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Three Lectures on Elliptic Curves Cryptography

Note (Program of the Lectures)

© Generalities on Elliptic Curves over finite Fields

@ Basic facts on Discrete Logarithms on finite groups, generic attacks (Pohlig—Hellmann, BSGS, Index
Calculus)

@ Elliptic curves Cryptography: pairing based Cryptography, MOV attacks, anomalous curves
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) Elliptic curves over F,
Notations

Introduction

WeierstraB Equations
Fields of characteristics 0 The Discriminant
Elliptic curves /F,
© Qs the field of rational numbers B IBCIED

The sum of points

® R and C are the fields of real and complex numbers

Examples

® K C C,dimg K < oo is a number field Sieture of E(T) and
© Q[\/a], deQ the j-invariant
o Qla], f(a) = 0, f € Q[X] irreducible Points of finite order

Points of order 2
Points of order 3

Points of finite order
Finite fields The group structure

Division polynomials

© F, ={0,1,...,p— 1} is the prime field;

@ Fy is afinite field with g = p” elements

® Fq =Tpl], f(€) =0, f € Fp[X] irreducible, of = n

0 Fy=Tp[¢, 8 =1+¢

® I = Fy[a), o® = o+ 1 butalso Fg = F[8], 8% = B2+ 1, (B = ® + 1)
0 Fipyi00 = Fio1[w], W = w41



Notations

Algebraic Closure of I,

e C D Q satisfies that Fundamental Theorem of Algebral (i.e. Vf € Q[x], 8f > 1,3a € C, f(a) = 0)
o We need a field that plays the role, for IF4, that C plays for Q. It will be IF_q, called algebraic closure of I

©® Vn e N, wefixan Fg
® We also require that Fgn C Fgm if n | m

© WeletF, = U]Fq"

neN

e Fact: T, is algebraically closed
(i.e. Vf € Fg[x], 8f > 1,3 € Fy, f(a) = 0)

If F(x, y) € Q[x, y] a point of the curve F = 0, means (xo, ¥o) € C? s.t. F(Xo, o) = O.
If F(x,y) € Fq[x, y] a point of the curve F = 0, means (xo, yo) € IET,Z s.t. F(xo, o) = 0.

Elliptic curves over F,

Introduction

WeierstraB Equations.
The Discriminant
Elliptic curves /F,
Elliptic curves /Fy

The sum of points

Examples
Structure of £(F;) and
E(F3)

the j-invariant

Points of fnite order
Points of order 2
Points of order 3
Points of finite order
The group structure

Division polynomials



The (general) WeierstraB3 Equation

An elliptic curve E over a Fy (finite field) is given by an equation
E:y? +aixy + ay = x° + aX® + asx + ag

J

where a1, az, a, as, as € Fq

The equation should not be singular
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The Discriminant of an Equation
The condition of absence of singular points in terms of a;, a,, a3, a4, a

Definition
The discriminant of a WeierstraB equation over Fq, g = p”, p > 3is

1
/AN e (—3?3384 — 83?323364 — 1Ga1a§asa4 aF 36afa§a4
— a‘faﬁ — 8afa2ai — 16a§a§ + 96a; agai + 64ai+
alag + 12a}apas + 4822385 + 64333, — 3645 asas

—144ar 20835 — 728, a4as — 28822435 + 432 )

Note
E is non singular if and only if Ag # 0
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Special WeierstraB equation of £/Fp, p # 2

E:y’ taxy+ay=x"+ax®tax+a acFp

If we “complete the squares” by applying the

X < X

Yy — EXEE
2

transformation:

the Weierstral3 equation becomes:

E':y? =x*+ ax® + ajx + a )

where &, = a + 4,.9147a4+"""’3 ag:as+§
If p > 5, we can also apply the transformation

b

X X —
y<vy

obtaining the equations:

E":y*=x3+a/x+ay )

/ 26,3 aa
where a; = aj — %,a =g+ — 5
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Elliptic curves over F,

Introduction
Fields

WeierstraB Equations

Elliptic curves /F,

Elliptic curves /Fy

gefinition The sum of points

Two Weierstraf3 equations over I are said (affinely) equivalent if there exists a (affine) change of variables that s

takes one into the other i‘{;j“’e of E(F) and
the j-invariant

— e

The only affine transformation that take a Weierstrass equations in another Weierstrass equation have the form Points of order 3

Points of finite order
The group structure
X +— UPX+r Ty

r,s,t,u € T,
Y «— Py + tPsx +t Y



The WeierstraB equation
Classification of simplified forms

After applying a suitable affine transformation we can always assume that £ /F,(q = p") has a Weierstraf3

equation of the following form

Example (Classification)

E p Ag

2 =x+Ax+B >5 | 4A% + 2782
Vrxy=x"+ax?+a | 2 | a&

Y2+ asy = X° + ayx + ag 2 a

y2P=x*+Ax®+Bx+C 3 4A°C — AB? — 18ABC + 4B° + 27C?

Definition (Elliptic curve)

An elliptic curve is the data of a non singular WeierstraB equation (i.e. Ag # 0)

Note: If p > 3, Ag # 0 < x® + Ax® + Bx + C has no double root
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Elliptic curves over F»

All possible Weierstra3 equations over F; are:
Weierstra3 equations over [

0 Vo+xy=x3+x2+1

@y +xy=x>+1

© V2 +y=x"+x

0y +y=x"+x+1

ey +y=x*

0y +y=x"+1

1
However the change of variables XX Jt takes the sixth curve into the fifth. Hence we can remove the
y<y+x

sixth from the list.

Fact:

There are 5 affinely inequivalent elliptic curves over F»
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Elliptic curves in characteristic 3

Via a suitable transformation (x — v?x + r,y — u®y + u?sx + t) over Fy, 8 inequivalent elliptic curves over F3

are found:
Weierstra3 equations over [F3

2= X% 41
P =x3 x4

0y =x"+x

® )y =x"—x

© V¥ =x>—x+1
ey2:x3—x—1
0 y2=x"+x+1
0 V2 =x3+x2—1
[

o

Fact:

let (g) be the Kronecker symbol. Then the number of non—isomorphic (i.e. inequivalent) classes of elliptic curves

over g is

—4
2q+3+<7)+2(

-3

q

)
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The definition of E(FF)

Let E/IF, elliptic curve and consider a “symbol” oo (point at infinity). Set

E(Fq) = {(x,y) €Fo: y* +aixy + asy = x° + ax® + aux + ag} U {o0}

Hence
o E(Fq) C F2 U {co}
o IfFq C Fgn, then E(Fy) C E(Fgn)

o We may think that oo sits on the top of the y—axis (“vertical direction”)

Definition (line through points P, Q € E(F,))

~ Jline through Pand Q if P # Q
P.@" ) tangentlineto Eat P ifP = Q

o if #(rp,o N E(Fq)) > 2 = #(rp,a N E(Fq)) =3

® Io,00 NE(Fg) = {00, 00,00}

projective or affine

if tangent line, contact point is counted with multiplicity
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History (from WIKIPEDIA)

Carl Gustav Jacob Jacobi (10/12/1804 —
18/02/1851) was a German mathematician,
who made fundamental contributions to elliptic
functions, dynamics, differential equations,
and number theory.

Some of His Achievements:

Theta and elliptic function
Hamilton Jacobi Theory

Inventor of determinants

Jacobi Identity
[A, [B, Cll + [B, [C, All + [C, [A, B]] = 0

xy+y?+y=x3-3x%+x+1

o N E(Fq) = {P,Q, R}
TR0 N E(Fg) = {o0, R, R’}

P+eQ:=R |

1P,00 M E(Fq) = {P, 00, P'}

—P =P J
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Properties of the operation “+2”

Theorem

The addition law on E(Fg) has the following properties:

(@) P+eQ € E(Fg)

(b) P+eco=co+e P=P

() P+e(=P) =

(d) P+e(Q+eR)=(P+Q)+eR
e) P+teQ=Q+e P

e (E(Fg), +£) commutative group

o All group properties are easy except associative law (d)
Geometric proof of associativity uses Pappo’s Theorem

can substitute IFq with any field K; Theorem holds for (E(K), +£)

—P=—(x1, )= (x1,—aix1 — as — y1)

VP, Q € E(F,)
VP € E(Fq)

VP € E(Fq)

VP, Q, R € E(Fq)
VP, Q € E(Fq)
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Formulas for Addition on £ (Summary)

E:y?+ aixy + azsy = xX° + aX? + asX + as J

Py = (x1, 1), P2 = (X, y2) € E(Fq) \ {00},
Addition Laws for the sum of affine points

. |fP175P2
o Xy =X
X #£X
Yo — V1 YiXo — YoXq
A= v =
Xo — Xq X2 — Xy
. |fP1:P2

o 2y +aix+a3=0
o 2yi +aix+az#0

Py +g P2 = 0 '
=

Py +g P> = 2P; = oo

J

o ¢ +2@x ta —ay A+ X - ax — 2%

3

2y1 + aix + as 2y + aixg + as

Then

Pi+ePo=(N —aid—a —x — X, -\ — @A+ (A +a)(a+x +x)—a —v) J
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Elliptic curves over F

Formulas for Addition on £ (Summary for special equation)

Introduction
Fields

WeierstraB Equations

B .Vz = +Ax + B J The Discriminant

Elliptic curves /F,
Pi = (X1,¥1), P2 = (X2, )0) € E(Fq) \ {oo}, Elliptic curves /Fs
Addition Laws for the sum of affine points Examples

Structure of E(F,) and

o If P1 75 P2 E(Fs)

the jinvariant

Pi +g P> = oo ' Points of fnite order
O =28 = Points of order 2

¢ X Fx Points of order 3
A= Yo — 11 _ nXe — X Points of finite order
B X2 — X4 Y= Xo — Xq The group structure
o |If P1 = P2 Division polynomials
Py +g P, =2P; = oo
e y1=0 J
* n#0
N 3x2 + A V=7x13—Ax1 —2B
2y 2y
Then
Pite P = (A — X1 — 30, =2° + A(x1 + %) — v) )i




Elliptic curves over F,

Group Structure

Introduction
Fields

WeierstraB Equations
The Discriminant
Elliptic curves /F,

Theorem (Classification of finite abelian groups) SR

[ Thesumoipons
If G is abelian and finite, Any, . . ., nk € N> such that Examples
Structure of E(F,) and
@ n ||| ng E(F)

the j-invariant
e G~ th D---D an Points of finite order
. Points of order 2
Furthermore ny, . . ., nk (Group Siructure) are unique SO
Points of finite order

P .. . The group structure
Theorem (Structure Theorem for Elliptic curves over a finite field)

Division polynomials

Let E/Fq be an elliptic curve, then

E(Fg) = C,® C 3n, k € N7°.

(i.e. E(Fq) is either cyclic (n = 1) or the product of 2 cyclic groups)



Elliptic curves over F,

EXAMPLE: Elliptic curves over F, and over F3

From our previous list: Introduction
Fields
Groups of points of curves over F, Weiersia Equations
£ E(F2) E(F2) e
,V2 + Xy = X4+ xZ 41 {0, (0,1)} Co Elliptic curves /Fs
y2+Xy:X3+1 {OO,(0,1),(1,0),(1,1)} C4 ;hesulmo'pomls
Y4y =x"+x {0,(0,0),(0,1),(1,0),(1,1)} | Cs s
y2 + y - X3 + X Jr 1 {OO} 1 the j-invariant
,V2 7= X {=0,(0,0), (0, 1)} Cs Pomllsommteorder
Points of order 2
Note: each C;,i =1, ...,5 s represented by a curve /F» RIS

Points of finite order

B The group structure
Groups of points of curves over F3

Division polynomials

! E,‘ E,‘(]Fs) E,‘(]F3)
1 P =x>+x {0, (0,0), (2,1), (2,2)} Cs
2 yP=x>—x {0, (1,0), (2,0), (0,0)} C® Co
3| Y¥’=x"—x+1 | {oo,(0,1),(0,2),(1,1),(1,2),(2,1), (2,2)} C;
4 yP=xT—x—-1 {0} {1}
5 y2P=x>+x>—-1 {0, (1,1),(1,2)} Cs
6 | Y¥2=x+x>+1 {0, (0, 1), (0,2), (1,0), (2, 1), (2,2)} Cs
7| ¥P=x°—xZ+1 {0, (0, 1), (0,2), (1, 1), (1, 2), } Cs
8 | YP=x"—x>—-1 {0, (2,0))} Cs

Note: each C;,i =1, ..., 7 is represented by a curve /Fg



Elliptic curves over F,

The j-invariant

Introduction
Let E/K :y? = x>+ Ax+ B,p > 5and A := 4A° + 2782 Fields
WeierstraB Equations
Definition The Discriminant

.. . .. , 3 Elliptic curves /F,
The j-invariant of E is j = j(E) = 1728 ;4= Eliptic curves /F;
The sum of points

Examples

Definition Structure of E(F2) and
E(Fs)
Let u € K*. The elliptic curve E, : y? = x® + u?Ax + u*Biis called the twist of E by u o pimaiant
Points of finite order
Properties of j—invariants P oorter?
. . Points of finite order
(1) /(E) :j(Eu),VLI € K" The group structure
) ](EI/K) — j(E”/K) = Ju c R* s.t. E// — El: Division polynomials

©#0,1728 = E: y? =5 + pi—x + 78—, ((E) =
©0,=0= E:y’=x*+B, j=1728 = E:y>=x®+ Ax
@ j: K +— {K-affinely equivalent classes of E/K}.

0 p = 2, 3 different definition

@ E and E,, are Fq[/uz]—affinely equivalent

(c] #E(qu) = #E;L(]qu)

© usually #E(Fq) # #E,.(Fq)




Determining points of order 2

Elliptic curves over F

Introduction
Fields
WeierstraB Equations
The Discriminant
Let P — (X1 s y1 ) = E(]Fq) \ {OO}, Ellipt!ccurves /F2
Elliptic curves /Fs

Phasorder2 < 2P =00 <— P=—P ) The sum of points

Examples
So Structure of E(F,) and
E(F3)

—P=(x,—aixi —as—y1)=(x,5)=P = 2y = —aixi — & } (RfAlaz

Points of finite order
If p#£2, canassume E : y? = x® + Ax? + Bx + C Points of order 3
Points of finite order

—P=(,—y)=(x,n)=P = yn =07x?+Ax‘2+Bx1+C=0 J The group structure

Division polynomials

Note

o the number of points of order 2 in E(FFq) equals the number of roots of X® + Ax? + Bx + C in F,
e roots are distinct since discriminant Ag # 0



Determining points of order 2 (continues)

Definition
2-torsion points o
E[2] = {P € E(Fq) : 2P = oo}.

FACTS:

CpC ifp>2
E[2] =< C, ifp=2E:y>+xy=x>+ax+ as
{0} ifp=2E:y?>+asy =x>+ax?+as

Each curve /I, has cyclic E(F>).

E E(F2) |E(F2)|
V4 xy =x +x°+1 {0, (0,1)} 2
YV rxy=x3+1 {0, (0,1), (1,0), (1, )} 4
Y 4+y=x+x {0, (0,0), (0,1),(1,0),(1,1)} | 5
V+y=x"+x+1 {co} 1
y2 +y= XB {007(070)1(071)} 3
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Elliptic curves over ¥,
Determining points of order 3 :
Let P = (x1,y1) € E(Fyg)

Introduction
Fields

Phasorder3 <= 3P =00 «<— 2P = —-P }

WeierstraB Equations
The Discriminant

So,ifp>3andE:y? =x*+ Ax+ B

Elliptic curves /F,
Elliptic curves /Fy

2 3 _Ax — e sum of points
2P = (xop, yor) = 2(x1, y1) = (A% — 2x1, —A\° + 2)x; — v/) where A = 22 ) = — St J e sum of pont

2y 2 Examples
Structure of E(F2) and
E(F3)

Phasorder 3 <= xp = A% — 2x; = X4 J the finvariant

Points of finite order

Substituting A, Points of order 2

Xep — X1 =

—3x* —6Ax2 —12Bx; + A2 Points of finite order
! ; — =10 The group structure
4(x3+Ax; +4B)

Division polynomials

Note (Conclusions)

p3(x) := 3x* 4+ 6Ax% + 12Bx — A? called the 3" division polynomial
(x1,y1) € E(Fq) has order 3 = v3(x1) =0

E(F4) has at most 8 points of order 3

If p# 3, E[3] := {P € E(Fq) : 3P = 00} =~ C3 @ C3

Ifp=23,E:y?=x%+Ax?+ Bx+ Cand P = (xq, y;) has order 3, then
© AC +AC—B =0
® E[3] ~ C;if A+# 0and E[3] = {co} otherwise



Determining points of order 3 (continues)
FACTS:

E[38] =~ < Cs ifp=8,E:y2=x>*+Ax® +Bx+C,A#0
{c} fp=8,E:y2=x*+Bx+C

Example: inequivalent curves /F; with #E(F7) = 9.

E Pa(X) E[3] N E(F7) E(F7) =
V=x+2 x(x + )(x +2)(x +4)  [{oo, (0, £3), (—1, £1), (5, £1),(3,£1)} [C: ® C3
Y2 =x>+3x + 2| (x+2)(x® + 5x* + 3x + 2) {0, (5, £3)} Co
Y2 =x3+5x + 2| (x +4)(x® + 3x* + 5x + 2) {0, (3, £3)} Co
Y2 =x3+6x+2|(x+1)(x° +6x% +6x +2) {0, (6,£3)} Co

One count the number of inequivalent £ /F, with #E(F,) = r
Example (A curve over F, = F,(¢), €2 = € + 1; E:y2+y=x%
We know E(F2) = {o0, (0,0),(0,1)} C E(F4).

E(F4) = {00, (0,0),(0,1), (1,€), (1, £ +1), (£, £), (£, €+ 1), (€ +1,8), (€ +1, €+ 1)}

ws(x)=x“+x:x(x+1)(x+£)(x+5+1):>E(F4)%Ca®csj
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Determining points of order (dividing) m

Elliptic curves over F

Introduction
Fields
Definition (m-torsion point)

Let E/K and let K an algebraic closure of K.

WeierstraB Equations.
The Discriminant
Elliptic curves /F,
Elliptic curves /Fy

The sum of points
E[m] = {P € E(K) : mP = =} J

Examples

Structure of E(F,) and
E(F3)

the j-invariant
Theorem (Structure of Torsion Points) Points of fnite order
LetE/K and m € N. If p = char(K) t m,

Points of order 2
Points of order 3

E [m] = Cn®Cn J The group structure
Division polynomials
Ifm=p'm',ptm,

EmM~Cn®Cn or E[m=Cwy®Cn

. ordinary if E[p] = Cp
E/F lled
/Fp s calle supersingular  if E[p] = {oo}



Elliptic curves over F,
Group Structure of E(Fg) ’

Introduction
Fields
WeierstraB Equations
Corollary The Discriminant
Ell F,
Let E/Fq. 3n, k € N are such that poomee)

Elliptic curves /Fs
The sum of points

Examples

E(]F ) ~ C, ® Crk Structure of E(F,) and
q) = Ln n

E(Fs)

the j-invariant

Points of finite order
Points of order 2

Points of order 3
Proof. Points of finite order

From classification Theorem of finite abelian group

Division polynomials
E(]Fq) = C’7| @ C”z DD C"r
with n;|njyq fori > 1.

Hence E(Fq) contains nf points of order dividing ny. From Structure of Torsion Theorem, #E[n;] < n?. So
r<2

Theorem (Corollary of Weil Pairing)

Let E/Fqandn, k € Ns.t. E(Fq) = C, ® Cw. Thenn | q — 1.

We shall discuss Weil Pairing Wednesday



The division polynomials

Definition (Division Polynomials of £ : y?> = x° + Ax + B (p > 3))

o =0
Py =1
o =2y

Py =3x* + 6AX® + 12Bx — A?
s =4y(x® + 5AX* + 20Bx® — 5A%x® — 4ABx — 8B% — A°)

Yomit =Pmeoy — Ymo19S.,  form>2

van = (52 ) - Wmiavh s = bn-avhe) form>3

The polynomial v, € Z[x, y] is called the m™ division polynomial

FACTS:
o Yomi1 €Z[x]  and  top € 2yZ[x]
. y(mx("=49/2 L ) it mis even
Z mx(m™=10/2 4 ... if mis odd.

2
. zp%:mzx’”_‘_t,_...
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Remark.

Elliptic curves over F,

Introduction
17 . _ Fields
e E[2m+ 1]\ {oc} = {(x,y) € E(K) : tam+1(x) = 0} Welesiras Equaions
e E[2m]\ E[2] = {(x,y) € E(K) : quzm(X) =0} The Discriminant
Elliptic curves /F,
Elliptic curves /Fs
The sum of points
Example Examples
Structure of E(F,) and
E(F3)
the j-invariant
ha(x) =2y(x® + 5Ax* + 20Bx® — 5A%x? — 4BAx — A® — 8B%) Point offrite rder
Points of order 2
Points of order 3
Points of finite order
The group structure

s(x) =5x"2 + 62Ax™® + 380Bx° — 105A%x® + 240BAX + (7300/13 - 240132) x® — 696BA%X° + (7125/\4 - 192032A) x*
| Division polynomials
4 (—805A3 - 160033) Xt (—50A5 - 24032A2) e (—1OOBA4 - 64033A) X+ (A6 — 32824 — 2565“)

pe(x) =2y(6x'® + 144Ax™ 4 1344Bx"® — 728A%x"% + (—2576A3 — 537682) x'° — 9152BA°x° + (—1884A“ — 3974452A) X
4 (15368A3 — 4454433) X+ (72576A5 - 537682A2) X® 4 (767ZOBA4 - 3225633A) X
+ (—728A6 — 8064B°A° — 1075254) X+ (—3584BA5 - 2508833A2) X+ (144A7 — 30728°A" — 2764834A) X

4 (192.‘3/46 — 5128°4° — 1228855) X+ (6A8 4 192B2A° + 10243“A2))



Elliptic curves over F

Introductic
Theorem (E : Y2 = X° 4+ AX + Beelliptic curve, P = (x, y) € E) e

WeierstraB Equations
The Discriminant

(o Ymrtm %(w)) _ (qsm(x) wm(x,y)) = i
mex. ) (X B 2uh() V2 (x) B3 (x, )

The sum of points
Examples
Structure of E(F,) and
E(F3)
where

the j-nvariant

2 Points of fnte order
dm = X’(/J — P w M Points of order 2
"o mEt = Em v Points of order 3

Points of fnite order

The group structure

o Gm() =XT 4+ Ym(x)? = mPx" T 4 € ZA]
® womii € YZ[X], wam € Z[X]

e A

o ged(¥7,(x), ¢m(x)) =1
o E2m+ 1]\ {oo} = {(x,y) € E(K) : vzms1(x) = 0}
o E[2m] \ E[2] = {(x,¥) € E(K) : y~"dom(x) = 0}
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