
Basic Algorithms in Number Theory Algorithmic Complexity ... 1

Basic Algorithms in Number Theory

Francesco Pappalardi

Discrete Logs, Modular Square Roots & Euclidean
Algorithm.

July 20th 2010

Basic Algorithms in Number Theory Algorithmic Complexity ... 2

�� ��Yesterday’s Problems

1. Multiplication: for x, y ∈ Z, find x · y

2. Exponentiation: for x ∈ G (group) and n ∈ N, find xn (Complexity of

operations in Z/mZ)

3. GCD: Given a, b ∈ N find gcd(a, b)

4. Primality: Given n ∈ N odd, determine if it is prime (Legendre/Jacobi

Symbols - Probabilistic Algorithms with probability of error)

5. Quadratic Nonresidues: given an odd prime p, find a quadratic non

residue mod p.

6. Power Test: Given n ∈ N determine if n = bk(∃k > 1)

7. Factoring: Given n ∈ N, find a proper divisor of n

Basic Algorithms in Number Theory Algorithmic Complexity ... 3

�� ��Contemporary Factoring

Contemporary records in factoring are obtained by the Number Field Sieve

(NFS) which is an evolution of the Quadratic Sieve (QS). These (together

with the ECM-factoring) have sub-exponential heuristic complexity.

More precisely let:

Ln[a; c] = exp
(
((c+ o(1)(log n)a(log log n)1−a)

)
.

which is a quantity that oscillates between exponential (a = 1) and polynomial

(a = 0) as a function of log n. Then the complexities are respectively

ECM algorithm with heuristic complexity Ln[1/2, 1] (Lenstra 1987)

NFS algorithm with heuristic complexity Ln[1/3; 4/33/2] (Pollard)

QS algorithm with heuristic complexity Ln[1/2, 1] (Dickson, Pomerance)

Basic Algorithms in Number Theory Algorithmic Complexity ... 4�� ��PROBLEM 8. Discrete Logarithms:

Given x in a cyclic group G = 〈g〉, find n such that x = gn.

• to make sense one has to specify how to make the operations in G

• If G = (Z/nZ,+) then discrete logs are very easy.

• If G = ((Z/nZ)∗,×) then we know that G is cyclic iff n = 2, 4, pα, 2 · pα

where p is an odd prime. This is a famous theorem of Gauß.

• Already in (Z/pZ)∗ there is no efficient algorithm to compute DL.

• It is already an interesting problem, given p, to compute a primitive root

g modulo p (i.e. to determine g ∈ (Z/pZ)∗ such that 〈g〉 = (Z/pZ)∗)

• The famous Artin Conjecture for primitive roots stated that any g

(except 0,±1 and perfect squares) is a primitive root for a positive

proportion of primes

• Known to be true assuming the GRH. It is also known that one out of

2, 3 and 5 is a primitive root for infinitely many primes.

Basic Algorithms in Number Theory Algorithmic Complexity ... 5�� ��Discrete Logarithms: continues

• Primordial public key cryptography is based on the difficulty of the

Discrete Log problem(Cryptography course from Kalyan Chakraborty)

• Several algorithms to compute discrete logarithms are known.

One for all is the Shanks Baby Step Giant Step algorithm.
Input: A group G = 〈g〉 and a ∈ G
Output: k ∈ Z/|G|Z such that a = gk

1. M := d
√
|G|e

2. For j = 0, 1, 2, . . . ,M.

Compute gj and store the pair (j, gj) in a table

3. A := g−M, B := a

5. For i = 0, 1, 2, . . . ,M − 1.

-1- Check if B is the second component (gj) of any

pair in the table

-2- If so, return iM + j and halt.

-3- If not B = B ·A

Basic Algorithms in Number Theory Algorithmic Complexity ... 6

�� ��Discrete Logarithms: continues

• The BSGS algorithm is a generic algorithm.

It works for every finite cyclic group.

• It is based on the fact that any x ∈ Z/nZ can be written as x = j + im

with m = d
√
ne, 0 ≤ j < m and 0 ≤ i < m− 1

• It is not necessary to know the order of the group G in advance.

The algorithm still works if an upper bound on the group order is known.

• Usually the BSGS algorithm is used for groups whose order is prime.

• The running time of the algorithm and the space complexity is O(
√
|G|),

much better than the O(|G|) running time of the naive brute force

• The algorithm was originally developed by Daniel Shanks.

Basic Algorithms in Number Theory Algorithmic Complexity ... 7

�� ��Discrete Logarithms: continues

In some groups Discrete logs are easy. For example if G is a cyclic group and

#G = 2m then we know that there are subgroups:

〈1〉 = G0 ⊂ G1 ⊂ · · · ⊂ Gm = G

such that Gi is cyclic and #Gi = 2i. Furthermore

Gi =
{
y ∈ G such that y2

i

= 1
}
.

Hence if G = 〈g〉, for any a ∈ G, either a2
m−1

= 1 or (ga)2
m−1

= 1

From this property we deduce the algorithm:

Input: A group G = 〈g〉, |G| = 2m and a ∈ G
Output: k ∈ Z/|G|Z such that a = gk

1. A := a, K = 2m

2. For j = 1, 2, . . . ,m.

If A2m−j 6= 1, A := g2
j−1 ·A;K := K − 2j−1

3 Output K

Basic Algorithms in Number Theory Algorithmic Complexity ... 8

�� ��Discrete Logarithms: continues

• The above is a special case of the Pohlig-Hellman Algorithm which works

when |G| has only small prime divisors

• To avoid this situation one crucial requirement for a DL-resistent group

in cryptography is that #G has a large prime divisor.

• If p = 2k + 1 is a Fermat prime, then DL in (Z/pZ)∗ are easy.

• Classical algorithm for factoring have often analogues for computing

discrete logs. A very important one is the index calculus algorithm.

Basic Algorithms in Number Theory Algorithmic Complexity ... 9

�� ��PROBLEM 9. Square Roots Modulo a prime:

Given an odd prime p and a quadratic residue a, find x s. t. x2 ≡ a mod p

It can be solved efficiently if we are given a quadratic nonresidue g ∈ (Z/pZ)∗

1. We write p− 1 = 2k · q and we know that (Z/pZ)∗ has a (cyclic)

subgroup G with 2k elements.

2. Note that b = gq is a generator of G (in fact if it was b2
j ≡ 1 mod p

for j < k, then g(p−1)/2 ≡ 1 mod p) and that aq ∈ G

3. Use the last algorithm to compute t such that aq = bt. Note that t is

even since a(p−1)/2 ≡ 1 mod p.

4. Finally set x = a(p−q)/2bt/2 and observe that

x2 = a(p−q)bt = ap ≡ a mod p.

The above is not deterministic. However Schoof in 1985 discovered a

polynomial time algorithm which is however not efficient.

Basic Algorithms in Number Theory Algorithmic Complexity ... 10

�� ��PROBLEM 10. Modular Square Roots:

Given n, a ∈ N, find x such that x2 ≡ a mod n

If the factorization of n is known, then this problem (efficiently) can be solved

in 3 steps:

1. For each prime divisor p of n find xp such that x2p ≡ a mod p

2. Use the Hensel’s Lemma to lift xp to yp where y2p ≡ a mod pvp(n)

3. Use the Chinese remainder Theorem to find x ∈ Z/nZ such that

x ≡ yp mod pvp(n) ∀p | n.

4. Finally x2 ≡ a mod n.

The last two tools (Hensel’s Lemma and Chinese Remainder Theorem) will be

covered either later or in Lecture 3.

Basic Algorithms in Number Theory Algorithmic Complexity ... 11�� ��Modular Square Roots: (continues)

On the opposite direction, suppose that for each a ∈ Z/nZ we can solve

X2 ≡ a mod n. We want to use this hypothetical algorithm to find a factor of

n.

Choose y at random in Z/nZ and find x such that x2 ≡ y2 mod n.

Any common divisor of x and y also divides n. So we can assume that x and

y are coprime.

If p > 1 is a prime factor of n, then p divides (x+ y)(x− y). In addition p

divides exactly one of the factors (x+ y) or (x− y).

If y is random, then any of the primes that divides x2 − y2 has 50% chances of

x+ y of x− y.

Finally gcd(x− y, n) is a proper divisor of n.

If the above fails, then try again choosing a different random y. After k

choices, the probability that n is not factored is O(2−k).

Basic Algorithms in Number Theory Algorithmic Complexity ... 12

�� ��Modular Square Roots: (continues)

The Factoring and Modular square roots are in practice equivalent in

difficulty.

The difficulty of solving the analogue problem for e–th roots modulo n

i.e. Given e, C, n, find x ∈ Z/nZ such that xe ≡ C mod n

is the base of the security of RSA (see K. Chakraborty course)

Basic Algorithms in Number Theory Algorithmic Complexity ... 13

�� ��PROBLEM 11. Diophantine Equations:

PROBLEM 11. Diophantine Equations: Given

f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn], find x = (x1, . . . , xn) ∈ Zn such that f(x) = 0.

For a general f this is an undecidable problem (Matijasevic, Robinson, Davis,

Putnam).

Although the problem might be easy for some specific f , there is no algorithm

(efficient or otherwise) that takes f as input and always determines whether

f(x) = 0 has a solution in integers.

Hilbert’s tenth problem is the tenth on the list of Hilbert’s problems of 1900.

Given a Diophantine equation with any number of unknown quantities

and with rational integral numerical coefficients: To devise a process

according to which it can be determined in a finite number of

operations whether the equation is solvable in rational integers.

Basic Algorithms in Number Theory Algorithmic Complexity ... 14

La Scuola di Atene (Raffaello Sanzio)

Euclide di Alessandria
Birth: 325 A.C. (approximately)

Death: 265 A.C. (approximately)

The Euclidean Algorithm

Basic Algorithms in Number Theory Algorithmic Complexity ... 15�� ��Extended Euclidean Algorithm

Let a, b ∈ N (not both zero), we will also assume that a ≥ b. The gcd(a, b) is

greatest common divisor of a and b.

Clearly gcd(a, 0) = a. If the factorization of a and b is known the it is easy to

compute gcd(a, b). In fact

gcd(a, b) =
∏

p prime

pmin{vp(a),vp(b)}.

The p–adic valuation vp(n) of an integer n is

vp(n) = max{α ≥ 0 such that pα divides n}

so that the product above is indeed finite.

Furthermore

gcd(a, b) = min{|xa+ yb| > 0 such that x, y ∈ Z}.

Basic Algorithms in Number Theory Algorithmic Complexity ... 16

�� ��Extended Euclidean Algorithm

From the above identity it follows immediately that gcd(a, b) exists and that

gcd(a, b) = xa+ by for appropriate x, y ∈ Z. In many applications it is crucial

to compute x, y that realize the above identity and they are called the Bezout

coefficients.

Theorem. Given a, b ∈ N, 0 < b ≤ a, then there exists x, y, z such that

z = gcd(a, b) and z = ax+ by. Furthermore they can be computed with an

algorithm (EEA) with bit complexity O(log2 a).

Basic Algorithms in Number Theory Algorithmic Complexity ... 17�� ��Extended Euclidean Algorithm

It is based on successive divisions:

a = b · q0 + r1

b = r1 · q1 + r2

r1 = r2 · q2 + r3

r2 = r3 · q3 + r4
...

...

rk−2 = rk−1 · qk−1 + rk

rk−1 = rk · qk

Note that

a = bq0 + r1 ≥ bq0 ≥ (r1q1 + r2)q0 ≥ r1q1q0 ≥ · · ·
· · · ≥ rkqkqk−1 · · · q0 ≥ qkqk−1 · · · q0,

Basic Algorithms in Number Theory Algorithmic Complexity ... 18�� ��Extended Euclidean Algorithm

The j + 1–th division requires time O(log rj log qj) and using the fact that

log ri ≤ log b, we obtain that the total time for running the EEA is

O(log b

k∑
j=0

log qk) = O(log b log(q0 · · · qk)) = O(log b log a).

A variation of the EEC with the same complexity but other advantages is

Binary gcd-algorithm (J. Stein – 1967)

(a, b) = if a < b then (b, a)

if b = 0 then a

if 2 | a, 2 | b then 2(a/2, b/2)

if 2 | a, 2 - b then (a/2, b)

if 2 - a, 2 | b then (a, b/2)

else ((a− b)/2, b)

Basic Algorithms in Number Theory Algorithmic Complexity ... 19�� ��Binary GCD Algorithm

1. (1547, 560) = (1547, 280)

2. (1547, 280) = (1547, 140)

3. (1547, 140) = (1547, 70)

4. (1547, 70) = (1547, 35)

5. (1547, 35) = (756, 35)

6. (756, 35) = (378, 35)

7. (378, 35) = (189, 35)

8. (189, 35) = (77, 35)

9. (77, 35) = (35, 21)

10. (35, 21) = (7, 21)

11. (21, 7) = (7, 7)

12. (7, 7) = (7, 0) = 7

Basic Algorithms in Number Theory Algorithmic Complexity ... 20

that can be written in matrix form as:

α0 α1

β0 β1

 =

0 1

1 −q0

 ,

αi
βi

 =

αi−2 αi−1

βi−2 βi−1

 1

−qi−1

 .

Basic Algorithms in Number Theory Algorithmic Complexity ... 21

Example. (1547, 560) = 7

EEC:

1547 = 2 · 560 + 427

560 = 1 · 427 + 133

427 = 3 · 133 + 28

133 = 4 · 28 + 21

28 = 1 · 21 + 7 ← GCD

21 = 3 · 7

So that (q0, q1, q2, q3, q4, q5) = (2, 1, 3, 4, 1, 3).

Basic Algorithms in Number Theory Algorithmic Complexity ... 22

�� ��Example: (1547, 560) = 7 continues. α0 = 0, α1 = 1

αi = αi−2 − qi−1 · αi−1

 β0 = 1, β1 = −q0
βi = βi−2 − qi−1 · βi−1

i qi αi βi

0 2 0 1

1 1 1 −2

2 3 −1 3

3 4 4 −11

4 1 −17 47

5 3 21 −58

In fact: 7 = 21 · 1547− 58 · 560.

Basic Algorithms in Number Theory Algorithmic Complexity ... 23�� ��Analysis of EEC on a, b ∈ N

Assume that a > b. We want to show that the number of iterations (i.e. the

number of divisions needed) during the EEA is (in the worst case) O(log a).

Fibonacci Numbers: F1 = F2 = 1 and Fn = Fn−1 + Fn−2.

In the very special case when a = Fn and b = Fn−1 then r1 = Fn−2,

r2 = Fn−3,. . . rn−2 = F1 = 1 and rn−1 = 0.
From this we deduce that

1. gcd(Fn, Fn−1) = 1

2. The number of divisions required by EEA is O(n).

Proposition. Let θ = (
√

5 + 1)/2. Then

Fn =
θn + (1− θ)n√

5
.

Hence logFn ∼ nθ (so that n = O(logFn)).
Proof. By induction. �

Basic Algorithms in Number Theory Algorithmic Complexity ... 24

�� ��Analysis of EEC on a, b ∈ N

Consequence. If a = Fn and b = Fn−1, then EEA requires O(log a)

divisions!

Proposition. Assume that a > b ≥ 1. If the EEA to compute gcd(a, b)

requires k divisions, Then a ≥ Fk+2 and b ≥ Fk+1.

Proof. Let us first show that rk−j ≥ Fj+1. Indeed by induction or j:

• rk = gcd(a, b) ≥ 1 = F1, rk−1 ≥ 1 = F2

• rk−j = qk−(j−1)rk−(j−1) + rk−(j−2) ≥ Fj + Fj−1 = Fj+1.

Hence b = r0 ≥ Fk+1 and a = q0b+ r1 ≥ Fk+1 + Fk = Fk+2. �

Consequence. The number of divisions k = O(logFk+2) = O(log a)∀a, b.

A more careful analysis (the fact that the size of the integers decreases

exponentially) of EEA shows that the bit complexity is O(log2 a).

Basic Algorithms in Number Theory Algorithmic Complexity ... 25

�� ��Geometric GCD algorithm (probably the original one)

• To compute (a, b) with a ≥ b > 0, consider the rectangle with base a and

height b.

• Remove from it a square of maximal area obtaining a rectangle of sizes a

and a− b.

• Reorder them (if needed) and then repeat the process of removing a

square.

• Keep on removing squares till it is left a square.

• The edge of the final square is the gcd.

Example. (1547, 560) = (987, 560) = (427, 560) = (427, 133) = (294, 133) =

(161, 133) = (28, 133) = (105, 28) = (77, 28) = (49, 28) = (21, 28) = (21, 7) =

(14, 7) = (7, 7) = 7

Basic Algorithms in Number Theory Algorithmic Complexity ... 26

�� ��Extended GCD algorithm (EEA)

Input: a, b ∈ N, a > b

Output: x, y, z where z = gcd(a, b) and z = ax+ by

1. (X,Y, Z) = (1, 0, a)

2. (x, y, z) = (0, 1, b)

While Z > 0

q := bZ/zc
(X,Y, Z) = (x, y, z)

(x, y, z) = (X − qx, Y − qy, Z − qz)
Output X,Y, Z

To show that it is correct it is enough to check that after one iteration

(X1, Y1, Z1) = (1,−q0, r1) and after k iterations

(Xk, Yk, Zk) = (Xk−2−qk−1Xk−1, Yk−2−qk−2Yk−2, Zk−2−qk−1Zk−1) = (αk, βk, rk).

Basic Algorithms in Number Theory Algorithmic Complexity ... 27�� ��The Euler ϕ–function

A first important application of EEA is to determine the inverses in Z/mZ

Theorem. Let a ∈ Z and m ∈ N with m > 1. Then a mod m is invertible

(i.e. ∃b ∈ Z/mZ with ab ≡ 1 mod m) iff gcd(a,m) = 1. Furthermore the

“ arithmetic inverse” b can be computed with time O(logm2).

Proof. If gcd(a,m) = 1 then in time O(logm2) we can compute x, y ∈ Z such

that 1 = xa+ ym. Hence b = x mod m has the required property.

Conversely if ab ≡ 1 mod m, then 1 = ab+ km for an appropriate k ∈ Z. This

implies that gcd(a,m) divides 1 and finally gcd(a,m) = 1 �.

Corollary. The set U(Z/mZ) of invertible elements of Z/mZ coincides with

{a ∈ N s.t. 1 ≤ a ≤ m, gcd(a,m) = 1}.

We define the Euler ϕ function as

ϕ(n) = #U(Z/mZ) = #{a ∈ N s.t. 1 ≤ a ≤ m, gcd(a,m) = 1}.

Basic Algorithms in Number Theory Algorithmic Complexity ... 28

�� ��The Euler ϕ–function continues

• ϕ(1) = 1, ϕ(p) = p− 1, ϕ(pα) = pα−1(p− 1)

• ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1.

This is a consequence of the Chinese Remainder Theorem

(we shall meet it later).

• Hence if we can factor n = pα1
1 · · · pαr

r , then ϕ(n) is easy to compute.

it is enough to compute n
∏
p|n 1− 1/p.

• If we know that k = ϕ(n) and that n = q × p then we can factor n

In fact {p, q} =

{
ϕ(n)−n−1±

√
(ϕ(n)−n−1)2−4n
2

}
.

• An important Theorem of Euler:

If a ∈ U(Z/mZ) then aϕ(n) ≡ 1 mod n.

The latter is crucial in RSA encryption and decryption See. K. Chakrabory

course

