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Weil Pairing

Let E/Kand m € Ns.t. pt m. Then
E[ml = Cy & Cn J

We set
pumi={x € K:x"=1} J

um is a cyclic group with m elements(since p t m)

Theorem (Existence of Weil Pairing)

There exists a pairing ey, : E[m] x E[m] — pm called Weil Pairing, s.t. VP, Q € E[m]
0 en(P+e Q,R) = en(P, R)en(Q, R) (bilinearity)

em(P, R) = 1VR € E[m] = P = oo (non degeneracy)

em(P,P) =1

em(P, Q) = en(Q,P)~"

em(oP,0Q) = gen(P, Q) Yo € Gal(K/K)

0 en(a(P), a(Q)) = en(P, Q)*®* Va separable endomorphism

The last one needs to be discussed further!!!
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Properties of Weil pairing

E[m] = Cn & Cy = E[m] has a Z/mZ-basis )

3P,Q € E[m] : VR € E[m],3la, B € Z/MZ,R = aP + BQ

Proposition
If (P, Q) is a Z/ mZ-basis, then ¢ = en(P, Q) € um is primitive
Proof.

Let d = ord¢. Then
1 = en(P, Q)% = en(P, dQ).

VR € E[m] write R = aP + Q. Hence

en(R, dQ) = e,(P, dQ)%en(Q, Q)% = 1

SodQ =00 = m|d.

(i.e. ord ¢ = m)
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Elliptic curves over F,

Properties of Weil pairing (continues)
Proposition | WeilParing

Frobenius endomorphism

Normal basis on finite fields

E[m] C E(K) = pmC K

Proof.
Let o € Gal(K/K). Since the basis (P, Q) C E(K),
o(P) =P,0(Q) = Q.

Hence
¢ =en(P,Q) = en(oP,0Q) = oen(P, Q) = o¢
So K
¢ e KGK/K) — K = pu,=(¢) C K*
O
Corollary
E(Fq) = C,® Cip = g =1mod n
Proof.
Eln C E(Fq) = pin CFy = n|q -1
O

If E/Q = E[m] £ E(Q) form >3 }




The MOV attack

First proposed by: MENEZES, ALFRED J.; OKAMATO, TATSUAKI; VANSTONE, SCOTT A. (1993). “Reducing Elliptic
Curve Logarithms to Logarithms in a Finite Field”. IEEE Transactions On Information Theory 39 (5).

It allows to reduce the comutation of a DL in E(Fq) to a DL in Fgn (for a suitable m € N).

e Hence if m < 5, there is a problem!

o we observed that DL in finite fields may be five times more unsafe then DL in elliptic curves
o We shall discuss the case of supersingular curves where m = 2

e Hence, supersingular curves are NOT idoneous for ECC.

o We assume that E/IFq is an elliptic curve

e We shall also assume that the Weil pairing can be computed quickly (which is not obvious)
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The MOV attack
e Assume that P, Q € E(Fy) and that N = ord P
o Also assume that gcd(q, N) = 1 so that E[N] = Z/NZ & Z/NZ.
e We want to find k such that
Q= kP

e Such a k may not exist!! However

Proposition

There exists k such that Q = kP if and only if
e NQ =00
o en(P,Q) =1

Proof.

(if): if NQ = oo, then Q € E[N]. We choose R € E[N] in such a way that {R, P} is basis for E[N].
Then
Q= aP+bR,3a,b € Z/NZ

From basic properties of Weil pairing, en(P, R) = ¢ is a primitive N—th root of unity.Hence, if en(P, Q) = 1,
1 = en(P, Q) = en(P, P)%en(P, R)® = ¢°.

We deduce that b = 0 mod N. So bR = oo and Q = aP as requested.
(only if): just note that NQ = NkP = oo and en(P, Q) = en(P, P)X = 1.
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The MOV attack

the idea

Given E, P, Qand N = ord Q, choose m s.t. E[N] C E(Fqn).

Note that

e such an m exists since E[N] C E(F,). So it is enough to choose m such that F4» contains all coordinates
of all point in E[N].

e Since deg ¢y = (N? — 1)/2, we can find a suitable m < ((N? — 1)/2)!
o We shall do all our computation in Fgm
ALGORITHM:
@ Choose at random T € E(Fgn)
® Compute the order M of T

© Let d=gcd(M,N), and let T'=MYT. T’ nhas order d which is a divisor of N.
Hence T’ € E[N]

0 compute (1 =en(P,T') and (2 = en(Q, T1). Then (1,(2 € pg C Fym
® Solve DL Cg:d( € F}». This will give k modd.

@ Repeat with random points untill the lcm of the d’s obtained in N. This
determines K modulo N.
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The MOV attack

why does it work?

ALGORITHM:

Choose at random T € E(Fgn)
Compute the order M of T

Let d=gcd(M,N), and let T' = %T. T’ has order d which is a divisor of N.
Hence T’ € E[N]

Compute ¢4 =en(P, T’') and (2 =en(Q, T1). Then (1,(2 € pg C Fon
Solve DL (o = (K € F!». This will give kmodd.

Repeat with random points untill the lcm of the d’s obtained in N. This
determines Kk modulo N.

Let kg := k mod d and note

Co=en(Q, Ty) = en(kP, Ty) = ¢f = ¢f¢

since ¢y and {z have both order d

If we compute kg, , - - - , kg, with the property that

lem(dy, -+ ,ds) = N.

Then, by the General Chinese remainder Theorem, we can compute k mod N which is the DL!

Once can verify that the probability that d = 1 is quite small.
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The MOV attack

Supersingular curves are unsuitable for EEC
Definition
An elliptic curve is called supersingular if, when we write
E(]Fq) =qg+1— ag,

we have
ag = 0 mod p.

Theorem
Suppose E /¥y is supersingular and that ag = 0. If P € E(Fq) and N = ord P. Then

E[N] C E(Fg)

o We shall prove the theorem now

o For other types of supersingular curves (i.e. with az = 0 mod p but ag # 0, it can be proven that If
P € E(Fg) and N = ord P. Then

E[N] C E(Fgn)  with m = 3,4,6.

e Supersingular curves are not suitable for EEC
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. . Elliptic curves over F,
The Frobenius endomorphism ¢,
Weil Pairing

&g : Fq — Fq, x — x9 is a field automorphism )

Normal basis on finite fields
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Given o € T,

a€Fp & ¢Z(a):aqn:a J

Fixed points of powers of ¢, are exactly elements of Fg»

g : E(Fq) — E(Fq), (X, y) = (x9, y9), 00 = oo J

Properties of ¢,

o Og(x,y) = (x,¥) < (x,y) € E(Fq)
o Oh(x,y) = (x7,y7) S0 O(x,y) = (X, ¥) & (X,) € Fer
o &, satisfies the Carachteristic polynomial T2 —arT+gq
i.e. o .
Y(x,y) € E(Fq), (xT,¥7) +£ a(x, y) = ae(x?, y9)
o we write the above identity as
@2 — agdg +q=0.
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Theorem
Suppose E /Fq is supersingular and that ar = 0. If P € E(Fq) and N = ord P. Then

E[N] C E(F)

Proof.
Since ag = 0, the Frobenius ¢, satisfies
o2 =—q

Suppose that P € E(Fq) has order N. Then N | g+ 1 (i.e. g = —1 mod N).
Let S € E[N], Then

®p(S) = 92(S) = —gS=S.
This implies that S € E(F). O



Elliptic curves over F,
Anomalous Curves
Definition Weil Pairing
An elliptic curve is called anomalous if, when we write Normal basis on finte fields

Further reading

#E(Fq) = q

¢ In an anomalous curve points have order equal to a power of p. Hence the Weil pairing is not defined!!!
e One may think that they are suitable for Cryptography for this reason. But this is not true!!

e There is an efficient algorithm to compute DL in anomalous curves

e [f E is anomalous, then ag = —1

o The carachteristic polynomial of E is T> — T + g with roots:

1+\/174q 17\/174q
2 2

e Hence
H#EFp)=F +1— % ((1 +4/1—49)"+ (1 — /1 —4q)")
o So#E(Fz) = q° +2gand E/F,

e An anamalous curve is not necessarily anomalous over field extensions but it still satisfies
2 —dg+q=0.



Elliptic curves over F,

Anomalous Curves
Weil Pairing

Definition
An elliptic curve is called anomalous if, when we write

Normal basis on finite fields

Further reading

#E(Fq) =q

e Examples:
O E':y?+xy =x°+ x? 4+ 1is anomalous over F,
® E” :y? = x®+ x® — 1is anomalous over Fy
e They are particularly suitable for Cryptography when considered over extensions
@ They group order can be computed very quickly
o HE/(Fao) = 200 41 — UV 60603804425899027554196209234369754621 5565682541130425732128

2100

o HE (Fam) = 370 41 — (R N Uk VA K) S

]
369988485035126972924700782451696645401107717195926015868067750551938000
@® Computations are fast on them

o From &2 — &, + g = 0 we deduce
* VP =(x,y) € E(Fq)
2
a(x.y) = (% y%) + (T, —y7)
« Instead of computing gP one can just compute x9, y9, x©, y& which is fast in a finite field
o Especially if one uses normal basis



Elliptic curves over F,

Normal basis on I

Definition Weil Pairing
Frobenius endomorphism

Let Fqn be a finite field extension of Fy and let 8 € F;.. We say that 3 is normal if | T D
Further reading

m—1

2
B ={8,p%,87,....87 }
is an [Fq—basis of Fgn.

e g is called normal basis
o ltis a classical result that every finite field admits a normal basis.
o Given an Fg—normal basis of Fg» and given x € Fy., we write

*

qm
_ q. ... !
X=XB+X1B"+ -+ Xm_20

e So
XP = x0B89 + 8% + -+ Xn_2B

e Since " =8
o There is no calculation in computing x9 but just a circular rotation of the coefficients
e Going back to anomalous curves:

ax,y) = (% y%) + (7, —y%)

o implies that g(x, y) can be computed in an anomalous curve at the cost of one addition in E



Further Reading...
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