BASIC ALGORITHMS IN NUMBER THEORY

Francesco Pappalardi

Discrete Logs, Modular Square Roots & Euclidean Algorithm.

July $20^{\text{th}} 2010$

Yesterday's Problems

- 1. MULTIPLICATION: for $x, y \in \mathbb{Z}$, find $x \cdot y$
- 2. EXPONENTIATION: for $x \in G$ (group) and $n \in \mathbb{N}$, find x^n (Complexity of operations in $\mathbb{Z}/m\mathbb{Z}$)
- 3. GCD: Given $a, b \in \mathbb{N}$ find gcd(a, b)
- 4. PRIMALITY: Given $n \in \mathbb{N}$ odd, determine if it is prime (Legendre/Jacobi Symbols Probabilistic Algorithms with probability of error)
- 5. QUADRATIC NONRESIDUES: given an odd prime p, find a quadratic non residue mod p.
- 6. POWER TEST: Given $n \in \mathbb{N}$ determine if $n = b^k (\exists k > 1)$
- 7. FACTORING: Given $n \in \mathbb{N}$, find a proper divisor of n

CONTEMPORARY FACTORING

Contemporary records in factoring are obtained by the Number Field Sieve (NFS) which is an evolution of the Quadratic Sieve (QS). These (together with the ECM-factoring) have sub-exponential heuristic complexity.

More precisely let:

$$L_n[a;c] = \exp\left(((c+o(1)(\log n)^a(\log \log n)^{1-a})\right).$$

which is a quantity that oscillates between exponential (a = 1) and polynomial (a = 0) as a function of log n. Then the complexities are respectively

ECM algorithm with heuristic complexity $L_n[1/2, 1]$ (Lenstra 1987) NFS algorithm with heuristic complexity $L_n[1/3; 4/3^{3/2}]$ (Pollard) QS algorithm with heuristic complexity $L_n[1/2, 1]$ (Dickson, Pomerance)

PROBLEM 8. DISCRETE LOGARITHMS:

Given x in a cyclic group $G = \langle g \rangle$, find n such that $x = g^n$.

- to make sense one has to specify how to make the operations in G
- If $G = (\mathbb{Z}/n\mathbb{Z}, +)$ then discrete logs are very easy.
- If G = ((Z/nZ)^{*}, ×) then we know that G is cyclic iff n = 2, 4, p^α, 2 · p^α where p is an odd prime. This is a famous theorem of Gauß.
- Already in $(\mathbb{Z}/p\mathbb{Z})^*$ there is no efficient algorithm to compute DL.
- It is already an interesting problem, given p, to compute a primitive root g modulo p (i.e. to determine $g \in (\mathbb{Z}/p\mathbb{Z})^*$ such that $\langle g \rangle = (\mathbb{Z}/p\mathbb{Z})^*$)
- The famous Artin Conjecture for primitive roots stated that any g (except 0, ±1 and perfect squares) is a primitive root for a positive proportion of primes
- Known to be true assuming the GRH. It is also known that one out of 2, 3 and 5 is a primitive root for infinitely many primes.

DISCRETE LOGARITHMS: continues

- Primordial public key cryptography is based on the difficulty of the Discrete Log problem (Cryptography course from Kalyan Chakraborty)
- Several algorithms to compute discrete logarithms are known.

One for all is the Shanks Baby Step Giant Step algorithm. **Input:** A group $G = \langle g \rangle$ and $a \in G$ Output: $k \in \mathbb{Z}/|G|\mathbb{Z}$ such that $a = g^k$ 1. $M := \lceil \sqrt{|G|} \rceil$ 2. For $j = 0, 1, 2, \dots, M$. Compute g^j and store the pair (j, g^j) in a table 3. $A := q^{-M}$, B := a5. For $i = 0, 1, 2, \dots, M - 1$. -1- Check if B is the second component (q^j) of any pair in the table -2- If so, return iM + j and halt. -3- If not $B = B \cdot A$

DISCRETE LOGARITHMS: continues

- The BSGS algorithm is a generic algorithm. It works for every finite cyclic group.
- It is based on the fact that any $x \in \mathbb{Z}/n\mathbb{Z}$ can be written as x = j + imwith $m = \lceil \sqrt{n} \rceil$, $0 \le j < m$ and $0 \le i < m - 1$
- It is not necessary to know the order of the group G in advance.
 The algorithm still works if an upper bound on the group order is known.
- Usually the BSGS algorithm is used for groups whose order is prime.
- The running time of the algorithm and the space complexity is $O(\sqrt{|G|})$, much better than the O(|G|) running time of the naive brute force
- The algorithm was originally developed by Daniel Shanks.

DISCRETE LOGARITHMS: continues

In some groups Discrete logs are easy. For example if G is a cyclic group and $\#G = 2^m$ then we know that there are subgroups:

$$\langle 1 \rangle = G_0 \subset G_1 \subset \cdots \subset G_m = G$$

such that G_i is cyclic and $\#G_i = 2^i$. Furthermore

$$G_i = \left\{ y \in G \text{ such that } y^{2^i} = 1 \right\}.$$

Hence if $G = \langle g \rangle$, for any $a \in G$, either $a^{2^{m-1}} = 1$ or $(ga)^{2^{m-1}} = 1$

From this property we deduce the algorithm:

Input: A group $G = \langle g \rangle$, $|G| = 2^m$ and $a \in G$ Output: $k \in \mathbb{Z}/|G|\mathbb{Z}$ such that $a = g^k$ 1. A := a, $K = 2^m$ 2. For $j = 1, 2, \dots, m$. If $A^{2^{m-j}} \neq 1$, $A := g^{2^{j-1}} \cdot A$; $K := K - 2^{j-1}$ 3 Output K

DISCRETE LOGARITHMS: continues

- The above is a special case of the Pohlig-Hellman Algorithm which works when |G| has only small prime divisors
- To avoid this situation one crucial requirement for a DL-resistent group in cryptography is that #G has a large prime divisor.
- If $p = 2^k + 1$ is a Fermat prime, then DL in $(\mathbb{Z}/p\mathbb{Z})^*$ are easy.
- Classical algorithm for factoring have often analogues for computing discrete logs. A very important one is the *index calculus algorithm*.

PROBLEM 9. Square Roots Modulo a prime:

Given an odd prime p and a quadratic residue a, find x s. t. $x^2 \equiv a \mod p$

It can be solved efficiently if we are given a quadratic nonresidue $g \in (\mathbb{Z}/p\mathbb{Z})^*$

- 1. We write $p 1 = 2^k \cdot q$ and we know that $(\mathbb{Z}/p\mathbb{Z})^*$ has a (cyclic) subgroup G with 2^k elements.
- 2. Note that $b = g^q$ is a generator of G (in fact if it was $b^{2^j} \equiv 1 \mod p$ for j < k, then $g^{(p-1)/2} \equiv 1 \mod p$) and that $a^q \in G$
- 3. Use the last algorithm to compute t such that $a^q = b^t$. Note that t is even since $a^{(p-1)/2} \equiv 1 \mod p$.
- 4. Finally set $x = a^{(p-q)/2}b^{t/2}$ and observe that $x^2 = a^{(p-q)}b^t = a^p \equiv a \mod p.$

The above is not deterministic. However Schoof in 1985 discovered a polynomial time algorithm which is however not efficient.

PROBLEM 10. MODULAR SQUARE ROOTS:

Given $n, a \in \mathbb{N}$, find x such that $x^2 \equiv a \mod n$

If the factorization of n is known, then this problem (efficiently) can be solved in 3 steps:

- 1. For each prime divisor p of n find x_p such that $x_p^2 \equiv a \mod p$
- 2. Use the Hensel's Lemma to lift x_p to y_p where $y_p^2 \equiv a \mod p^{v_p(n)}$
- 3. Use the Chinese remainder Theorem to find $x \in \mathbb{Z}/n\mathbb{Z}$ such that $x \equiv y_p \mod p^{v_p(n)} \forall p \mid n.$
- 4. Finally $x^2 \equiv a \mod n$.

The last two tools (Hensel's Lemma and Chinese Remainder Theorem) will be covered either later or in Lecture 3.

MODULAR SQUARE ROOTS: (continues)

On the opposite direction, suppose that for each $a \in \mathbb{Z}/n\mathbb{Z}$ we can solve $X^2 \equiv a \mod n$. We want to use this hypothetical algorithm to find a factor of n.

Choose y at random in $\mathbb{Z}/n\mathbb{Z}$ and find x such that $x^2 \equiv y^2 \mod n$.

Any common divisor of x and y also divides n. So we can assume that x and y are coprime.

If p > 1 is a prime factor of n, then p divides (x + y)(x - y). In addition p divides exactly one of the factors (x + y) or (x - y).

If y is random, then any of the primes that divides $x^2 - y^2$ has 50% chances of x + y of x - y.

Finally gcd(x - y, n) is a proper divisor of n.

If the above fails, then try again choosing a different random y. After k choices, the probability that n is not factored is $O(2^{-k})$.

MODULAR SQUARE ROOTS: (continues)

The FACTORING and MODULAR SQUARE ROOTS are in practice equivalent in difficulty.

The difficulty of solving the analogue problem for e-th roots modulo n

i.e. Given e, C, n, find $x \in \mathbb{Z}/n\mathbb{Z}$ such that $x^e \equiv C \mod n$

is the base of the security of RSA

(see K. Chakraborty course)

PROBLEM 11. DIOPHANTINE EQUATIONS:

PROBLEM 11. DIOPHANTINE EQUATIONS: Given $f(X_1, \ldots, X_n) \in \mathbb{Z}[X_1, \ldots, X_n], \text{ find } x = (x_1, \ldots, x_n) \in \mathbb{Z}^n \text{ such that } f(x) = 0.$

For a general f this is an undecidable problem (Matijasevic, Robinson, Davis, Putnam).

Although the problem might be easy for some specific f, there is no algorithm (efficient or otherwise) that takes f as input and always determines whether f(x) = 0 has a solution in integers.

Hilbert's tenth problem is the tenth on the list of Hilbert's problems of 1900.

Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

Let $a, b \in \mathbb{N}$ (not both zero), we will also assume that $a \ge b$. The gcd(a, b) is greatest common divisor of a and b.

Clearly gcd(a, 0) = a. If the factorization of a and b is known the it is easy to compute gcd(a, b). In fact

$$gcd(a,b) = \prod_{p \text{ prime}} p^{\min\{v_p(a), v_p(b)\}}.$$

The *p*-adic valuation $v_p(n)$ of an integer *n* is

 $v_p(n) = \max\{\alpha \ge 0 \text{ such that } p^{\alpha} \text{ divides } n\}$

so that the product above is indeed finite.

Furthermore

 $gcd(a,b) = min\{|xa+yb| > 0 \text{ such that } x, y \in \mathbb{Z}\}.$

From the above identity it follows immediately that gcd(a, b) = xa + by for appropriate $x, y \in \mathbb{Z}$. In many applications it is crucial to compute x, y that realize the above identity and they are called the *Bezout* coefficients.

Theorem. Given $a, b \in \mathbb{N}$, $0 < b \leq a$, then there exists x, y, z such that $z = \gcd(a, b)$ and z = ax + by. Furthermore they can be computed with an algorithm (EEA) with bit complexity $O(\log^2 a)$.

It is based on successive divisions:

a	=	$b \cdot q_0$	+	r_1
b	=	$r_1 \cdot q_1$	+	r_2
r_1	—	$r_2 \cdot q_2$	+	r_3
r_2	—	$r_3 \cdot q_3$	+	r_4
	• •		• •	
r_{k-2}	=	$r_{k-1} \cdot q_{k-1}$	+	r_k
r_{k-1}	=	$r_k \cdot q_k$		

Note that

$$a = bq_0 + r_1 \ge bq_0 \ge (r_1q_1 + r_2)q_0 \ge r_1q_1q_0 \ge \cdots$$
$$\cdots \ge r_kq_kq_{k-1}\cdots q_0 \ge q_kq_{k-1}\cdots q_0,$$

The j + 1-th division requires time $O(\log r_j \log q_j)$ and using the fact that $\log r_i \leq \log b$, we obtain that the total time for running the EEA is

$$O(\log b \sum_{j=0} \log q_k) = O(\log b \log(q_0 \cdots q_k)) = O(\log b \log a).$$

A variation of the EEC with the same complexity but other advantages is

(a,b)	=	if	a < b	then	(b,a)
		if	b = 0	then	a
		if	$2 \mid a, 2 \mid b$	then	2(a/2, b/2)
		if	$2 \mid a, 2 \nmid b$	then	(a/2,b)
		if	$2 \nmid a, 2 \mid b$	then	(a,b/2)
				else	((a-b)/2,b)

BINARY GCD-ALGORITHM (J. STEIN - 1967)

Binary GCD Algorithm

- 1. (1547, 560) = (1547, 280)
- $2. \quad (1547, 280) = (1547, 140)$
- $3. \quad (1547, 140) = (1547, 70)$
- 4. (1547, 70) = (1547, 35)
- 5. (1547, 35) = (756, 35)
- $6. \quad (756, 35) = (378, 35)$
- 7. (378, 35) = (189, 35)
- 8. (189, 35) = (77, 35)
- 9. (77, 35) = (35, 21)
- 10. (35, 21) = (7, 21)
- 11. (21,7) = (7,7)
- 12. (7,7) = (7,0) = 7

that can be written in matrix form as:

$$\begin{pmatrix} \alpha_0 & \alpha_1 \\ \beta_0 & \beta_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_0 \end{pmatrix}, \qquad \begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} \alpha_{i-2} & \alpha_{i-1} \\ \beta_{i-2} & \beta_{i-1} \end{pmatrix} \begin{pmatrix} 1 \\ -q_{i-1} \end{pmatrix}.$$

Example. (1547, 560) = 7EEC:

1547	=	$2 \cdot 560 + 427$	
560	=	$1 \cdot 427 + 133$	
427	—	$3 \cdot 133 + 28$	
133	—	$4 \cdot 28 + 21$	
28	=	$1 \cdot 21 + 7$	$\leftarrow \mathrm{GCD}$
21	=	$3\cdot 7$	

So that $(q_0, q_1, q_2, q_3, q_4, q_5) = (2, 1, 3, 4, 1, 3).$

Example: $(1547, 560) = 7$ continues.					
$\begin{cases} \alpha_0 = 0, \alpha_1 = 1 \\ \alpha_i = \alpha_{i-2} - q_{i-1} \cdot \alpha_{i-1} \end{cases} \begin{cases} \beta_0 = 1, \beta_1 = -q_0 \\ \beta_i = \beta_{i-2} - q_{i-1} \cdot \beta_{i-1} \end{cases}$					
i	q_i	$lpha_i$	eta_i		
0	2	0	1		
1	1	1	-2		
2	3	-1	3	In fact: $7 = 21 \cdot 1547 - 58 \cdot 560$.	
3	4	4	-11		
4	1	-17	47		
5	3	21	-58		

Analysis of EEC on $a, b \in \mathbb{N}$

Assume that a > b. We want to show that the number of iterations (i.e. the number of divisions needed) during the EEA is (in the worst case) $O(\log a)$.

Fibonacci Numbers: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

In the very special case when $a = F_n$ and $b = F_{n-1}$ then $r_1 = F_{n-2}$, $r_2 = F_{n-3}, \ldots, r_{n-2} = F_1 = 1$ and $r_{n-1} = 0$. From this we deduce that

- 1. $gcd(F_n, F_{n-1}) = 1$
- 2. The number of divisions required by EEA is O(n).

Proposition. Let $\theta = (\sqrt{5} + 1)/2$. Then

$$F_n = \frac{\theta^n + (1-\theta)^n}{\sqrt{5}}.$$

Hence $\log F_n \sim n\theta$ (so that $n = O(\log F_n)$). PROOF. By induction. \Box Analysis of EEC on $a, b \in \mathbb{N}$

Consequence. If $a = F_n$ and $b = F_{n-1}$, then EEA requires $O(\log a)$ divisions!

Proposition. Assume that $a > b \ge 1$. If the EEA to compute gcd(a, b) requires k divisions, Then $a \ge F_{k+2}$ and $b \ge F_{k+1}$.

PROOF. Let us first show that $r_{k-j} \ge F_{j+1}$. Indeed by induction or j:

•
$$r_k = \gcd(a, b) \ge 1 = F_1, r_{k-1} \ge 1 = F_2$$

•
$$r_{k-j} = q_{k-(j-1)}r_{k-(j-1)} + r_{k-(j-2)} \ge F_j + F_{j-1} = F_{j+1}.$$

Hence $b = r_0 \ge F_{k+1}$ and $a = q_0 b + r_1 \ge F_{k+1} + F_k = F_{k+2}$.

Consequence. The number of divisions $k = O(\log F_{k+2}) = O(\log a) \forall a, b.$

A more careful analysis (the fact that the size of the integers decreases exponentially) of EEA shows that the bit complexity is $O(\log^2 a)$.

Geometric GCD algorithm (probably the original one)

- To compute (a, b) with $a \ge b > 0$, consider the rectangle with base a and height b.
- Remove from it a square of maximal area obtaining a rectangle of sizes a and a b.
- Reorder them (if needed) and then repeat the process of removing a square.
- Keep on removing squares till it is left a square.
- The edge of the final square is the gcd.

Example. (1547, 560) = (987, 560) = (427, 560) = (427, 133) = (294, 133) = (161, 133) = (28, 133) = (105, 28) = (77, 28) = (49, 28) = (21, 28) = (21, 7) = (14, 7) = (7, 7) = 7

Extended GCD algorithm (EEA)

Input:
$$a, b \in \mathbb{N}, a > b$$

Output: x, y, z where $z = \gcd(a, b)$ and $z = ax + by$
1. $(X, Y, Z) = (1, 0, a)$
2. $(x, y, z) = (0, 1, b)$
While $Z > 0$
 $q := \lfloor Z/z \rfloor$
 $(X, Y, Z) = (x, y, z)$
 $(x, y, z) = (X - qx, Y - qy, Z - qz)$
Output X, Y, Z

To show that it is correct it is enough to check that after one iteration $(X_1, Y_1, Z_1) = (1, -q_0, r_1)$ and after k iterations

 $(X_k, Y_k, Z_k) = (X_{k-2} - q_{k-1} X_{k-1}, Y_{k-2} - q_{k-2} Y_{k-2}, Z_{k-2} - q_{k-1} Z_{k-1}) = (\alpha_k, \beta_k, r_k).$

The Euler φ -function

A first important application of EEA is to determine the inverses in $\mathbb{Z}/m\mathbb{Z}$

Theorem. Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}$ with m > 1. Then $a \mod m$ is invertible (i.e. $\exists b \in \mathbb{Z}/m\mathbb{Z}$ with $ab \equiv 1 \mod m$) iff gcd(a, m) = 1. Furthermore the "arithmetic inverse" b can be computed with time $O(\log m^2)$.

Proof. If gcd(a, m) = 1 then in time $O(\log m^2)$ we can compute $x, y \in \mathbb{Z}$ such that 1 = xa + ym. Hence $b = x \mod m$ has the required property. Conversely if $ab \equiv 1 \mod m$, then 1 = ab + km for an appropriate $k \in \mathbb{Z}$. This implies that gcd(a, m) divides 1 and finally gcd(a, m) = 1 \Box .

Corollary. The set $U(\mathbb{Z}/m\mathbb{Z})$ of invertible elements of $\mathbb{Z}/m\mathbb{Z}$ coincides with

$$\{a \in \mathbb{N} \ s.t. \ 1 \le a \le m, \gcd(a, m) = 1\}.$$

We define the Euler φ function as

$$\varphi(n) = \#U(\mathbb{Z}/m\mathbb{Z}) = \#\{a \in \mathbb{N} \text{ s.t. } 1 \le a \le m, \gcd(a, m) = 1\}.$$

The Euler φ -function continues

- $\varphi(1) = 1$, $\varphi(p) = p 1$, $\varphi(p^{\alpha}) = p^{\alpha 1}(p 1)$
- φ(mn) = φ(m)φ(n) if gcd(m, n) = 1.
 This is a consequence of the Chinese Remainder Theorem (we shall meet it later).
- Hence if we can factor $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, then $\varphi(n)$ is easy to compute. it is enough to compute $n \prod_{p|n} 1 - 1/p$.
- If we know that $k = \varphi(n)$ and that $n = q \times p$ then we can factor nIn fact $\{p,q\} = \left\{\frac{\varphi(n) - n - 1 \pm \sqrt{(\varphi(n) - n - 1)^2 - 4n}}{2}\right\}.$
- An important **Theorem of Euler:** If $a \in U(\mathbb{Z}/m\mathbb{Z})$ then $a^{\varphi(n)} \equiv 1 \mod n$.

The latter is crucial in RSA encryption and decryption See. K. Chakrabory course