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Three Lectures on Elliptic Curves Cryptography

Note (Program of the Lectures)

1 Generalities on Elliptic Curves over finite Fields

2 Basic facts on Discrete Logarithms on finite groups, generic attacks (Pohlig–Hellmann, BSGS, Index
Calculus)

3 Elliptic curves Cryptography: pairing based Cryptography, MOV attacks, anomalous curves
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Notations

Fields of characteristics 0

1 Q is the field of rational numbers

2 R and C are the fields of real and complex numbers
3 K ⊂ C, dimQ K <∞ is a number field

• Q[
√

d ], d ∈ Q
• Q[α], f (α) = 0, f ∈ Q[X ] irreducible

Finite fields

1 Fp = {0, 1, . . . , p − 1} is the prime field;

2 Fq is a finite field with q = pn elements

3 Fq = Fp[ξ], f (ξ) = 0, f ∈ Fp[X ] irreducible, ∂f = n

4 F4 = F2[ξ], ξ2 = 1 + ξ

5 F8 = F2[α], α3 = α + 1 but also F8 = F2[β], β3 = β2 + 1, (β = α2 + 1)

6 F101101 = F101[ω], ω101 = ω + 1
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Notations

Algebraic Closure of Fq

• C ⊃ Q satisfies that Fundamental Theorem of Algebra! (i.e. ∀f ∈ Q[x ], ∂f > 1, ∃α ∈ C, f (α) = 0)

• We need a field that plays the role, for Fq , that C plays for Q. It will be Fq , called algebraic closure of Fq

1 ∀n ∈ N, we fix an Fqn

2 We also require that Fqn ⊆ Fqm if n | m

3 We let Fq =

⋃
n∈N

Fqn

• Fact: Fq is algebraically closed
(i.e. ∀f ∈ Fq [x ], ∂f > 1, ∃α ∈ Fq, f (α) = 0)

If F (x, y) ∈ Q[x, y ] a point of the curve F = 0, means (x0, y0) ∈ C2 s.t. F (x0, y0) = 0.
If F (x, y) ∈ Fq [x, y ] a point of the curve F = 0, means (x0, y0) ∈ Fq

2 s.t. F (x0, y0) = 0.
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The (general) Weierstraß Equation

An elliptic curve E over a Fq (finite field) is given by an equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where a1, a3, a2, a4, a6 ∈ Fq

The equation should not be singular
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The Discriminant of an Equation
The condition of absence of singular points in terms of a1, a2, a3, a4, a6

Definition

The discriminant of a Weierstraß equation over Fq , q = pn, p ≥ 3 is

∆E :=
1
24

(
−a5

1a3a4 − 8a3
1a2a3a4 − 16a1a2

2a3a4 + 36a2
1a2

3a4

− a4
1a2

4 − 8a2
1a2a2

4 − 16a2
2a2

4 + 96a1a3a2
4 + 64a3

4+

a6
1a6 + 12a4

1a2a6 + 48a2
1a2

2a6 + 64a3
2a6 − 36a3

1a3a6

−144a1a2a3a6 − 72a2
1a4a6 − 288a2a4a6 + 432a2

6

)
Note

E is non singular if and only if ∆E 6= 0
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Special Weierstraß equation of E/Fpα , p 6= 2

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 ai ∈ Fpα

If we “complete the squares“ by applying the

transformation:

{
x ← x
y ← y − a1x+a3

2

the Weierstraß equation becomes:

E ′ : y2 = x3 + a′2x2 + a′4x + a′6

where a′2 = a2 +
a2

1
4 , a
′
4 = a4 + a1a3

2 , a′6 = a6 +
a2

3
4

If p ≥ 5, we can also apply the transformation {
x ← x − a′2

3

y ← y

obtaining the equations:

E ′′ : y2 = x3 + a′′4 x + a′′6

where a′′4 = a′4 −
a′2

2

3 , a
′′
6 = a′6 +

2a′2
3

27 −
a′2a′4

3
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Definition

Two Weierstraß equations over Fq are said (affinely) equivalent if there exists a (affine) change of variables that
takes one into the other

Note

The only affine transformation that take a Weierstrass equations in another Weierstrass equation have the form{
x ←− u2x + r
y ←− u3y + u2sx + t

r , s, t, u ∈ Fq
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The Weierstraß equation
Classification of simplified forms

After applying a suitable affine transformation we can always assume that E/Fq(q = pn) has a Weierstraß
equation of the following form

Example (Classification)

E p ∆E

y2 = x3 + Ax + B ≥ 5 4A3 + 27B2

y2 + xy = x3 + a2x2 + a6 2 a2
6

y2 + a3y = x3 + a4x + a6 2 a4
3

y2 = x3 + Ax2 + Bx + C 3 4A3C − A2B2 − 18ABC + 4B3 + 27C2

Definition (Elliptic curve)

An elliptic curve is the data of a non singular Weierstraß equation (i.e. ∆E 6= 0)

Note: If p ≥ 3,∆E 6= 0⇔ x3 + Ax2 + Bx + C has no double root
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Elliptic curves over F2

All possible Weierstraß equations over F2 are:

Weierstraß equations over F2

1 y2 + xy = x3 + x2 + 1

2 y2 + xy = x3 + 1

3 y2 + y = x3 + x

4 y2 + y = x3 + x + 1

5 y2 + y = x3

6 y2 + y = x3 + 1

However the change of variables

{
x ← x + 1
y ← y + x

takes the sixth curve into the fifth. Hence we can remove the

sixth from the list.

Fact:

There are 5 affinely inequivalent elliptic curves over F2
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Elliptic curves in characteristic 3

Via a suitable transformation (x → u2x + r , y → u3y + u2sx + t) over F3, 8 inequivalent elliptic curves over F3
are found:
Weierstraß equations over F3

1 y2 = x3 + x

2 y2 = x3 − x

3 y2 = x3 − x + 1

4 y2 = x3 − x − 1

5 y2 = x3 + x2 + 1

6 y2 = x3 + x2 − 1

7 y2 = x3 − x2 + 1

8 y2 = x3 − x2 − 1

Fact:

let
(

a
q

)
be the Kronecker symbol. Then the number of non–isomorphic (i.e. inequivalent) classes of elliptic curves

over Fq is

2q + 3 +

(−4
q

)
+ 2
(−3

q

)
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The definition of E(Fq)

Let E/Fq elliptic curve and consider a “symbol”∞ (point at infinity). Set

E(Fq) = {(x, y) ∈ F2
q : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6} ∪ {∞}

Hence
• E(Fq) ⊂ F2

q ∪ {∞}
• If Fq ⊂ Fqn , then E(Fq) ⊂ E(Fqn )

• We may think that∞ sits on the top of the y–axis (“vertical direction”)

Definition (line through points P,Q ∈ E(Fq ))

rP,Q :

{
line through P and Q if P 6= Q
tangent line to E at P if P = Q

projective or affine

• if #(rP,Q ∩ E(Fq)) ≥ 2 ⇒ #(rP,Q ∩ E(Fq)) = 3
if tangent line, contact point is counted with multiplicity

• r∞,∞ ∩ E(Fq) = {∞,∞,∞}
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History (from WIKIPEDIA)

Carl Gustav Jacob Jacobi (10/12/1804 –
18/02/1851) was a German mathematician,
who made fundamental contributions to elliptic
functions, dynamics, differential equations,
and number theory.

Some of His Achievements:

• Theta and elliptic function

• Hamilton Jacobi Theory

• Inventor of determinants

• Jacobi Identity
[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0
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Properties of the operation “+E ”

Theorem

The addition law on E(Fq) has the following properties:

(a) P +E Q ∈ E(Fq) ∀P,Q ∈ E(Fq)

(b) P +E ∞ =∞ +E P = P ∀P ∈ E(Fq)

(c) P +E (−P) =∞ ∀P ∈ E(Fq)

(d) P +E (Q +E R) = (P +E Q) +E R ∀P,Q,R ∈ E(Fq)

(e) P +E Q = Q +E P ∀P,Q ∈ E(Fq)

• (E(Fq),+E ) commutative group
• All group properties are easy except associative law (d)
• Geometric proof of associativity uses Pappo’s Theorem
• can substitute Fq with any field K ; Theorem holds for (E(K ),+E )

• −P = −(x1, y1) = (x1,−a1x1 − a3 − y1)
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Formulas for Addition on E (Summary)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

P1 = (x1, y1),P2 = (x2, y2) ∈ E(Fq) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒
P1 +E P2 =∞

• x1 6= x2

λ =
y2 − y1

x2 − x1
ν =

y1x2 − y2x1

x2 − x1

• If P1 = P2

• 2y1 + a1x + a3 = 0 ⇒
P1 +E P2 = 2P1 =∞

• 2y1 + a1x + a3 6= 0

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x + a3
, ν = −

a3y1 + x3
1 − a4x1 − 2a6

2y1 + a1x1 + a3

Then

P1 +E P2 = (λ2 − a1λ− a2 − x1 − x2,−λ3 − a2
1λ + (λ + a1)(a2 + x1 + x2)− a3 − ν)
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Formulas for Addition on E (Summary for special equation)

E : y2 = x3 + Ax + B

P1 = (x1, y1),P2 = (x2, y2) ∈ E(Fq) \ {∞},
Addition Laws for the sum of affine points

• If P1 6= P2

• x1 = x2 ⇒
P1 +E P2 =∞

• x1 6= x2

λ =
y2 − y1

x2 − x1
ν =

y1x2 − y2x1

x2 − x1

• If P1 = P2

• y1 = 0 ⇒
P1 +E P2 = 2P1 =∞

• y1 6= 0

λ =
3x2

1 + A

2y1
, ν = −

x3
1 − Ax1 − 2B

2y1

Then

P1 +E P2 = (λ2 − x1 − x2,−λ3 + λ(x1 + x2)− ν)
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Group Structure

Theorem (Classification of finite abelian groups)

If G is abelian and finite, ∃n1, . . . , nk ∈ N>1 such that

1 n1 | n2 | · · · | nk

2 G ∼= Cn1 ⊕ · · · ⊕ Cnk

Furthermore n1, . . . , nk (Group Structure) are unique

Theorem (Structure Theorem for Elliptic curves over a finite field)

Let E/Fq be an elliptic curve, then

E(Fq) ∼= Cn ⊕ Cnk ∃n, k ∈ N>0
.

(i.e. E(Fq) is either cyclic (n = 1) or the product of 2 cyclic groups)
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EXAMPLE: Elliptic curves over F2 and over F3

From our previous list:

Groups of points of curves over F2

E E(F2) E(F2)

y2 + xy = x3 + x2 + 1 {∞, (0, 1)} C2

y2 + xy = x3 + 1 {∞, (0, 1), (1, 0), (1, 1)} C4

y2 + y = x3 + x {∞, (0, 0), (0, 1), (1, 0), (1, 1)} C5

y2 + y = x3 + x + 1 {∞} 1
y2 + y = x3 {∞, (0, 0), (0, 1)} C3

Note: each Ci , i = 1, . . . , 5 is represented by a curve /F2

Groups of points of curves over F3

i Ei Ei (F3) Ei (F3)

1 y2 = x3 + x {∞, (0, 0), (2, 1), (2, 2)} C4

2 y2 = x3 − x {∞, (1, 0), (2, 0), (0, 0)} C2 ⊕ C2

3 y2 = x3 − x + 1 {∞, (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)} C7

4 y2 = x3 − x − 1 {∞} {1}
5 y2 = x3 + x2 − 1 {∞, (1, 1), (1, 2)} C3

6 y2 = x3 + x2 + 1 {∞, (0, 1), (0, 2), (1, 0), (2, 1), (2, 2)} C6

7 y2 = x3 − x2 + 1 {∞, (0, 1), (0, 2), (1, 1), (1, 2), } C5

8 y2 = x3 − x2 − 1 {∞, (2, 0))} C2

Note: each Ci , i = 1, . . . , 7 is represented by a curve /F3
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The j-invariant

Let E/K : y2 = x3 + Ax + B, p ≥ 5 and ∆E := 4A3 + 27B2.

Definition

The j–invariant of E is j = j(E) = 1728 4A3

4A3+27B2

Definition

Let u ∈ K∗. The elliptic curve Eu : y2 = x3 + u2Ax + u3B is called the twist of E by u

Properties of j–invariants

1 j(E) = j(Eu), ∀u ∈ K∗

2 j(E ′/K ) = j(E ′′/K ) ⇒ ∃u ∈ K
∗

s.t. E ′′ = E ′u
3 j 6= 0, 1728⇒ E : y2 = x3 + 3j

1728−j x + 2j
1728−j , j(E) = j

4 j = 0 ⇒ E : y2 = x3 + B, j = 1728 ⇒ E : y2 = x3 + Ax

5 j : K ←→ {K̄ –affinely equivalent classes of E/K}.
6 p = 2, 3 different definition

7 E and Eµ are Fq [
√
µ]–affinely equivalent

8 #E(Fq2 ) = #Eµ(Fq2 )

9 usually #E(Fq) 6= #Eµ(Fq)



Elliptic curves over Fq

Introduction

Fields

Weierstraß Equations

The Discriminant

Elliptic curves /F2

Elliptic curves /F3

The sum of points

Examples

Structure of E(F2 ) and
E(F3 )

the j-invariant

Points of finite order

Points of order 2

Points of order 3

Points of finite order

The group structure

Division polynomials

Determining points of order 2

Let P = (x1, y1) ∈ E(Fq) \ {∞},

P has order 2 ⇐⇒ 2P =∞ ⇐⇒ P = −P

So

−P = (x1,−a1x1 − a3 − y1) = (x1, y1) = P =⇒ 2y1 = −a1x1 − a3

If p 6= 2, can assume E : y2 = x3 + Ax2 + Bx + C

−P = (x1,−y1) = (x1, y1) = P =⇒ y1 = 0, x3
1 + Ax2

1 + Bx1 + C = 0

Note

• the number of points of order 2 in E(Fq) equals the number of roots of X 3 + Ax2 + Bx + C in Fq

• roots are distinct since discriminant ∆E 6= 0
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Determining points of order 2 (continues)

Definition

2–torsion points
E [2] = {P ∈ E(Fq) : 2P =∞}.

FACTS:

E [2] ∼=

{
C2 ⊕ C2 if p > 2
C2 if p = 2,E : y2 + xy = x3 + a4x + a6

{∞} if p = 2,E : y2 + a3y = x3 + a2x2 + a6

Each curve /F2 has cyclic E(F2).

E E(F2) |E(F2)|
y2 + xy = x3 + x2 + 1 {∞, (0, 1)} 2
y2 + xy = x3 + 1 {∞, (0, 1), (1, 0), (1, 1)} 4
y2 + y = x3 + x {∞, (0, 0), (0, 1), (1, 0), (1, 1)} 5
y2 + y = x3 + x + 1 {∞} 1
y2 + y = x3 {∞, (0, 0), (0, 1)} 3



Elliptic curves over Fq

Introduction

Fields

Weierstraß Equations

The Discriminant

Elliptic curves /F2

Elliptic curves /F3

The sum of points

Examples

Structure of E(F2 ) and
E(F3 )

the j-invariant

Points of finite order

Points of order 2

Points of order 3

Points of finite order

The group structure

Division polynomials

Determining points of order 3
Let P = (x1, y1) ∈ E(Fq)

P has order 3 ⇐⇒ 3P =∞ ⇐⇒ 2P = −P

So, if p > 3 and E : y2 = x2 + Ax + B

2P = (x2P , y2P ) = 2(x1, y1) = (λ2 − 2x1,−λ3 + 2λx1 − ν) where λ =
3x2

1 +A
2y1

, ν = − x3
1−Ax1−2B

2y1
.

P has order 3 ⇐⇒ x2P = λ2 − 2x1 = x1

Substituting λ,

x2P − x1 =
−3x4

1−6Ax2
1−12Bx1+A2

4(x3
1

+Ax1+4B)
= 0

Note (Conclusions)

• ψ3(x) := 3x4 + 6Ax2 + 12Bx − A2 called the 3rd division polynomial
• (x1, y1) ∈ E(Fq) has order 3 ⇒ ψ3(x1) = 0
• E(Fq) has at most 8 points of order 3

• If p 6= 3, E [3] := {P ∈ E(Fq) : 3P =∞} ∼= C3 ⊕ C3

• If p = 3, E : y2 = x3 + Ax2 + Bx + C and P = (x1, y1) has order 3, then
1 Ax3

1 + AC − B2 = 0
2 E [3] ∼= C3 if A 6= 0 and E [3] = {∞} otherwise
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Determining points of order 3 (continues)

FACTS:

E [3] ∼=

{
C3 ⊕ C3 if p 6= 3
C3 if p = 3,E : y2 = x3 + Ax2 + Bx + C,A 6= 0
{∞} if p = 3,E : y2 = x3 + Bx + C

Example: inequivalent curves /F7 with #E(F7) = 9.

E ψ3(x) E [3] ∩ E(F7) E(F7) ∼=
y2 = x3 + 2 x(x + 1)(x + 2)(x + 4) {∞, (0,±3), (−1,±1), (5,±1), (3,±1)} C3 ⊕ C3

y2 = x3 + 3x + 2 (x + 2)(x3 + 5x2 + 3x + 2) {∞, (5,±3)} C9

y2 = x3 + 5x + 2 (x + 4)(x3 + 3x2 + 5x + 2) {∞, (3,±3)} C9

y2 = x3 + 6x + 2 (x + 1)(x3 + 6x2 + 6x + 2) {∞, (6,±3)} C9

One count the number of inequivalent E/Fq with #E(Fq ) = r

Example (A curve over F4 = F2(ξ), ξ2 = ξ + 1; E : y2 + y = x3)

We know E(F2) = {∞, (0, 0), (0, 1)} ⊂ E(F4).
E(F4 ) = {∞, (0, 0), (0, 1), (1, ξ), (1, ξ + 1), (ξ, ξ), (ξ, ξ + 1), (ξ + 1, ξ), (ξ + 1, ξ + 1)}

ψ3(x) = x4 + x = x(x + 1)(x + ξ)(x + ξ + 1)⇒ E(F4) ∼= C3 ⊕ C3
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Determining points of order (dividing) m

Definition (m–torsion point)

Let E/K and let K an algebraic closure of K .

E [m] = {P ∈ E(K ) : mP =∞}

Theorem (Structure of Torsion Points)

Let E/K and m ∈ N. If p = char(K ) - m,

E [m] ∼= Cm ⊕ Cm

If m = pr m′, p - m′,

E [m] ∼= Cm ⊕ Cm′ or E [m] ∼= Cm′ ⊕ Cm′

E/Fp is called

{
ordinary if E [p] ∼= Cp

supersingular if E [p] = {∞}
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Group Structure of E(Fq)

Corollary

Let E/Fq . ∃n, k ∈ N are such that

E(Fq) ∼= Cn ⊕ Cnk

Proof.

From classification Theorem of finite abelian group
E(Fq) ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with ni |ni+1 for i ≥ 1.
Hence E(Fq) contains nr

1 points of order dividing n1. From Structure of Torsion Theorem, #E [n1] ≤ n2
1 . So

r ≤ 2

Theorem (Corollary of Weil Pairing)

Let E/Fq and n, k ∈ N s.t. E(Fq) ∼= Cn ⊕ Cnk . Then n | q − 1.

We shall discuss Weil Pairing Wednesday
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The division polynomials

Definition (Division Polynomials of E : y2 = x3 + Ax + B (p > 3))

ψ0 =0

ψ1 =1

ψ2 =2y

ψ3 =3x4 + 6Ax2 + 12Bx − A2

ψ4 =4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3)

...

ψ2m+1 =ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m =

(
ψm

2y

)
· (ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3

The polynomial ψm ∈ Z[x, y ] is called the mth division polynomial

FACTS:

• ψ2m+1 ∈ Z[x ] and ψ2m ∈ 2yZ[x ]

• ψm =

{
y(mx (m2−4)/2 + · · · ) if m is even
mx (m2−1)/2 + · · · if m is odd.

• ψ2
m = m2xm2−1 + · · ·
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Remark.

• E [2m + 1] \ {∞} = {(x, y) ∈ E(K̄ ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x, y) ∈ E(K̄ ) : y−1ψ2m(x) = 0}

Example

ψ4(x) =2y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4BAx − A3 − 8B2)

ψ5(x) =5x12 + 62Ax10 + 380Bx9 − 105A2x8 + 240BAx7 +
(
−300A3 − 240B2

)
x6 − 696BA2x5 +

(
−125A4 − 1920B2A

)
x4

+
(
−80BA3 − 1600B3

)
x3 +
(
−50A5 − 240B2A2

)
x2 +
(
−100BA4 − 640B3A

)
x +
(

A6 − 32B2A3 − 256B4
)

ψ6(x) =2y(6x16 + 144Ax14 + 1344Bx13 − 728A2x12 +
(
−2576A3 − 5376B2

)
x10 − 9152BA2x9 +

(
−1884A4 − 39744B2A

)
x8

+
(

1536BA3 − 44544B3
)

x7 +
(
−2576A5 − 5376B2A2

)
x6 +
(
−6720BA4 − 32256B3A

)
x5

+
(
−728A6 − 8064B2A3 − 10752B4

)
x4 +
(
−3584BA5 − 25088B3A2

)
x3 +
(

144A7 − 3072B2A4 − 27648B4A
)

x2

+
(

192BA6 − 512B3A3 − 12288B5
)

x +
(

6A8 + 192B2A5 + 1024B4A2
)

)
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Theorem (E : Y 2 = X 3 + AX + B elliptic curve, P = (x, y) ∈ E)

m(x, y) =

(
x −

ψm−1ψm+1

ψ2
m(x)

,
ψ2m(x, y)

2ψ4
m(x)

)
=

(
φm(x)

ψ2
m(x)

,
ωm(x, y)

ψ3
m(x, y)

)
where

φm = xψ2
m − ψm+1ψm−1, ωm =

ψm+2ψ
2
m−1−ψm−2ψ

2
m+1

4y

FACTS:

• φm(x) = xm2
+ · · · ψm(x)2 = m2xm2−1 + · · · ∈ Z[x ]

• ω2m+1 ∈ yZ[x ], ω2m ∈ Z[x ]

• ωm(x,y)

ψ3
m(x,y)

∈ yZ(x)

• gcd(ψ2
m(x), φm(x)) = 1

• E [2m + 1] \ {∞} = {(x, y) ∈ E(K ) : ψ2m+1(x) = 0}
• E [2m] \ E [2] = {(x, y) ∈ E(K ) : y−1ψ2m(x) = 0}
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