
Basic Algorithms in Number Theory Algorithmic Complexity ... 1

Basic Algorithms in Number Theory

Francesco Pappalardi

Polynomials, Hensel’s Lemma, Chinese Remainder
Theorem and more.

July 22th 2010

Basic Algorithms in Number Theory Algorithmic Complexity ... 2

�� ��Let’s play with 22067 + 131

Let p = 22067 + 131. Is it prime?

Do we believe Mathematica?

No we do not believe her!!!

So let us check it with Solovay Strassen (from yesterday Lab)

Exercise: Check that she is right with Miller-Rabin Test.

Can we prove that certainly p is prime maybe by factoring p− 1?

Answer: NOWAY!!

We want to compute the square root of 5 mod p

Can we do it? We ask Mathematica.

Yes, so let us have a look at the slide about it on Lecture 2.

Basic Algorithms in Number Theory Algorithmic Complexity ... 3

�� ��PROBLEM 9. Square Roots Modulo a prime:

Given an odd prime p and a quadratic residue a, find x s. t. x2 ≡ a mod p

It can be solved efficiently if we are given a quadratic nonresidue g ∈ (Z/pZ)∗

1. We write p− 1 = 2k · q and we know that (Z/pZ)∗ has a (cyclic) subgroup

G with 2k elements

2. Note that b = gq is a generator of G and that aq ∈ G

3. Use the Pohlig-Hellmann Algorithm to compute t such that aq = bt.

4. Finally set x = a(p−q)/2bt/2 and observe that

x2 = a(p−q)bt = ap ≡ a mod p.

Basic Algorithms in Number Theory Algorithmic Complexity ... 4

�� ��Solution of X2 ≡ 5(mod22067 + 131)

The first thing we need is a quadratic residue modulo p and we ask

Mathematica.

Exercise: Find the least quadratic non residue.

Now we observe that p− 1 = 2× q with q odd so that q = (p− 1)/2.

Hence Part 2. is easy since b = g(p−1)/2 ≡ p− 1 mod p and what about

5(p−1)/2?

We do NOT ask Mathematica since we know that it is one!

Therefore t = 0 (even as expected) and

x = 5(p−q)/2(−1)t/2 mod p DONE!

Exercise (To do in Mathematica). Compute the roots of

X2 ≡ 6(mod22067 + 2949) and of X2 ≡ 10(mod22067 + 2949)

Basic Algorithms in Number Theory Algorithmic Complexity ... 5�� ��Polynomials in (Z/nZ)[X]

A polynomial f ∈ (Z/nZ)[X] is

f(X) = a0 + a1X + · · ·+ akX
k where a0, . . . , ak ∈ Z/nZ

The degree of f is deg f = k when ak 6= 0.

Example: If f(X) = 5 + 10X + 21X3 ∈ Z[x], then we can “reduce” it modulo

n. So

f(X) ≡ X3 mod 5 which is the same as saying:f(X) = X3 ∈ Z/5Z[X].

f(X) ≡ 2 +X mod 3 which is the same as saying:f(X) = 2 +X ∈ Z/3Z[X].

f(X) ≡ 5+3X mod 7 which is the same as saying:f(X) = 5+3X ∈ Z/7Z[X].

For the time being we restrict ourselves to the case of f ∈ Z/pZ[X]. The fact

that Z/pZ is a field is important. (Notation Fp = Z/pZ to remind us this)

We can add, subtract and multiply polynomials in Fp[X].

Basic Algorithms in Number Theory Algorithmic Complexity ... 6

�� ��Polynomials in Fp[X]

We can also divide them!! for f, g ∈ Fp[X] there exists q, r ∈ Fp[X] such that

f = qg + r and deg r < deg g.

Example: Let f = X3 +X + 1, g = X2 + 1 ∈ F3[X]. Then

X3 +X + 1 = (X2 +X + 2)(X + 1) + 2 so that q = X2 +X + 2, r = 2

In Mathematica:

PolynomialQuotientRemainder[x^ 3 + x + 1, x + 1, x, Modulus -> 3]

finds p and r.

Basic Algorithms in Number Theory Algorithmic Complexity ... 7

�� ��Polynomials in Fp[X]

The complexity for summing or subtracting f, g ∈ Fp[X] with

max{deg f, deg g} < n, is O(log pn). Why?

The complexity of multiplying or dividing f, g ∈ Fp[X] with

max{deg f, deg g} < n, can be shown to be O(log2(pn)).

Important difference: Polynomials in Fp[X] are not invertible except when

they are constant but not zero. So Fp[X] looks much more like Z than like

Z/mZ.

But if f, g ∈ Fp[X], the gcd(f, g) exists and it is fast to calculate!!! why?

YES! The EEA also applies to Fp[X] (Indeed it applies when there is a true

division)

Basic Algorithms in Number Theory Algorithmic Complexity ... 8

�� ��Polynomials in Fp[X]

Example Let f = X3 +X2 +X + 1, g = X3 +X + 1 ∈ F2[X], Then

• f = 1(g) +X2;

• g = X(X2) +X + 1;

• X2 = (X + 1)(X + 1) + 1;

• X + 1 = (X + 1)1 + 0.

So the sequence of quotients are 1, X,X + 1, X + 1 ∈ F2[X] and we can apply

the recursions to compute the Bezout Identity.

However in Mathematica:

PolynomialGCD[(x+1)^ 3,x^ 3+x, Modulus -> 2]

PolynomialExtendedGCD[1+X+X^ 2+X^ 3,1+X+X^ 3, Modulus -> 2]

Basic Algorithms in Number Theory Algorithmic Complexity ... 9

�� ��Polynomials in Fp[X]

As in Z every f ∈ Fp[X] can be written as the product of irreducible

polinomials.

Mathematica Knows how to do it:

Factor[x^ 3-3x^ 2-2x+6,Modulus -> 3]

The polynomial Xp −X ∈ Fp[X] is very special. What is its factorization?

Xp −X =
∏
a∈Fp

(X − a) ∈ Fp[X].

Why is it true?

FLT says that ap = a,∀a ∈ Fp. Let’s Look at one example.

Basic Algorithms in Number Theory Algorithmic Complexity ... 10

�� ��PROBLEM 12. Irreducibility Test for Polynomials in Fp:

Given f ∈ Fp[X], determine if f is irreducible:

Theorem. Let Xpn −X ∈ Fp[X]. Then

Xpn −X =
∏

f∈Fp[X]
f irreducible
f monic

deg f divides n

f

We cannot prove it here but we deduce an algorithm:
Input: f ∈ Fp[X] monic

Output: ‘‘Irreducible’’ or ‘‘Composite’’

1. n := deg f

2. For j = 1, . . . , dn/2e
if gcd(Xpj −X, f) 6= 1 then

Output ‘‘Composite’’ and halt.

3. Output ‘‘Irreducible’’.

Basic Algorithms in Number Theory Algorithmic Complexity ... 11

�� ��Polynomial equations modulo prime and prime powers

Often one considers the problem of finding roots of polynomial f ∈ Z/nZ[X].

When n = p is prime then one can exploit the extra properties coming from

the identity

Xp −X =
∏
a∈Fp

(X − a) ∈ Fp[X].

From this identity it follows that gcd(f,Xp −X) is the product of liner factor

(X − a) where a is a root of f .

Similarly we have that

X(p−1)/2 − 1 =
∏
a∈Fp

(a
p)=1

(X − a) ∈ Fp[X].

This identity suggests the Cantor Zassenhaus Algorithm

Basic Algorithms in Number Theory Algorithmic Complexity ... 12�� ��Cantor–Zassenhaus Algorithm

CZ(p)

Input: a prime p and a polynomial f ∈ Fp[X]

Output: a list of the roots of f

1. f := gcd(f(X), Xp −X) ∈ Fp[X]

2. If deg(f) = 0 Output ‘‘NO ROOTS’’

3. If deg(f) = 1,

Output the root of f and halt

4. Choose b at random in Fp
g := gcd(f(X), (X + b)(p−1)/2)

If 0 < deg(g) < deg(f)

Output CZ(g) ∩ CZ(f/g)

Else goto step 3
The algorithm is correct since f in (Step 4) is the product of (X − a) (a root

of f). So g is the product of X − a with a+ b quadratic residue.

CZ(p) has polynomial (probabilistic) complexity in log pn.

Basic Algorithms in Number Theory Algorithmic Complexity ... 13

�� ��Polynomial equations modulo prime powers

There is an explicit contruction due to Kurt Hensel that allows to “lift” a

solution of f(X) ≡ 0 mod pn to a solution of f(X) ≡ 0 mod p2n.

Example: (Square Roots modulo Odd Prime Powers. Suppose x ∈ Fp is a

square root of a ∈ Fp .

Let y = (x2 + a)/2x mod p2 (y is well defined since gcd(2x, p2) = 1). Then

y2 − a =
(x2 − a)2

4x2
≡ 0 mod p2

since p2 divides (x2 − a)2.

The general story if the famous Hensel’s Lemma.

Basic Algorithms in Number Theory Algorithmic Complexity ... 14

�� ��Polynomial equations modulo prime powers

Theorem (Hensel’s Lemma). Let p be a prime, f(X) ∈ Z[X] and a ∈ Z
such that

f(a) ≡ 0 mod pk, f ′(a) 6≡ 0 mod p.

Then b := a− f(a)/f ′(a) mod p2k is the unique integer modulo p2k that

satisfies

f(b) ≡ 0 mod p2k, b ≡ a mod pk.

Proof. Replacing f(x) by f(x+ a) we can restric to a = 0. Then

f(X) = f(0) + f ′(0)X + h(X)X2 where h(X) ∈ Z[X].

Hence if b ≡ 0 mod pk, then f(b) ≡ f(0) + bf ′(0) mod p2k. Finally

b = −f(0)/f ′(0) is the unique lift of 0 modulo p2k that satisfies

f(b) ≡ 0 mod p2k.�

Basic Algorithms in Number Theory Algorithmic Complexity ... 15

�� ��Chinese Remainder Theorem

Chinese Remainder Theorem. Let m1, . . . ,ms ∈ N pairwise coprime and

let a1, . . . , as ∈ Z. Set M = m1 · · ·ms. There exists a unique x ∈ Z/MZ such

that

x ≡ a1 mod m1

x ≡ a2 mod m2

...

x ≡ as mod ms.

Furthermore if a1, . . . , as ∈ Z/MZ, then x can be computed in time

O(s log2M).

Basic Algorithms in Number Theory Algorithmic Complexity ... 16�� ��Chinese Remainder Theorem continues

Proof. Let us first assume that s = 2. Then from EEA we can write

1 = m1x+m2y for appropriate x, y ∈ Z. Consider the integer

c = a1m2y + a2m1x.

Then c ≡ a1 mod m1 and a ≡ a2 mod m2. Furthermore if c′ has the same

property, then d = c− c′ is divisible by m1 and m2. Since gcd(m1,m2) = 1 we

have that m1m2 divides d so that c ≡ c′ mod m1m2.

If s > 2 then we can iterate the same process and consider the system:

x ≡ c mod m1m2

x ≡ a3 mod m3

...

x ≡ as mod ms.

. �

In Mathematica, ChineseRemainder[{3, 4}, {4, 5}] coincides with

Basic Algorithms in Number Theory Algorithmic Complexity ... 17

x ≡ 3 mod 4

x ≡ 4 mod 5

Basic Algorithms in Number Theory Algorithmic Complexity ... 18�� ��Chinese Remainder Theorem (applications)

It can be used to prove the multiplicativity of the Euler ϕ function. More

precisely, it implies that, if gcd(m,n) = 1, then the map:

(Z/mnZ)∗ → (Z/mZ)∗ × (Z/nZ)∗, a 7→ (a mod m, a mod n)

is surjective.

It can be used to glue solutions of congruence equations.

Let f ∈ Z[X] and suppose that a, b ∈ Z are such that

f(a) ≡ (modn), f(b) ≡ (modm).

If gcd(m,n) = 1, then a solution c ofx ≡ a mod n

x ≡ b mod m

has the property that f(c) ≡ 0(modnm).

Basic Algorithms in Number Theory Algorithmic Complexity ... 19�� ��Algorithms to be implemented in Mathematica (Lectures 1)

1. Right-to-Left Exponentiation in Z/mZ

2. Left-to-Right Exponentiation in Z/mZ

3. Test of Primality using the factorization of n− 1

4. Computation of Legendre/Jacobi Symbols (via recursive

algorithm)

5. Solovay Strassen probabilistic Primality Test

6. Probabilistic Search of Quadratic Nonresidues

7. Deterministic Search of Quadratic Nonresidues

8. Power test via the newton Method

9. Miller Rabin probabilistic primality test

10. Implementation of RSA

11. Pollard ρ method and n− 1 method

Basic Algorithms in Number Theory Algorithmic Complexity ... 20�� ��Algorithms to be implemented in Mathematica (Lectures 2/3)

1. Search for primitive root in n = 2; 4; pα; 2pα (with resident

commands)

2. Shank’s BSGS for Discrete Logs

3. Pohlig-Hellman Algorithm for groups with |G| = 2α.

4. Algorithm to compute square root modulo a prime

5. Binary Euclidean Algorithms

6. Extended Euclidean Algorithm (EEA) for Bezout identity

7. Cantor--Zassenhaus Algorithm

8. Lifting roots modulo powers of primes

9. Chinese Remainder Theorem

10. Finite fields on Mathematica

11. Elliptic curves in Mathematica

12. The Riemann Zeta function in Mathematica

