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[Let’s play with 22967 4 131)

Let p = 22967 1 131. Is it prime?
Do we believe Mathematica?

No we do not believe her!!!

So let us check it with Solovay Strassen (from yesterday Lab)
Exercise: Check that she is right with Miller-Rabin Test.

Can we prove that certainly p is prime maybe by factoring p — 17
Answer: NOWAY!!

We want to compute the square root of 5 mod p

Can we do it? We ask Mathematica.

Yes, so let us have a look at the slide about it on Lecture 2.
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(PROBLEM 9. SQUARE RooOTS MODULO A PRIME:)

Given an odd prime p and a quadratic residue a, find = s. t. 22 = a mod p

It can be solved efficiently if we are given a quadratic nonresidue g € (Z/pZ)*

1. We write p — 1 = 2F . ¢ and we know that (Z/pZ)* has a (cyclic) subgroup
(¢ with 2% elements

2. Note that b = ¢? is a generator of G and that a? € G
3. Use the Pohlig-Hellmann Algorithm to compute ¢ such that a? = b’.
4. Finally set x = a?~9/2p/2 and observe that

22 = aP~Ipt = 4P = g mod p.
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[Solution of X? = 5(mod22%%7 + 131)]

The first thing we need is a quadratic residue modulo p and we ask

Mathematica.
Exercise: Find the least quadratic non residue.
Now we observe that p — 1 = 2 x ¢ with ¢ odd so that ¢ = (p — 1)/2.

Hence Part 2. is easy since b = ¢»~1)/2 = »p — 1 mod p and what about
S (p—1)/29

We do NOT ask Mathematica since we know that it is one!

Therefore t = 0 (even as expected) and
r = 5(P=9/2(—-1)%/2 mod p DONE!

Exercise (To do in Mathematica). Compute the roots of
X? = 6(mod22°67 4 2949) and of X? = 10(mod22°67 4 2949)
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(Polynomials in (Z/nZ)| X ])

A polynomial f € (Z/nZ)|X] is

f(X)=ao+ a1 X+ - +a,X" where ay,...,a; € Z/nZ

The degree of f is deg f = k when a; # 0.
Example: If f(X) =5+ 10X + 21X*° € Z|[z|, then we can “reduce” it modulo

n. S0
f(X)=X?mod5 which is the same as saying: f(X) = X° € Z/5Z[X].

f(X)=2+ X mod3 which is the same as saying: f(X) =2+ X € Z/3Z[X].
f(X)=5+3X mod 7 which is the same as saying: f(X) = 5+3X € Z/7Z[X].

For the time being we restrict ourselves to the case of f € Z/pZ|X]. The fact
that Z/pZ is a field is important. (Notation [F, = Z/pZ to remind us this)

We can add, subtract and multiply polynomials in F,[X].
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[Polynomials in [F, X ]J

We can also divide them!! for f, g € F,[X]| there exists ¢, » € F,[X| such that
f=qg+1r and degr <deggy.
Example: Let f = X° + X + 1,9 = X? +1 € F3[X]. Then
X4+ X+1=(X"4+X+2)(X+1)+2 sothat =X+ X +2,r =2
In Mathematica:

PolynomialQuotientRemainder[x~ 3 + x + 1, x + 1, x, Modulus -> 3]

finds p and 7.
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[Polynomials in [F,| X ]J

The complexity for summing or subtracting f,g € [F,| X] with
max{deg f,deg g} < n, is O(logp™). Why?

The complexity of multiplying or dividing f, g € F,|X| with
max{deg f,deg g} < n, can be shown to be O(log®(p™)).

Important difference: Polynomials in [F,[X| are not invertible except when
they are constant but not zero. So F,[X| looks much more like Z than like
7/ m.

But if f, g € F,|X], the gcd(f, g) exists and it is fast to calculate!!! why?
YES! The EEA also applies to [F,[X| (Indeed it applies when there is a true

division)
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(Polynomials in [F,| X U

Example Let f = X° + X? + X +1, g= X3+ X + 1 € F5[X], Then
o f=1(g)+X*
e g=X(X?)+ X +1;
e X?=(X+1)(X+1)+1;
e X +1=(X+1)14+0.

So the sequence of quotients are 1, X, X + 1, X + 1 € F5|X| and we can apply

the recursions to compute the Bezout Identity.

However in Mathematica:
PolynomialGCD[(x+1)~ 3,x~ 3+x, Modulus -> 2]
PolynomialExtendedGCD[1+X+X~ 2+X~ 3,1+X+X"~ 3, Modulus -> 2]
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(Polynomials in [F,| X ]J

As in Z every f € [F,|X| can be written as the product of irreducible

polinomials.

Mathematica Knows how to do it:
Factor[x~ 3-3x~ 2-2x+6,Modulus -> 3]

The polynomial X?” — X € | X] is very special. What is its factorization?

XP—X =[] (X —a)eFplX].

Why is it true?

FLT says that a” = a,Va € [F,. Let’s Look at one example.
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[PROBLEM 12. IRREDUCIBILITY TEST FOR POLYNOMIALS IN Fp:]

Given [ € F,|X], determine if f is irreducible:

Theorem. Let XP — X € F,[X]. Then

x"-x= 1] f

fEF,[X]
farreducible
f monic
deg f divides n

We_cannot prove it here but we deduce an algorithm:
Input: f & F,[X]| monic
Output: ¢‘Irreducible’’ or ‘‘Composite’’
1. n:=degf
2. For j=1,...,|n/2]
if ged(XP — X, f) # 1 then
Output ‘ ‘Composite’’ and halt.

3. QOutput ¢ ‘Irreducible’’.
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[Polynomial equations modulo prime and prime powers]

Often one considers the problem of finding roots of polynomial f € Z/nZ[ X].

When n = p is prime then one can exploit the extra properties coming from
the identity
X?— X = ]] (X —a) eF,[X].
aclk,

From this identity it follows that ged(f, X? — X) is the product of liner factor

(X — a) where a is a root of f.

Similarly we have that

X021 = ] (X —a) €FplX].
aclk,

()1

This identity suggests the Cantor Zassenhaus Algorithm
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(Cantor—Zassenhaus Algorithmj

CZ(p)
Input: a prime p and a polynomial f € [F,[X]
Output: a list of the roots of f
1. fri=ged(f(X),XP - X)eF,[X]
2. If deg(f) =0 Output ‘NO ROOTS’’
3. If deg(f)=1,

Output the root of f and halt
4. Choose b at random in [,

g = ged (£(X), (X + )P=D/2)

If 0 < deg(g) < deg(f)

Output C'Z(g)NCZ(f/qg)

Else goto step 3
The algorithm is correct since [ in (Step 4) is the product of (X — a) (a oot

of ). So g is the product of X — a with a + b quadratic residue.
CZ(p) has polynomial (probabilistic) complexity in log p™.
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(Polynomial equations modulo prime powers)

There is an explicit contruction due to Kurt Hensel that allows to “lift” a
solution of f(X) = 0 mod p” to a solution of f(X) = 0 mod p?".

Example: (Square Roots modulo Odd Prime Powers. Suppose = € ), is a

square root of a € I, .

Let y = (2% + a) /22 mod p* (y is well defined since ged(2z,p?) = 1). Then

2 2
2 _(@*—a)” _ 2
Yy —a = 2 = 0 mod p

since p* divides (z° — a)?.

The general story if the famous Hensel’s Lemma.
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(Polynomial equations modulo prime powers)

Theorem (HENSEL’S LEMMA). Let p be a prime, f(X) € Z[X]| and a € Z
such that

f(a) = 0mod p”, f'(a) #Z 0 mod p.
Then b :=a — f(a)/f'(a) mod p?* is the unique integer modulo p?* that

satisfies
£(b) = 0 mod p**, b = a mod p~.

PROOF. Replacing f(x) by f(x + a) we can restric to a = 0. Then
f(X) = f(0)+ f(0)X + h(X)X? where h(X) € Z[X].

Hence if b = 0 mod p¥, then f(b) = £(0) + bf'(0) mod p**. Finally
b= —£(0)/f(0) is the unique lift of 0 modulo p?* that satisfies
f(b) = 0 mod p?*.0J
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Chinese Remainder Theorem

CHINESE REMAINDER THEOREM. Let mq,...,ms € N patrwise coprime and
let ay,...,as € Z. Set M = mq ---ms. There exists a unique x € Z/MZ such
that

(
T = a1 mod my

T = ao mod mo

r = as mod myg.

\

Furthermore if a1, ...,as € Z/MZ, then x can be computed in time
O(slog® M).
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Chinese Remainder Theorem continues

PROOF. Let us first assume that s = 2. Then from EEA we can write
1 = myx + moey for appropriate =,y € Z. Consider the integer

C = a1moy + aogmyx.

Then ¢ = a; mod m; and a = as mod ms. Furthermore if ¢’ has the same
property, then d = ¢ — ¢’ is divisible by m; and ms. Since ged(mq,ms) = 1 we
have that m{ms divides d so that ¢ = ¢’ mod m;m.-.

If s > 2 then we can iterate the same process and consider the system:

)
T = ¢ mod mimeo

r = a3z mod ms

r = as mod my.
\

In Mathematica, ChineseRemainder[{3,4}, {4,5}] coincides with
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r =3 mod4
r=4mod?5
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[Chinese Remainder Theorem (applications)]

It can be used to prove the multiplicativity of the Euler ¢ function. More
precisely, it implies that, if gcd(m,n) = 1, then the map:

(Z/mnZ)* — (Z/mZ)* x (Z/nZ)*,a — (a mod m,a mod n)
is surjective.

It can be used to glue solutions of congruence equations.

Let f € Z[X] and suppose that a,b € Z are such that
f(a) = (modn), f(b) = (modm).

If gcd(m,n) = 1, then a solution ¢ of

r=amodn

r = bmodm

has the property that f(c) = 0(modnm).

18
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[Algorithms to be implemented in Mathematica (Lectures 1)]

. Right-to-Left Exponentiation in Z/mZ
. Left-to-Right Exponentiation in Z/mZ
. Test of Primality using the factorization of n — 1

. Computation of Legendre/Jacobi Symbols (via recursive

algorithm)

. Solovay Strassen probabilistic Primality Test
. Probabilistic Search of Quadratic Nonresidues
. Deterministic Search of Quadratic Nonresidues
. Power test via the newton Method

. Miller Rabin probabilistic primality test

Implementation of RSA

Pollard p method and n — 1 method

19
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12.

[Algorithms to be implemented in Mathematica (Lectures 2/ 3))

. Search for primitive root in n = 2;4;p“;2p® (with resident

commands)

. Shank’s BSGS for Discrete Logs

. Pohlig-Hellman Algorithm for groups with |G| = 2“.

. Algorithm to compute square root modulo a prime

. Binary Euclidean Algorithms

. Extended Euclidean Algorithm (EEA) for Bezout identity
. Cantor--Zassenhaus Algorithm

. Lifting roots modulo powers of primes

. Chinese Remainder Theorem

. Fantte fields on Mathematica

. Elliptic curves in Mathematica

The Rtemann Zeta function inm Mathematica



