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Abstract

We remark on pseudo-elliptic integrals and on exceptional function fields, namely function fields defined
over aninfinite base field but nonetheless containing non-trivial units. Our emphasis is on some elementary
criteria that must be satisfied by a squarefree polynodial) whose square root generates a quadratic
function field with non-trivial unit. We detail the genus 1 case.
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1. Pseudo-elliptic integrals

The surprising integral
6x dx
VX443 —Bx2+4x + 1
- Iog(x6 £ 12x5 4 A5x4 + 44x% — 33x2 + 43

T (X" 4 10x% 4+ 30x% + 22X — 11)y/X* + 4x3 — 6x2 + 4x + 1)

is a nice example of a class of pseudo-elliptic integrals

(1) %( = log(a(x) + b(x)y/D(x)).

Here we takeD to be a monic polynomial defined ov€, of even degree@+ 2,
and not the square of a polynomidl; a, andb denote appropriate polynomials. We
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suppose to be nonzero, say of degreeat leasty + 1. We will see that necessarily
degb = m— g — 1, that degf = g, and thatf has leading coefficienh. In our
examplem = 6 andg = 1.

Plainly, if (1) holds then it remains true witt/D replaced by its conjugate+/D.
Adding the two conjugate identities, we see that

2 /de = log(a® — Db?).

Thusa? — Db? is some constark, and must be nonzero becau3és not a square. In
other wordsu = a + bv/D is a nontrivial unit in the function field)(x, +/D); and
dega = mimplies dedo = m — g — 1 is immediate.
Differentiating @) yields 2aa’ — 2bb'D — b’D’ = 0. Henceb | aa, and since
a andb must be relatively prime becauseis a unit, it follows thatb | a’. Set
f = a'/b, noting that indeed def) = g and thatf has leading coefficiemh because
a andb must have the same leading coefficient. That common coefficient is 1 without
loss of generality since we may freely choose the constant produced by the indefinite

integration.
Moreover,
bD’ 2bb'D + b?D’ aa
uU=a+b+vD+ =a+——+——=a +———.
2D 2b+/D bv/D

So, remarkablyy’ = f(bv/D +a)/+/D = fu/+/D.
Thus, to verify () it suffices to make the not altogether obvious substitution
u(x) = a+ b+/D, of course given that is a unit of the ordef[x, +/D 1.

REMARK. The caseg = 0, sayD(x) = x? + 2vx + w, is useful for orienting
oneself. Heréx + v) + +/D is a unit, of normv? — w, and indeed
, X
= arsmh;v2 = log (x + v+ VX2 + 20X + w) .
— v

dx
/\/X2+2vx+w Jw

Notice that degf = 0 and has leading coefficient 1, as predicted.

2. Units in quadratic extension fields, and torsion

2.1. Number fields Let N be a positive integer, not a square, andsset +/N. It

is easy to apply the Dirichlet box principle to prove that an oiler] of a quadratic
number fieldQ(w) contains nontrivial units. Indeed, by that principle there are
infinitely many pairs of integer&, q) so thatjgew — p| < 1/g, whence p? — Ng?| <
2N + 1. It follows, again by the box principle, that there is an intebevith
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0 < |I| < 2¢/N+1so that the equatiop? — Ng? = | has infinitely many pairsp, q)
and(p’, ') of solutions withp = p’andq = g’ (mod ). For each such distinct pair,
al = pp — Nqq, bl = pg — pq, yieldsa? — N? = 1.

2.2. Function fields Just so, in the function field case already introduced, there are
infinitely many pairs of polynomialg(x) andq(x) so that degq+/D — p) < — degq,
whence de@p? — Dg?) < g. But a second application of the box principle fails when
the base fieldQ in our introductory discussion, is infinite; because there are then
infinitely many distinct polynomials of bounded degree. In that case, the existence of
a nontrivial unit (thus, one not an element of the base field) is unusual happenstance
Accordingly, we say that a function field(x, ~/D) with a nontrivial unita + b/D

is anexceptionafunction field and we calD anexceptionapolynomial.

2.3. Torsion on the Jacobian of a hyperelliptic curve A slight change of viewpoint,
emphasising the hyperelliptic curé : y?> = D(x), may clarify matters. A function

u = a+ by is a unit precisely if its divisor is supported only at infinity. However,
% has two points at infinity, sa@ and S (or co_ andoo, if one prefers) and so the
divisor ofu is some multiple, sagn(S— O), of the divisorS— O at infinity. Because

u is a function, this is to say that the class®* O on the Jacobian & is torsion of
orderm. In the case deD = 4, so genug = 1 if D is squarefree, we may take

as the zero of the elliptic curvi€ and report that the poir on % is torsion of order
m = dega.

3. Exceptional quadratic fields

Itis appropriate to identify straightforward properties of the squarefree polynomial
D(x) = y? sufficient or just necessary that the fi€ldx, y) be exceptional.

Suppose, therefore, th@l(x, y) is exceptional, so that we have a unit a + by
or, more helpfully, an identity?D = a? — k with a, b € Q[x] andk € Q \ {0}. It
will be helpful to setk = ¢. We note immediately that the two polynomias- c
anda + ¢, which are conjugate ovéd if k is not a square, are relatively prime.

We haveb’D = (a — c)(a+ ¢). Hence ifk is not a square i@, b must factor
in Q(c)[x] as a normdd, where the overling denotes conjugation in the quadratic
extensior)(c), andD factorises ove®(c) as the product of the polynomi@—c) /d?,
and of its conjugate. In particular, deg= m — g — 1 must be even.

If, however,k is a square irQ (thus, in particular, always if ddg=m—g—1is
odd) then we seem to see only thahust have a factadt defined overQ so that both
2degd and 2n — (2g + 2) — 2 degd do not exceean = dega — ¢) = dega. That
is, we havem — (2g + 2) < 2degd < m.
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THEOREM 3.1. Sety? = D(x), with D monic, squarefree, and of degrég + 2.
Suppose the domafa[x, y] contains a unit of degrem > g and normk.

(a) If mandg have the same parity thén= c? is a square.

(b) If k = ¢ with ¢ € Q, there is a positive integes so thatD is a product of
polynomials overQ of degreesn — 2s and2g + 2 + 2s — m. ThusD is reducible
overQ if mis odd.

(c) If k = c?is not a square inQ then D factorises overQ(c) as a product of two
polynomials conjugate oveé®(c), so each of degreg + 1.

Note that the compactly written assertion (b) includes the possibility Ehag
irreducible ifm is even, and (since both the stated degrees must be nonnegative) that
it implicitly entails upper and lower bounds on the integerAssertion (c) implies
that the Galois group ob is restricted by # GaD) | 2((g + 1)!)2. Thus, ifg = 1it
is the dihedral group on four elements or one of its subgroups.

We observe also that the statements of the theorem, which refer only to the poly-
nomial D and the torsion ordem, do not include all the information that may be
extracted from the remarks preceding the proclamation of the theorem.

REMARK. It should be no surprise that none of the criteria of the theorem suffices to
guarantee obtaining an exceptional quadratic function field. We detail theycage
in Section6 at page342below.

4. Continued fractions

4.1. Number fields There is a well-known algorithm in the number field case
yielding the fundamental unit of the ord@f{+/N]. As before setw = /N and
supposéis the integer part ab. The zero-th step in the continued fraction expansion
ofw+ Ais

©) wo+A=2A— @+ A
and this and a typical consequent step is of the shape
(w+ Py)/Qn=an — (@+ Phy1)/Qn; inbrief w,=ay, — 0.

ThusP, + P11+ (w+w) = a,Qp, and because the next complete quotient; is the
reciprocal of the remainderp,, we must also haveo+ P, 1) (@+ Pny 1) = —QnQny1.
In particular, certainlyQy,; divides the norm{w + Pn;1) (@ + Phy1).

Here theP, and Q,, are integers, and it is readily shown they all satisfy

4) O0<2P+(w+o) <w—o, O<Qn<w-—w
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proving, by the box principle, that the continued fraction expansian isf periodic.
Moreover, one notices that always both

(5) wp > 1 while —1 <, <0, and pp>1 while -1 <P, <O0.
It follows that conjugation of the continued fraction tableau, replacing
wh=2a — P, bY pn=an—wn,

again gives a continued fraction expansion —in partica@avyhich began life as the
integer part ofwy,, also is the integer part gf, —reversing the order of the lines of
the original expansion. Because line zeBpié symmetric it occurs in the expansion
of pn, and because the expansion@wf- A is periodic it follows that it is in fact
purely periodic, moreover with a symmetry: if the period length then the word
a, a, ..., &_1 must be a palindrome.

One obtains the fundamental uait+- bw by computing the convergent

(6) [A a,a,...,a_1] =a/b.

4.2. Function fields Mutatis mutandis, the function field argument is identical.
We sety? = D(x) as before. Plainly we may writ® asD = A? 4+ R, where
degA = g + 1 and dedR < g; then A is the polynomial part of the Laurent series
y € Q((x1)). We expandy + A in complete analogy with the numerical case, but
now selecting the partial quotierdgas the polynomial part of the respective complete
quotientsy;, := (y + P,)/Qn. The bounds4) become

4) degP,=9g+1 and dedd,=<g

and of course do not guarantee periodicity, because the bas@fislihfinite. The
conditions b) for reduction turn into

degy + P,) > degQ, but dedy+ P,) < degQ, and therefore

©) degy + Pni1) > degQn  but dedy + Pn1) < degQy.

As in the number field case, conjugation reverses the continued fraction tableaux.
Thus,if the expansion of + A happens to be periodic then it has the symmetries of
the number field case and the continued fraction expansion yields a unit of norm 1,
given by the convergens]. Note thatin the function field case there is the possibility of
quasi-periodicitya,,, = c,an, Non-zero constants, see L9, rather than periodicity

PrOpEer:an;, = a.
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4.3. Quasi-periodicity Suppose now thdD is exceptional in that the function field
Q(x, y) contains a uniti, of norm—«. By general principles that entails that some
Qi is +«, sayQ, = « withr odd. That s, ling of the continued fraction expansion
ofy+ Ais

liner: Vi =Y+ A)/k =2A/k — (V+ A)/k;
here we have use®'] to deduce that necessariyy = P,.; = A. We recall that
line O: y+A=2A—- Y+ A).

By conjugation of thgr + 1)-line tableau showing that + A is quasi-periodic we
see immediately also that

line 2r: Yo =Y+ A=2A—(V+ A,

so that in any case if + A has a quasi-periodic continued fraction expansion then it
is periodic of period twice the quasi-period. This is a result of Bestyif applies to
arbitrary quadratic irrational functions whose trace is a polynomial. Other elements
(y+ P)/Q of Q(x, y), with Q dividing the norm(y + P)(Y + P), may be honest-
to-goodness quasi-periodic, that is, not also periodig.Has trace, rather than zero
trace, replace line zero of the expansionypyy A—t =2A—t — (y+ A—t) and so
on in the story just told. To be able to do thahould of course be ‘integral’, that is,
a polynomial.

Further, if # —1 thenr mustbe odd. To see that, notice the identity

B[Ca)v Balv C%v Ba37 . ] = C[Ba)v Calv Bebv Ca37 .o ]7

reminding one how one multiplies a continued fraction expansion by some quantity;
this cute formulation of the multiplication rule is due to Schmidi][ The ‘twisted
symmetry’ occasioned by division by, equivalent to the existence of a non-trivial
quasi-period, is noted by Christian Frieséh [

In summary: if quasi-periodic it is periodic, and then the continued fraction ex-
pansion ofy = /D (x) has the symmetries of the more familiar number field case, as
well as the twisted symmetries occasioned by a nontrivial

REMARK. The conclusion just stated is surely well known. Certainly it is asserted
by Adams and Razad], but without the couple of lines of argument we add here.
The second of us is indebted to notes of Str&é}, [and related enquiries from Brian
Conrad, for being reminded of this unneeded gap in the literature and of the desirability
of detailing a straightforward argument. A much clumsier version of the story told
here is given in19], however with additional introductory details that may be helpful
to the reader.
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THEOREM4.1. Set% : y? = D(x), with D monic, squarefree, and of degrag+ 2.
Suppose the divisor at infinity on the Jacobian of the céfigtorsion of ordem > 1,
equivalently the domai@[Xx, y] is exceptional in containing nontrivial units, and its
fundamental unitt = a+ by is of degreen, and say of nornk. Denote the continued
fraction expansion oy byy = [A, a;, &, as, ... ]. Then, further to Theore@ 1,

(@) if[A a,a,...,a_1] = a/bwithr even, therk = 1;

(b) if k = c?with c € Q, then the polynomiah factorises ove as sayb = d.d_,
and D is reducible overQ because it factorises as the product of the nontrivial
polynomials(a + ¢)/d? and(a — ¢)/d?;

(c) if k = c?is not a square iMQ then the polynomiab factorises overQ(c) as a
productb = dd of polynomials conjugate oveéd(c), and D factorises overQ(c) as
a product of the two polynomials + ¢)/d? and(a + T)/d .

Forg = 1, we must haven = r + 1 by the bounds4), so the parities afn andr are
of course different; in particulam odd entails the norrk = 1. One readily notices
that symmetry implies that alwaysrifis odd the parities afn andg are different; the
converse is not true iff > 1. For the rest, Theorer 1fills in details omitted from
Theoren3. 1

An important such ‘detalil’, is the observation that if, say, 2deg= m sod? =
a+c, thenDd? =a—c =d? — 2c. So alsod; + yd_ is a unit of Q[x, y] plainly
contradicting the minimality ofn, that is, thau is a fundamental unit.

Furthermore, we see th@lt has a factor of degree at magif the period length
r = 2h is even. For then, by conjugation, the line

Y+ P)/Qn=an— (V+ Pn1)/Qn

is symmetric, that i$%,,; = Py, and soQy, divides P,. But thenQy, also divides the
norm(y + P,)(Y + P,) and that entail®),, is a factor ofD.

There are contexts in which one would like to be certain that a polyndmisinot
exceptional. Our results have the following consequence.

COROLLARY 4.2. If a monic polynomiaD of even degree at leadtis irreducible
and with Galois group the full symmetric group thBris not exceptional; that is, the
continued fraction expansion &fD is not periodic.

5. Exceptional polynomials

In practice, the start of the continued fraction expansionef+/D quickly reveals
whether or notD is exceptional. For example, it is shown ifj for g = 1 that in
Vn = (Y4 Pn)/Qn the divisor ofQy, is h+ 1 times the divisor at infinity. Thus, by well
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known properties of Neron-Tate height, the number of decimal digits of the numerators
and denominators of the coefficients@f, (and then also oP,) is O(h?) unless the
divisor at infinity is torsion. Moreover, in practice that explosion in complexit@ef
is immediately evident; see 7] for an example. Moreover, that same explosion in
complexity occurs for arbitrarg > 0 since it follows from addition on the Jacobian
of the curvey? = D(x) being given by composition of quadratic forms, that is, by the
continued fraction expansion gf [5] or [11] explain this connection. In any casé],|
the matter of explosion of complexity of Pedpproximants of algebraic functions of
positive genus is far more general yet.

In the number field case, the fundamental unit of an ofdéev] is some power of
the fundamental unit of the domain of all integers@¢w). For function fields over
a base field of characteristic zero, however, an ofder, f (x)y] need not possess a
unit at all, notwithstanding thad = y? be exceptional. In other words, periodicity
of y does not at all guarantee quasi-periodicityfgffor a polynomial f of positive
degree. The requirement in our theorems Mdte squarefree thus really does matter.
Specifically, although the continued fraction expansion is trivially quasi-periodic for
degD = 2, thusy? = D of genusg = 0, this may not hold fory? = 2D, even
though that curve is of genus 0. There are interesting paper$]seel[its references,
discussing this issue.

6. The quartic case

The caseg = 1 is completely known ovef), see L8 and its references, or
for example B]. In particular, one knows by Mazur's Theorerh3] that the only
possibilities form arem = 2,3,...,10, and 12. FromZ0] one learns that in the
casesn = 10 andm = 12 it happens that in fadt = c¢? never is the square of a
rational; that is, thew is never rational.

For torsionm > 4, one may tak®,(X) as(x?+ v — w?)?+ 4v(x + w) without loss
of generality;Ds(X) = (X2 — w?)? + 4v(X + w), while Dy(X) = (X2 +u)?+4w. Here
u, v andw are rational parameters. For eaoh= 4,5, ..., 10, 12 these parameters
are rational functions, detailed i&(], in a single rational parameter

THEOREMG.1. Seté}, : y? = D (X;t), with D, monic, squarefree, and of degrée
Suppose the divisor at infinity on the Jacobian of the c@fyés torsion of exact order
m > 3. ThenD(X;t) is reducible overQ if mis odd or in the cases listed in Talile
Otherwise, its Galois group is the dihedral grod, other than for the exceptions
listed in Tablel.

ProOOF We know from the preceding theorems thay (x, t) is reducible ifm is
odd or if the normk,,(t) of the fundamental unit happens anyhow to be a square.
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Specifically, RO] reports thakg(t) = 4(t — 1)(2t — 1)2/t3, ke(t) = 4t, andk,(t) = 4t,
explaining several of the entries in TatlleThus we may suppose thiat= ¢ with ¢
quadratic irrational ove®.

The Galois grousp of D = D, is the dihedral grou, exactly when the zeros
of D areay, as, ap = a3, andwy = o1, where = (14)(23) is conjugation ovef)(c).
ThenGp is generated by that conjugation amd= (1234).

Conversely, given thab factorises ovefQ(c), the cubic resolventy of D must
have a rational zera a3 + 4. The other two zeros s + asos andoqos + asorg
are invariant under the conjugation but are transposed agd, for that matter, also
by the 4-cycler = (1243.

If these other zeros ofp are rational then botlxr and t must be involutions
commuting with the conjugation. Then, recalling thatis irreducible overQ, its
Galois groupGy, is the Viergruppe'. If the pair of zeros is irrational bud factorises
over the splitting field ofZp thent generatess, and the Galois group db is the
cyclic group%,. Incidentally, we use the helpful remarks0[ Algorithm 4.2 on
page 10], explicitly to distinguish the cagg from 2.

Even calculations We investigate each cage= 12, 10, 8, 6, 4 in detail using the
data listed in 20]. For example, the cases = 12 andm = 10 are given by

vo(t) = (t — 1)(2t — 1)(3t? — 3t + 1)(2t2 — 2t + 1)/t*;

.
% waa(t) = —(6t* — 16t3 + 14t% — 6t 4 1)/2t3;

Bt -DE -1 A2 -2t 41
(8) v1o(t) = 31 wio(l) = 23+ D)

Here the parametdr runs through all ‘regular’ elements @; in both cases the
irregular rational values ate= 1,t = 1/2, andt = 0.

By Theorem3.1 (c) we know thatD,(x;t) factorises ovefQ(c); here of course
¢ = c(t) depends the rational parameterf D, (x;t) also factorises ove® it must
do so as a produdix?> — px + q)(x*> + px + q’). One solves (ratheiyiaple [12]
solves) this condition fop = p(t), in each case obtaining two polynomial equations
in p andt, with one an elliptic curve and the other a quadratic in an auxiliary variable.
The condition thaits discriminant be a square also is an elliptic curve.

In the casem = 12, both of these equations ultimately transform birationally (here
PARI-GP [14] lends a hand) to the minimal modgl = x® — x? + x. This is is24A4
in Cremona’s tablesq]; thus with conductor 24. It has rank 0 and cyclic torsion
of order 4; the torsion points ar®, 0), (1, 1), (1, —1), andoo and correspond to
irregular values of. SoDi,(x;t) is irreducible overQ for all regulart € Q.

When, instead, we check the cubic resolvent, for example when10, we find
that its rational zero i€2t3 — 4t? 4 4t — 1)(2t3 — 4t? + 1)/2(t? — 3t + 1)? and if the
discriminant of the remaining quadratic factor@f is a square then the elliptic curve
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s? = (4t>—2t —1)(2t — 1) must have admissible rational points. However, its minimal
model y? = x3 4+ x? — x is 20A2 in Cremona’s tables and it has rank 0 and cyclic
torsion of order 6. The torsion points ai@ 0), (+1, +1), andoo and correspond to
irregular values of.

Following boththe alternative approaches for eachmot= 12 andm = 10 verifies
a result we have used above, to wit Tran’s res2lt page 40@] that neitherc;,(t)
nor x10(t) — see Sectiod.3 on page340above — can be the square of a rational for
regulart € Q.

For these and the remaining even cases 8, m = 6, andm = 4, where we know
thatk = k,(t) may be a square for some regulawe followed both approaches and
found that wherD,,(x; t) is irreducible its Galois grou, is the dihedral grou,
except in the cases encapsulated in the following table.

TABLE 1.

m (v, w) Gp =% x 6, Gp =%

4 (t,1/2) t=5%(?—-1 [t=—%/(+1)
6 (tt—1,1-t/2 t=8/(9—s? —

8 ((t =12t — 1), —(2t? — 4t + 1)/2t) - -

10 (B3t — Dt —1/t> =3t +1)2, - *

23— 2t2 — 2t + 1/2(t> — 3t + 1))
12| ((t —1)(2t — 1)(3t? — 3t + 1)(2t2 — 2t + 1)/t%, — —
—(6t* — 16t + 14t? — 6t + 1)/2t3)

Moreover, form even,D, (X, t) is irreducible except in the following cases:

TABLE 2.
m ('U, u)) D= flfz D= f1f2f3 D= f1f2f3f4
-2, £ -1\° $-s\°
4 1/2 = =— Y
t.1/2) t {454_52 t ( . ) t <(52+1)2)
1-¢° 21 2
— — = 2\2 =1-— —
6 tt—1),1-t/2) t={ 1+ t=1 <32+3)
35241
8| ((t—D@2t—1), t=1/(s2+1) t —
—(2t2 -4t + 1)/2t)

The notesk and T refer to two special cases we resolved not to attempt to resolve.

We found that rational pointd&, u) on the curve

u?=(t — D(4t? — 2x — 1)(2t — 1)(t> — 3t + it
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give rise to caseB®q(X;t) with Galois groupZ,; and rational points on the curve
ul=t* =2 +2t —1)

give cases wher®g(x;t) splits into three factors ove®. We expect that neither
curve provides regular rational suth

We leave the degenerate case= 2, whereD (x; u, k) = (x2+u)? —k, as an easy
exercise. O

Oddremarks Inthe odd case® = 9,m = 7, andm = 5, the final remark following
Theoremd.1at page341, together with the detailed continued fraction expansions in
[20], shows that

(x —3(t* = 3t2+ 4t — 1)) dividesDg(x;1),
(x+3(t? =3t + 1)) dividesD(x;t),
(x—3(t+1) dividesDs(x;t);

here

ve(H) =2t —D(t* —t+1), we(t)=—-32(t>—t2—1), teQ\{0 1},
v (t) = t3(t — 1), wr(t) = —3t*—t -1, teQ\{0,1},
us(t) =t, ws(t) = —5(t = 1), teQ\ {0}

As always, the data (from2[)]) must be used modulo typos. Worse, the notation
of [2(] is slightly different from that of here and id§]; its v is our 4v.

For completeness we remark that in these cases the residual cubicGagiqrt)
is reducible in the cas@ = 5 andt = s?(s + 1)/(s + 1) and that then the surviving
quadratic factor is irreducible. With finitely many possible exceptions, namely un-
likely rational points on certain curves of genus more than 1, the Galois groups of the
irreducibleG,(x;t) is always.¥.

Specifically, the respective discriminarfg(t) of the cubic factors are

Fr(t) = t(t — 1)(t> — 8t% + 5t + 1),
Fot) =tt — D> —t+ D> —6t2+3t+ 1), and
Fs(t) = t(t — 1)(t> — 8t% + 5t + 1).

The last case is Cremona’s cur@A2, which has rank 0 and torsion 2. We saw that
G,(x;1) is irreducible because a putative rational zero corresponds to a rational point
on the curvel4A4 with rank 0 and torsion 2. We found a complicated genus 2 curve
not warranting report whose rational points might all®a(x; t) to factorise.
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The casan = 3 is degenerate; however, plainly

Ds(X; v, w) = (X* — w?)? + 4v(X + w)
= X+ w)(X® — wx® — wX — 4v + w®) = (X + w)F.

If F is irreducible, then its Galois group is; if and only if v = 8t2w?/(27t% + 1).
Further,F has a zero whenv = (w + r)(w — r)?/4; specifically

F=X—-1X—(w-r)X—w?>—rw+r?.

F splits as the product of three linear factors whea 8w?3(s? — 1)2/((s* + 3)°). The
reader may find it a useful exercise to extract other details.
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