod p

It can be solved efficiently if we are given a quadratic nonresidue g ∈ (Z/pZ)∗

1. We write p− 1 = 2k · q and we know that (Z/pZ)∗ has a (cyclic)

subgroup G with 2k elements.

2. Note that b = gq is a generator of G (in fact if it was b2
j ≡ 1 mod p

for j < k, then g(p−1)/2 ≡ 1 mod p) and that aq ∈ G

3. Use the last algorithm to compute t such that aq = bt. Note that t is

even since a(p−1)/2 ≡ 1 mod p.

4. Finally set x = a(p−q)/2bt/2 and observe that

x2 = a(p−q)bt = ap ≡ a mod p.

The above is not deterministic. However Schoof in 1985 discovered a

polynomial time algorithm which is however not efficient.
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�� ��PROBLEM 10. Modular Square Roots:

Given n, a ∈ N, find x such that x2 ≡ a mod n

If the factorization of n is known, then this problem (efficiently) can be solved

in 3 steps:

1. For each prime divisor p of n find xp such that x2p ≡ a mod p

2. Use the Hensel’s Lemma to lift xp to yp where y2p ≡ a mod pvp(n)

3. Use the Chinese remainder Theorem to find x ∈ Z/nZ such that

x ≡ yp mod pvp(n) ∀p | n.

4. Finally x2 ≡ a mod n.

The last two tools (Hensel’s Lemma and Chinese Remainder Theorem) will be

covered either later or in Lecture 3.
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On the opposite direction, suppose that for each a ∈ Z/nZ we can solve

X2 ≡ a mod n. We want to use this hypothetical algorithm to find a factor of

n.

Choose y at random in Z/nZ and find x such that x2 ≡ y2 mod n.

Any common divisor of x and y also divides n. So we can assume that x and

y are coprime.

If p > 1 is a prime factor of n, then p divides (x+ y)(x− y). In addition p

divides exactly one of the factors (x+ y) or (x− y).

If y is random, then any of the primes that divides x2 − y2 has 50% chances of

x+ y of x− y.

Finally gcd(x− y, n) is a proper divisor of n.

If the above fails, then try again choosing a different random y. After k

choices, the probability that n is not factored is O(2−k).
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�� ��Modular Square Roots: (continues)

The Factoring and Modular square roots are in practice equivalent in

difficulty.

The difficulty of solving the analogue problem for e–th roots modulo n

i.e. Given e, C, n, find x ∈ Z/nZ such that xe ≡ C mod n

is the base of the security of RSA (see K. Chakraborty course)



Basic Algorithms in Number Theory Algorithmic Complexity ... 13

�� ��PROBLEM 11. Diophantine Equations:

PROBLEM 11. Diophantine Equations: Given

f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn], find x = (x1, . . . , xn) ∈ Zn such that f(x) = 0.

For a general f this is an undecidable problem (Matijasevic, Robinson, Davis,

Putnam).

Although the problem might be easy for some specific f , there is no algorithm

(efficient or otherwise) that takes f as input and always determines whether

f(x) = 0 has a solution in integers.

Hilbert’s tenth problem is the tenth on the list of Hilbert’s problems of 1900.

Given a Diophantine equation with any number of unknown quantities

and with rational integral numerical coefficients: To devise a process

according to which it can be determined in a finite number of

operations whether the equation is solvable in rational integers.
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La Scuola di Atene (Raffaello Sanzio)

Euclide di Alessandria
Birth: 325 A.C. (approximately)

Death: 265 A.C. (approximately)

The Euclidean Algorithm
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Let a, b ∈ N (not both zero), we will also assume that a ≥ b. The gcd(a, b) is

greatest common divisor of a and b.

Clearly gcd(a, 0) = a. If the factorization of a and b is known the it is easy to

compute gcd(a, b). In fact

gcd(a, b) =
∏

p prime

pmin{vp(a),vp(b)}.

The p–adic valuation vp(n) of an integer n is

vp(n) = max{α ≥ 0 such that pα divides n}

so that the product above is indeed finite.

Furthermore

gcd(a, b) = min{|xa+ yb| > 0 such that x, y ∈ Z}.
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�� ��Extended Euclidean Algorithm

From the above identity it follows immediately that gcd(a, b) exists and that

gcd(a, b) = xa+ by for appropriate x, y ∈ Z. In many applications it is crucial

to compute x, y that realize the above identity and they are called the Bezout

coefficients.

Theorem. Given a, b ∈ N, 0 < b ≤ a, then there exists x, y, z such that

z = gcd(a, b) and z = ax+ by. Furthermore they can be computed with an

algorithm (EEA) with bit complexity O(log2 a).
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It is based on successive divisions:

a = b · q0 + r1

b = r1 · q1 + r2

r1 = r2 · q2 + r3

r2 = r3 · q3 + r4
...

...

rk−2 = rk−1 · qk−1 + rk

rk−1 = rk · qk

Note that

a = bq0 + r1 ≥ bq0 ≥ (r1q1 + r2)q0 ≥ r1q1q0 ≥ · · ·
· · · ≥ rkqkqk−1 · · · q0 ≥ qkqk−1 · · · q0,
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The j + 1–th division requires time O(log rj log qj) and using the fact that

log ri ≤ log b, we obtain that the total time for running the EEA is

O(log b

k∑
j=0

log qk) = O(log b log(q0 · · · qk)) = O(log b log a).

A variation of the EEC with the same complexity but other advantages is

Binary gcd-algorithm (J. Stein – 1967)

(a, b) = if a < b then (b, a)

if b = 0 then a

if 2 | a, 2 | b then 2(a/2, b/2)

if 2 | a, 2 - b then (a/2, b)

if 2 - a, 2 | b then (a, b/2)

else ((a− b)/2, b)
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1. (1547, 560) = (1547, 280)

2. (1547, 280) = (1547, 140)

3. (1547, 140) = (1547, 70)

4. (1547, 70) = (1547, 35)

5. (1547, 35) = (756, 35)

6. (756, 35) = (378, 35)

7. (378, 35) = (189, 35)

8. (189, 35) = (77, 35)

9. (77, 35) = (35, 21)

10. (35, 21) = (7, 21)

11. (21, 7) = (7, 7)

12. (7, 7) = (7, 0) = 7
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that can be written in matrix form as:

α0 α1

β0 β1

 =

0 1

1 −q0

 ,

αi
βi

 =

αi−2 αi−1

βi−2 βi−1

 1

−qi−1

 .
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Example. (1547, 560) = 7

EEC:

1547 = 2 · 560 + 427

560 = 1 · 427 + 133

427 = 3 · 133 + 28

133 = 4 · 28 + 21

28 = 1 · 21 + 7 ← GCD

21 = 3 · 7

So that (q0, q1, q2, q3, q4, q5) = (2, 1, 3, 4, 1, 3).
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�� ��Example: (1547, 560) = 7 continues. α0 = 0, α1 = 1

αi = αi−2 − qi−1 · αi−1

 β0 = 1, β1 = −q0
βi = βi−2 − qi−1 · βi−1

i qi αi βi

0 2 0 1

1 1 1 −2

2 3 −1 3

3 4 4 −11

4 1 −17 47

5 3 21 −58

In fact: 7 = 21 · 1547− 58 · 560.
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Assume that a > b. We want to show that the number of iterations (i.e. the

number of divisions needed) during the EEA is (in the worst case) O(log a).

Fibonacci Numbers: F1 = F2 = 1 and Fn = Fn−1 + Fn−2.

In the very special case when a = Fn and b = Fn−1 then r1 = Fn−2,

r2 = Fn−3,. . . rn−2 = F1 = 1 and rn−1 = 0.
From this we deduce that

1. gcd(Fn, Fn−1) = 1

2. The number of divisions required by EEA is O(n).

Proposition. Let θ = (
√

5 + 1)/2. Then

Fn =
θn + (1− θ)n√

5
.

Hence logFn ∼ nθ (so that n = O(logFn)).
Proof. By induction. �
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�� ��Analysis of EEC on a, b ∈ N

Consequence. If a = Fn and b = Fn−1, then EEA requires O(log a)

divisions!

Proposition. Assume that a > b ≥ 1. If the EEA to compute gcd(a, b)

requires k divisions, Then a ≥ Fk+2 and b ≥ Fk+1.

Proof. Let us first show that rk−j ≥ Fj+1. Indeed by induction or j:

• rk = gcd(a, b) ≥ 1 = F1, rk−1 ≥ 1 = F2

• rk−j = qk−(j−1)rk−(j−1) + rk−(j−2) ≥ Fj + Fj−1 = Fj+1.

Hence b = r0 ≥ Fk+1 and a = q0b+ r1 ≥ Fk+1 + Fk = Fk+2. �

Consequence. The number of divisions k = O(logFk+2) = O(log a)∀a, b.

A more careful analysis (the fact that the size of the integers decreases

exponentially) of EEA shows that the bit complexity is O(log2 a).
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�� ��Geometric GCD algorithm (probably the original one)

• To compute (a, b) with a ≥ b > 0, consider the rectangle with base a and

height b.

• Remove from it a square of maximal area obtaining a rectangle of sizes a

and a− b.

• Reorder them (if needed) and then repeat the process of removing a

square.

• Keep on removing squares till it is left a square.

• The edge of the final square is the gcd.

Example. (1547, 560) = (987, 560) = (427, 560) = (427, 133) = (294, 133) =

(161, 133) = (28, 133) = (105, 28) = (77, 28) = (49, 28) = (21, 28) = (21, 7) =

(14, 7) = (7, 7) = 7



Basic Algorithms in Number Theory Algorithmic Complexity ... 26

�� ��Extended GCD algorithm (EEA)

Input: a, b ∈ N, a > b

Output: x, y, z where z = gcd(a, b) and z = ax+ by

1. (X,Y, Z) = (1, 0, a)

2. (x, y, z) = (0, 1, b)

While Z > 0

q := bZ/zc
(X,Y, Z) = (x, y, z)

(x, y, z) = (X − qx, Y − qy, Z − qz)
Output X,Y, Z

To show that it is correct it is enough to check that after one iteration

(X1, Y1, Z1) = (1,−q0, r1) and after k iterations

(Xk, Yk, Zk) = (Xk−2−qk−1Xk−1, Yk−2−qk−2Yk−2, Zk−2−qk−1Zk−1) = (αk, βk, rk).
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A first important application of EEA is to determine the inverses in Z/mZ

Theorem. Let a ∈ Z and m ∈ N with m > 1. Then a mod m is invertible

(i.e. ∃b ∈ Z/mZ with ab ≡ 1 mod m) iff gcd(a,m) = 1. Furthermore the

“ arithmetic inverse” b can be computed with time O(logm2).

Proof. If gcd(a,m) = 1 then in time O(logm2) we can compute x, y ∈ Z such

that 1 = xa+ ym. Hence b = x mod m has the required property.

Conversely if ab ≡ 1 mod m, then 1 = ab+ km for an appropriate k ∈ Z. This

implies that gcd(a,m) divides 1 and finally gcd(a,m) = 1 �.

Corollary. The set U(Z/mZ) of invertible elements of Z/mZ coincides with

{a ∈ N s.t. 1 ≤ a ≤ m, gcd(a,m) = 1}.

We define the Euler ϕ function as

ϕ(n) = #U(Z/mZ) = #{a ∈ N s.t. 1 ≤ a ≤ m, gcd(a,m) = 1}.
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�� ��The Euler ϕ–function continues

• ϕ(1) = 1, ϕ(p) = p− 1, ϕ(pα) = pα−1(p− 1)

• ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1.

This is a consequence of the Chinese Remainder Theorem

(we shall meet it later).

• Hence if we can factor n = pα1
1 · · · pαr

r , then ϕ(n) is easy to compute.

it is enough to compute n
∏
p|n 1− 1/p.

• If we know that k = ϕ(n) and that n = q × p then we can factor n

In fact {p, q} =

{
ϕ(n)−n−1±

√
(ϕ(n)−n−1)2−4n
2

}
.

• An important Theorem of Euler:

If a ∈ U(Z/mZ) then aϕ(n) ≡ 1 mod n.

The latter is crucial in RSA encryption and decryption See. K. Chakrabory

course


