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Weil Pairing

Let E/K and m ∈ N s.t. p - m. Then

E [m] ∼= Cm ⊕ Cm

We set

µm := {x ∈ K̄ : xm = 1}

µm is a cyclic group with m elements(since p - m)

Theorem (Existence of Weil Pairing)

There exists a pairing em : E [m]× E [m]→ µm called Weil Pairing, s.t. ∀P,Q ∈ E [m]

1 em(P +E Q,R) = em(P,R)em(Q,R) (bilinearity)

2 em(P,R) = 1∀R ∈ E [m] ⇒ P =∞ (non degeneracy)

3 em(P,P) = 1

4 em(P,Q) = em(Q,P)−1

5 em(σP, σQ) = σem(P,Q) ∀σ ∈ Gal(K̄/K )

6 em(α(P), α(Q)) = em(P,Q)degα ∀α separable endomorphism

The last one needs to be discussed further!!!
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Properties of Weil pairing

E [m] ∼= Cm ⊕ Cm ⇒ E [m] has a Z/mZ–basis

i.e.
∃P,Q ∈ E [m] : ∀R ∈ E [m], ∃!α, β ∈ Z/mZ,R = αP + βQ

Proposition

If (P,Q) is a Z/mZ–basis, then ζ = em(P,Q) ∈ µm is primitive (i.e. ord ζ = m)

Proof.

Let d = ord ζ. Then
1 = em(P,Q)d = em(P, dQ).

∀R ∈ E [m] write R = αP + βQ. Hence

em(R, dQ) = em(P, dQ)αem(Q,Q)dβ = 1

So dQ =∞ ⇒ m | d .
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Properties of Weil pairing (continues)

Proposition

E [m] ⊂ E(K ) ⇒ µm ⊂ K

Proof.

Let σ ∈ Gal(K̄/K ). Since the basis (P,Q) ⊂ E(K ),
σ(P) = P, σ(Q) = Q.

Hence
ζ = em(P,Q) = em(σP, σQ) = σem(P,Q) = σζ

So
ζ ∈ K̄ Gal(K̄/K ) = K ⇒ µn = 〈ζ〉 ⊂ K∗

Corollary

E(Fq) ∼= Cn ⊕ Ckn ⇒ q ≡ 1 mod n

Proof.

E [n] ⊂ E(Fq)⇒ µn ⊂ F∗q ⇒ n | q − 1

If E/Q ⇒ E [m] 6⊆ E(Q) for m ≥ 3
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The MOV attack

First proposed by: MENEZES, ALFRED J.; OKAMATO, TATSUAKI; VANSTONE, SCOTT A. (1993). “Reducing Elliptic
Curve Logarithms to Logarithms in a Finite Field”. IEEE Transactions On Information Theory 39 (5).

It allows to reduce the comutation of a DL in E(Fq) to a DL in Fqm (for a suitable m ∈ N).

• Hence if m < 5, there is a problem!
• we observed that DL in finite fields may be five times more unsafe then DL in elliptic curves
• We shall discuss the case of supersingular curves where m = 2
• Hence, supersingular curves are NOT idoneous for ECC.
• We assume that E/Fq is an elliptic curve
• We shall also assume that the Weil pairing can be computed quickly (which is not obvious)
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The MOV attack
• Assume that P,Q ∈ E(Fq) and that N = ord P
• Also assume that gcd(q,N) = 1 so that E [N] ∼= Z/NZ⊕ Z/NZ.
• We want to find k such that

Q = kP

• Such a k may not exist!! However

Proposition

There exists k such that Q = kP if and only if
• NQ =∞
• eN (P,Q) = 1

Proof.

(if): if NQ =∞, then Q ∈ E [N]. We choose R ∈ E [N] in such a way that {R,P} is basis for E [N].
Then

Q = aP + bR, ∃a, b ∈ Z/NZ

From basic properties of Weil pairing, eN (P,R) = ζ is a primitive N–th root of unity.Hence, if eN (P,Q) = 1,

1 = eN (P,Q) = eN (P,P)aeN (P,R)b = ζ
b
.

We deduce that b ≡ 0 mod N. So bR =∞ and Q = aP as requested.
(only if): just note that NQ = NkP =∞ and eN (P,Q) = eN (P,P)k = 1.
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The MOV attack
the idea

Given E,P,Q and N = ord Q, choose m s.t. E [N] ⊂ E(Fqm ).

Note that

• such an m exists since E [N] ⊂ E(Fq). So it is enough to choose m such that Fqm contains all coordinates
of all point in E [N].

• Since degφN = (N2 − 1)/2, we can find a suitable m < ((N2 − 1)/2)!

• We shall do all our computation in Fqm

ALGORITHM:

1 Choose at random T ∈ E(Fqm )

2 Compute the order M of T

3 Let d = gcd(M,N), and let T ′ = M
d T. T ′ has order d which is a divisor of N.

Hence T ′ ∈ E [N]

4 Compute ζ1 = eN (P, T ′) and ζ2 = eN (Q, T1). Then ζ1, ζ2 ∈ µd ⊂ F∗qm

5 Solve DL ζ2 = ζk
1 ∈ F∗qm. This will give k mod d.

6 Repeat with random points untill the lcm of the d’s obtained in N. This
determines k modulo N.
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The MOV attack
why does it work?

ALGORITHM:

1 Choose at random T ∈ E(Fqm )

2 Compute the order M of T

3 Let d = gcd(M,N), and let T ′ = M
d T. T ′ has order d which is a divisor of N.

Hence T ′ ∈ E [N]

4 Compute ζ1 = eN (P, T ′) and ζ2 = eN (Q, T1). Then ζ1, ζ2 ∈ µd ⊂ F∗qm

5 Solve DL ζ2 = ζk
1 ∈ F∗qm. This will give k mod d.

6 Repeat with random points untill the lcm of the d’s obtained in N. This
determines k modulo N.

Let kd := k mod d and note
ζ2 = eN (Q, T1) = eN (kP, T1) = ζ

k
1 = ζ

kd
1

since ζ1 and ζ2 have both order d

If we compute kd1 , · · · , kds with the property that

lcm(d1, · · · , ds) = N.

Then, by the General Chinese remainder Theorem, we can compute k mod N which is the DL!

Once can verify that the probability that d = 1 is quite small.
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The MOV attack
Supersingular curves are unsuitable for EEC

Definition

An elliptic curve is called supersingular if, when we write

E(Fq) = q + 1− aE ,

we have
aE ≡ 0 mod p.

Theorem

Suppose E/Fq is supersingular and that aE = 0. If P ∈ E(Fq) and N = ord P. Then

E [N] ⊂ E(Fq2 )

• We shall prove the theorem now
• For other types of supersingular curves (i.e. with aE ≡ 0 mod p but aE 6= 0, it can be proven that If

P ∈ E(Fq) and N = ord P. Then

E [N] ⊂ E(Fqm ) with m = 3, 4, 6.

• Supersingular curves are not suitable for EEC
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The Frobenius endomorphism Φq

Φq : F̄q → F̄q, x 7→ xq is a field automorphism

Given α ∈ F̄q ,

α ∈ Fqn ⇔ Φn
q(α) = αqn

= α

Fixed points of powers of Φq are exactly elements of Fqn

Φq : E(F̄q)→ E(F̄q), (x, y) 7→ (xq, yq),∞ 7→ ∞

Properties of Φq

• Φq(x, y) = (x, y) ⇐⇒ (x, y) ∈ E(Fq)

• Φn
q(x, y) = (xqn

, yqn
) so Φn

q(x, y) = (x, y)⇔ (x, y) ∈ Fqn

• Φq satisfies the Carachteristic polynomial T 2 − aE T + q
i.e.

∀(x, y) ∈ E(Fq), (xq2

, yq2

) +E q(x, y) = aE (xq
, yq)

• we write the above identity as
Φ2

q − aE Φq + q = 0.
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The MOV attack
Supersingular curves are unsuitable for EEC

Theorem

Suppose E/Fq is supersingular and that aE = 0. If P ∈ E(Fq) and N = ord P. Then

E [N] ⊂ E(Fq2 )

Proof.

Since aE = 0, the Frobenius Φq satisfies
Φ2

q = −q

Suppose that P ∈ E(Fq) has order N. Then N | q + 1 (i.e. q ≡ −1 mod N).
Let S ∈ E [N], Then

Φq2 (S) = Φ2
q(S) = −qS = S.

This implies that S ∈ E(Fq2 ).
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Anomalous Curves

Definition

An elliptic curve is called anomalous if, when we write

#E(Fq) = q

• In an anomalous curve points have order equal to a power of p. Hence the Weil pairing is not defined!!!
• One may think that they are suitable for Cryptography for this reason. But this is not true!!
• There is an efficient algorithm to compute DL in anomalous curves
• If E is anomalous, then aE = −1
• The carachteristic polynomial of E is T 2 − T + q with roots:

1 +
√

1− 4q

2

1−
√

1− 4q

2

• Hence

#E(Fqn ) = q2 + 1− 1
2n

(
(1 +

√
1− 4q)n + (1−

√
1− 4q)n

)
• So #E(Fq2 ) = q2 + 2q and E/Fq2

• An anamalous curve is not necessarily anomalous over field extensions but it still satisfies
Φ2

q − Φq + q = 0.
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Anomalous Curves

Definition

An elliptic curve is called anomalous if, when we write

#E(Fq) = q

• Examples:
1 E ′ : y2 + xy = x3 + x2 + 1 is anomalous over F2
2 E ′′ : y2 = x3 + x2 − 1 is anomalous over F3

• They are particularly suitable for Cryptography when considered over extensions
1 They group order can be computed very quickly

• #E ′(F2200 ) = 2200 + 1 − (1+
√
−7)200 +(1−

√
−7)00

2100
= 1606938044258990275541962092343697546215565682541130425732128

• #E ′′(F3150 ) = 3200 + 1 − (1+
√
−11)150 +(1−

√
−11)150

2150
=

369988485035126972924700782451696645401107717195926015868067750551938000

2 Computations are fast on them

• From Φ2
q − Φq + q = 0 we deduce

• ∀P = (x, y) ∈ E(Fqn )

q(x, y) = (xq
, yq) + (xq2

,−yq2

)

• Instead of computing qP one can just compute xq, yq, xq2
, yq2

which is fast in a finite field
• Especially if one uses normal basis
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Normal basis on Fq

Definition

Let Fqm be a finite field extension of Fq and let β ∈ F∗qm . We say that β is normal if

Bβ = {β, βq
, β

q2

, . . . , β
qm−1

}

is an Fq–basis of Fqm .

• Bβ is called normal basis
• It is a classical result that every finite field admits a normal basis.
• Given an Fq–normal basis of Fqm and given x ∈ F∗qm , we write

x = x0β + x1β
q + · · · + xm−2β

qm−1

• So
xp = x0β

q + x1β
q2

+ · · · + xm−2β

• Since βqm
= β

• There is no calculation in computing xq but just a circular rotation of the coefficients
• Going back to anomalous curves:

q(x, y) = (xq
, yq) + (xq2

,−yq2

)

• implies that q(x, y) can be computed in an anomalous curve at the cost of one addition in E
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