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Classical General Examples of PKC

® (1976) Diffie Hellmann Key exchange protocol IEEE Trans. Information Theory IT-22 (1976)
© (1983) Massey Omura Cryptosystem Proc. 4" Benelux Symposium on Information Theory (1983)
® (1984) ElGamal Cryptosystem IEEE Trans. Information Theory IT-31 (1985)

How Public Key Encryption Works
f

eaturing Jim and Sue

l‘é? am

Qoh! Mail!

=

Encrypted e-mail

Sue decrypts Jim's e-mail
— with a private key that
Jim encrypts an e-mail with only she possesses

Sue's publicly available key
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Elliptic curves over F

Diffie—Hellmann key exchange

Reviews on PKC

ElGamal
DHKEP Massey - Omura
. ) . Discrete Logarithms
©® Alice and Bob agree on a cyclic group G and on a generator g in G DL Attacks
- BSGS
® Alice picks a secret a,0 < a < |G| Pohiih-Hellmann
. DL d
® Bob picks asecret b,0 < b < |G| S
® They compute and publish g2 (Alice) and g° (Bob) Reminder from Yesterday
. b Points of finite order
® The common secret key is g2 Important Results
Hasse’s Theorem
Waterhouse’s Theorem

Riick's Theorem
Legendre Symbols
o g o
=]
b

g

Alice Bob
comman key
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Elliptic curves over F

ElGamal Cryptosystem

Reviews on PKC
DH

[EGama
Alice wants to sent a message x € G (cyclic group) to Bob Massey — Omura
ElGamal SETUP: o e
©® Alice and Bob agree on a generator g in G :f,fme”mam
® Bob picks a secret b, 0 < b < |G|, he computes 3 = g° € G and publishes 3 S:Lamc,:::
o Reminder from Yesterday
Points of finite order
ElGamal ENCRYPTION: (Alice) e
@ Alice picks a secret k, 0 < k < |G| ‘:;;:':'::;:emem
@ She computes o = g¥ € Gandy = x- X € G Legendre Symbols
Further readin
® The encrypted messageis E(x) = (a,7) € Gx G ’
v
ElGamal DECRYPTION: (Bob)
@® Bob computes D(«,v) =7 - al®-P
@ Itworks since D(E(x)) = D(c, ) = x - g° . g"IGI=D) — x since gkICl = 1
v




Massey Omura on any finite Group G
¥

Alice Bob

¥ ¢

SETUP:

@ Alice and Bob each

e pick a secret key ka, ks € U(Z/|G|Z)
e compute 44, £g € U(Z/|G|Z) such that kals = 1(mod|G|) and kglg = 1(mod|G|)

@ Alice key is (ka, £a) (ka to lock and ¢4 to unlock)
® Bob key is (kg, ¢g) (ks to lock and ¢z to unlock)

WORKING: To send the message P
@ Alice computes and sends M = P ¢ G
@ Bob computes and sends back N = M*s ¢ G
® Alice computes L = N“ € G and sends it back to Bob
@ Bob decrypt the message computing P = L% € G

ltworks: P = L‘e = Nfals = Mhstals = phakeials ¢ G
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The generic Discrete Logarithms problem

e G = (g) cyclic group
e g agenerator
e xc @G

Discrete Logarithm Problem:

Find n € Z/|G|Z such that x = g" J
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¢ Need to specify how to make the operations in G

o |f G = (Z/nZ,+) then discrete logs are very easy.

o IfG=((z/nz)*, x)then Gis cycliciff n = 2,4, p*,2 - p* where p is an odd prime: famous theorem of
GauB.

e In G = (Z/pZ)" =: F, there is no efficient algorithm to compute DL.

o We are interested in the case when G = E(IFg) where E /I is an elliptic curve

» Primordial public key cryptography is based on the difficulty of the Discrete Log problem

Riick's Theorem
Legendre Symbols
Further reading



Classical DL attacks

& Shanks baby-step, giant step (BSGS) Proc. 2™ Manitoba Conf. Numerical Mathematics (Winnipeg, 1972).
¥ Pohlig—Hellmann Algorithm IEEE Trans. Information Theory IT-24 (1978).

¥ Index computation algorithm
¥ Sieving algorithms La Macchia & Odlyzko, Designs Codes and Cryptography 1 (1991)

NOTE: The last two are "very special" for Fy,
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DISCRETE LOGARITHMS: continues
Shanks Baby Step Giant Step algorithm

Input: A group G=(g) and a€ G
output: k € Z/|G|Z such that a= g

1. M:=T14/|G|]
2. For j=0,1,2,..., M. )
Compute ¢ and store the pair (j,¢) in a table

3. A:=g M B:=a
5. For i=0,1,2,...,M—1. )

-1- Check if B is the second component (¢) of any

pair in the table
-2- If so, return IM+4j and halt.
-3- If not B=B-A

e The BSGS algorithm is a generic algorithm. It works for every finite cyclic group.

e based on the factthat Vx € Z/nZ, x = j+ imwithm = [v/n],0 <j < mand0 <i<m
o Not necessary to know the order of the group G in advance. The algorithm still works if an upper bound on

the group order is known.
o Usually the BSGS algorithm is used for groups whose order is prime.

e The running time of the algorithm and the space complexity is O(4/|G|), much better than the O(|G|)

running time of the naive brute force
e The algorithm was originally developed by Daniel Shanks.
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DISCRETE LOGARITHMS: continues
The Pohlig-Hellman Algorithm

In some groups Discrete logs are easy. For example if G is a cyclic group and #G = 2™ then we know that there
are subgroups:
(1)=GCG C---CGn=G

such that G is cyclic and #G; = 2'. Furthermore

G = {ye G such that y? = 1}.

If G = (g),forany a € G, either@” ' =1ora" = g? . From this property we deduce the algorithm:

Input: A group G=(g), |G| =2" and a€ G
output: Kk € Z/|G|Z such that a= gk
1. A:=a K=0
2. For j=1,2,...,m.

£ A" 21, Aimg 2 CAK =K+ 2!
3. output K
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DISCRETE LOGARITHMS: continues
The Pohlig-Hellman Algorithm

e The above is a special case of the Pohlig-Hellman Algorithm which can be extended to the case when |G|
has only small prime divisors

o To avoid this situation one crucial requirement for a DL-resistent group in cryptography is that #G has a
large prime divisor

e If p=2% 1 1is a Fermat prime, then DL in (F,)* are easy

o Classical algorithm for factoring have often analogues for computing discrete logs. A very important one is
the Pollard p—method

¢ One of the strongest algorithms is the index calculus algorithm. NOT generic. It works only in Fg
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Elliptic curves over F

DISCRETE LOGARITHMS: continues

Records Reviews on PKG
DH
ElGamal
Massey — Omura
Discrete Logarithms
DL Attacks
BSGS
Pohlih-Hellmann

Discrete Logarithm Records:

o G=F;: p~ 10" (596-bit)
Cyril Bouvier, Pierrick Gaudry, Laurent Imbert, Hamza Jeljeli and Emmanuel Thomé (11 June 2014) .
quare roots

G= F;ZZ p = 1080 Reminder from Yesterday
Razvan Barbulescu, Pierrick Gaudry, Aurore Guillevic, and Frangois Morain (25 June 2014) Fomts offinie order

G=Fj.:a=1279

Important Results
Hasse’s Theorem

Waterhouse’s Theorem
Riick's Theorem

Thorsten Kleinjung (17 October 2014)

Legendre Symbols

G = E(Fp): p ~ 10%®
Joppe W. Bos, Marcelo E. Kaihara, T. Kleinjung, Arjen K. Lenstra and Peter L. Montgomery (July 2009)
p = 4451685225093714772084598273548427

G = E(F2:): o = 113 Erich Wenger and Paul Wolfger (January 2015)

Further reading

v

with ECC same security with 1/5 of the size J




The problem of “Square Roots Modulo a prime”

Elliptic curves over F

Reviews on PKC

DH
Given an odd prime p and a quadratic residue a ElesiE
Massey — Omura
Discrete Logarithms
Find x such that x> = a mod p ) BLAEES
BSGS
Pohlih—Hellmann
It can be solved efficiently if we are given a quadratic nonresidue g € (Z/pZ)* DL records
['squareroots
Reminder from Yesterday
© write p—1=2¥.q and we know that (Z/pZ)* has a (cyclic) subgroup G with 2K Points of fnite order
elements. Important Results
J Hasse’s Theorem
® Note that b=g9 is a generator of G (in fact if it was b =1 mod p for j <Kk, Waterhouse's Theorem
then g®~"/2 =1 modp) and that a7 e G

Riick’s Theorem
® Use the last algorithm to compute t such that a% = b
since a®~"/2 =1 mod p.

Legendre Symbols

Note that t is even Further reading

@ Finally set x = aP~9/2p!/2 and observe that x2 = aP~ Py = &£ = amod p.
REMARKS:

e The above is not deterministic. However Schoof in 1985 discovered a polynomial time algorithm which is
however not efficient.

¢ To find a random point in an elliptic curve E /F, one needs to compute square roots modulo p




The problem of “Modular Square Roots”
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DL records
['squareroots
Reminder from Yesterday
Points of finite order
If the factorization of n is known, then this problem (efficiently) can be solved in 3 steps: Important Results
Hasse’s Theorem
@ For each prime divisor p of nfind x, such that XS = amod p Waterhouse's Theorem

Riick's Theorem
@ Use the Hensel's Lemma to lift x, to y, where y? = a mod p*("

Find x (if it exists) such that x> = a mod n J

Legendre Symbols

® Use the Chinese remainder Theorem to find x € Z/nZ such that
X = yp mod p%» vp | n.

o Finally x> = amod n.

Further reading



Elliptic curves over F,
Reminder from Yesterday :
line through Pand Q if P # Q Feviows on PKG
tangentlineto Eat P if P = Q, DH

. . ElGamal
I'p,o : Vertical line through P Maseey = omura

IfP, Qe E(Fq),rp,o :

2 3 2 2 3 2 Discrete Logarithms.
XY +Y +y=x"-3x"+x+1 —XY+Y +y=x"-3x"+x+1 DL Attacks
] | | BSGS
! Pohlih—Hellmann
DL records

o

i Square roots

Points of finite order

Important Results

e Hasse’s Theorem
Waterhouse’s Theorem

- ! Riick's Theorem

Legendre Symbols
P+Q
® P Further reading

Ip,00 N E(Fq) = {P, 00, P'}

re,q N E(Fq) = {P,Q, R}



Formulas for Addition on £ (Summary)

E:y?+ aixy + azsy = xX° + aX? + asX + as J

Py = (x1, 1), P2 = (X, y2) € E(Fq) \ {00},
Addition Laws for the sum of affine points

. |fP175P2
o Xy =Xo
X #£X
N = Yo — 11 _ ixe = yoXq
Xo — Xq X2 — X4
] |fP1:P2

e 2y +aix+a3=0
o 2yi +aix+az#0

_ @+ —a —2a

Py +g P2 = 0 '
=

Py +g P = 2Py = oo

J

A= 3X12 +2ax1 +as — aryy
2y + a1 X + a3

3

Then

N 2y + ayxy + as

Pi+ePo=(N —aid—a —x — X, -\ —ZX+ (A +a)(a+x +x)—a —v) J
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Formulas for Addition on £ (Summary for special equation)

E:yY*=x*+Ax+B

Py = (x1,y1), P2 = (X2, y2) € E(Fq) \ {0},
Addition Laws for the sum of affine points

PitePo=co )
=

. |fP17£P2
o Xy =X
¢ X #X
Yo — W1 YiXe — YoXq
A= v =
Xo — Xq X2 — Xy
L] |fP1:P2
e ¥y =0
e 1 #0 ,
>\=3x1+A7V=7x13—Ax1—ZB
2y
Then

Pi+ePo= (N — X1 — x2, =X + A(X + X) — v)
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The division polynomials

Definition (Division Polynomials of £ : y*> = x* + Ax + B (p > 3))
o =0, = 1,12 =2y
s =3x* + 6AXZ + 12Bx — A
4 =4y(x® + 5Ax* + 20Bx® — 5A%X® — 4ABx — 8B° — A°)

Yomi1 =Pmiaths — bm 1S, form>2

@Z}Zm (;p;) (wm+2'¢’m71 ¢m72¢,2n+1) for m Z 3

The polynomial v, € Z[x, y] is the m™" division polynomial

Theorem (E : Y2 = X° + AX + Beelliptic curve, P = (x, y) € E)

mP = m(x,y) = (z?,&‘)’ Z?‘—&'i)) :

Pmi2 V2 —Ym_2P?
where ¢m = Xy — Ymi1hm—1, wn = ———ntr
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Points of order m

Definition (m-torsion point)
Let £/K and let K an algebraic closure of K.

Elm| = {P € E(K): mP=o0c} |

Theorem (Structure of Torsion Points)
LetE/K and m € N.

E[m] = Cn® Cn ifp = char(K) t m
" |Cn®Cw or E[mM=Cx @ Crn ifm=p'm,ptm

FACTS:
E[2m + 1]\ {oo} = {(x,¥) € E(K) : t2ms1(x) = 0}
E[2m] \ E[2] = {(x,y) € E(K) : y~"¢pom(x) = 0}

o Corollary of the Theorem of Structure for torsion 3n, k € N such that E(Fq) = C, & Crk

o Property of Weil pairingn | g — 1.
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Theorem (Hasse)
Let E be an elliptic curve over the finite field Fq. Then the order of E(Fg) satisfies

g+ 1— #E(Fg)| < 2/3.

So #E(Fq) € [(v/d — 1)%, (v/ + 1)?] the Hasse interval Z,

Example (Hasse Intervals)

q 7,
2 {1,2,3,4,51

3 {1,2,3,4,5,6,7}

4 {1,2,3,4,5,6,7,8,9}

5 {2,3,4,5,6,7,8,9,10}

7 {3,4,5,6,7,8,9,10, 11, 12, 13}

8 {4,5,6,7,8,9,10, 11, 12, 13, 14}

9 {4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16}
1 {6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18}

13 {7,8,9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21}

16 {9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25}

17 {10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26}

19 {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28}

23 {15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33}

25 {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}

27 {18, 19,20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}

29 {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}

31 {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}
32 {22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}
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Theorem (Waterhouse)
Letg=p" andletN =g+ 1 — a.
3E/Fq s.t#E(Fq) = N & |a| < 2,/q and
one of the following is satisfied:
(i) ged(a,p) =1;
(i) n even and one of the following is satisfied:
Q® a=+2.7;

® p#1 (mod3),anda = +./q;
® p#Z1 (mod4) anda=0;

(iii) nis odd, and one of the following is satisfied:

©® p=2or3, anda= +p\"t/2;
® a=0.

Example (g prime VN € I;, 3E /Fq, #E(Fq) = N. g not prime:)

q ac

4=22 | { , , s ,0,1,2,3,4}

8=2% ({5 —4,-38,-2 -1,0,1,2,3,4,5}

9=3 | {8, , , , , ,0,1,2,3,4,5,6}

16 =2* | { , , —6, , , ,—2, ,0,1,2,3,4,5,6,7,8}

25 =52 | { , , , , , , , 5 5 ,0,1,2,3,4,5,6,7, }
27=3% | { s s , , —6, , s =% s ,0,1,2,8,4,5,6,7,8, }
32 =25 | { ,—10, , , , —6, ,—4, =2 ,0,1,2,3,4,5,6, , 10,
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Reviews on PKC

DH
Theorem (Riick) ElGamal
. . . g n g Massey — Omura
Suppose N is a possible order of an elliptic curve /Fq, q = p". Write Dicrete Logarttm
N = p°nyna, ptmne and ny | ny (possibly ny = 1). DL Attacks
There exists E /Fq s.t. Bsas
E ]F ~ C C Pohlih-Hellmann
( q) = Ln 57 (Yo DL records
if and only if
Reminder from Yesterday
@ Ny = no in the case (ii).1 of Waterhouse’s Theorem; LGRS
Important Results
® ny|q — 1 in all other cases of Waterhouse’s Theorem. Hasse's Theorem
Waterhouse’s Theorem
Example

Legendre Symbols

Further reading
o Ifg=p?" and #E(Fy) = g+ 1 £2,/9 = (p" £ 1), then
E(Fg) =2 Cort1 @ Cpnti-
e Let N =100 and q= 101 = 3E, E, E;, E4/]F101 s.t.
E1(F101) = Cyo @ Cio E>(F101) = C2 @ Csp
E3(F101) = Cs ® Coo E4(F101) = Cio0



Subfield curves

Definition
Let E/Fq and write E(Fg) = g+ 1 — a, (|]a| < 2./q). The characteristic polynomial of E is

Pe(T) = T? — aT + q € Z[T].

and its roots: 1 1
a:E(a+\/a2—4q) /B:E(a—\/a2—4q>

are called characteristic roots of Frobenius (Pg(®4) = 0).

Theorem

Vn e N
H#E[Fqg) =q" +1— (" + ).
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Subfield curves (continues)

E(Fg)=qg+1—-a = E(Fqn):q”+1 *((1"4»;3”)

Curves /F;

where Pe(T) = T2 — aT + g = (T — a)(T — B) € Z[T]

E a | Pe(T) (a, B)

2 B3 2 2 1

Yo+ xy=x>+x°+1 1 T°—-T+2 11 £V=7)
Y2 xy=x3+1 | TP+ T+2 =1+ V=7)
yV2+y=x3+x —2 | T242T+2 | —1+£i
Y24y =x+x+1 2 | TP—2T+2 | 1+i
yry=x° 0 | T2+2 +v/—2

E:yP4+xy = C4+x*+1 = E(Fpon) = 21°°+1—<

2

2
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100 100
14+ V-7 1—+-7
+) — () = 1267650600228229382588845215376



Subfield curves

Curves /F3

Lemma

Lets, = a" + B" where a3 = q and o + B = a. Then

E(Fg) =q+1—a

= E([Fg)=q"+1—(a"+8")
where Pg(T) = T? —aT +q = (T — a)(T — B) € Z[T]

Pe(T)

(a7/8)

T° +3

+v/-38

T° +3

+v-3

T2 +3T+3

(=3 £V-3)

T2 —3T +3

16+ /-3)

T2 —T+3

I EA))

T+ T+3

11/ 1)

T2 42T +3

—1+£v-2

ON[O| O B[W| N =]~

T? —2T +3

1++v/-2

,$1=a and Spi1 = asp — QSn—1
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Recall the Finite field Legendre symbols: let x € Fq, or

ElGamal
2 . Massey — Omura
+1 if t° = x has a solution t € Fy Discrets Lagarthms
(%) = ¢ —1 if £ = x has no solution t € Fgq e
0 ifx=0 Pohiih-Hellmann
DL records

Theorem

Square roots
Reminder from Yesterday
.2 .3 Points of finite order
LetE : y= = x° + Ax + B overF,. Then mporant Resuts
5 Hasse’s Theorem
E(F,)=qg+1+ E (w) Waterhouse's Theorem
#E(Fq) =q x€Fq Fq Riick's Theorem
[ Logendre Symbols
Further reading
Proof.

Note that

s 2 if3yy € F; st (x0, £¥0) € E(Fy)
14 (%) =q1 if(x,0) € E(Fq)
0 otherwise

#EF) =1+, o (14 (=)

Hence
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Corollary

LetE : y* = x* + Ax + BoverFq and E,, : y* = x® + i Ax + 1i®B, u € F}; \ (Fy)? its twist. Then

and

Proof.

and (Fﬁ) —1

#E(Fy) =q+1—a & #E,(Fg) =q+1+a

J

#E(]qu) = #EM(FQZ)'

#E,(Fg) = g+ 1 +Z<

X€EF,

:q+1+(

»

q

5> (

x€Fy

X3 + uPAx + B

")

xX*+Ax+B

Fq

)
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