ON MINIMAL SETS OF GENERATORS FOR PRIMITIVE ROOTS

FRANCESCO PAPPALARDI

ABSTRACT. A conjecture of Brown and Zassenhaus (see [2]) states that the first $\log p$ primes generate a primitive root (mod p) for almost all primes p. As a consequence of a Theorem of Burgess and Elliott (see [3]) it is easy to see that the first $\log^2 p \log \log^{4+\epsilon} p$ primes generate a primitive root (mod p) for almost all primes p. We improve this showing that the first $\log^2 p / \log \log p$ primes generate a primitive root (mod p) for almost all primes p.

For a given odd prime number p, we define the function κ as

$$\kappa(p) = \min\{r \mid \text{ the first } r \text{ primes generate } \mathbb{F}_p^*\}.$$

In 1969, H. Brown and H. Zassenhaus conjectured in [2] that $\kappa(p) \leq \lceil \log p \rceil$ with probability almost equal to one.

If we denote by g(p) the least primitive root modulo p, then a Theorem of D. A. Burgess and P. D. T. A. Elliott states that

$$\pi(x)^{-1} \sum_{p \le x} g(p) \ll \log^2 x (\log \log x)^4.$$

If U is the number of primes up to x for which $g(p) \ge T$, then

$$UT \ll \sum_{p \le x} g(p) \ll \pi(x) \log^2 x (\log \log x)^4$$
.

For any $\epsilon > 0$, we choose $T = \log^2 x (\log \log x)^{4+\epsilon/2}$ so that $U = o(\pi(x))$ and since $g(p) \le T$ is product of primes less that T, we deduce that for almost all primes $p \le x$,

$$\kappa(p) \le \log^2 x (\log \log x)^{4+\epsilon/2} \le \log^2 p (\log \log p)^{4+\epsilon}.$$

We will prove the following:

THEOREM 1. Let π be the prime counting function. For all but

$$O\left(\frac{x}{\exp\left\{\frac{(\log\log\log x)^3\log x}{4(\log\log x)^3}\right\}}\right)$$

Supported in part by C.N.R.

Received by the editors June 23, 1994; revised October 24, 1994.

AMS subject classification: Primary: 11N56; secondary: 11A07.

Key words and phrases: sieve theory, primitive roots, Riemann hypothesis.

[©] Canadian Mathematical Society, 1995.

primes $p \leq x$, we have that

$$\kappa(p) \le \pi \left(\frac{\log^2 p}{e^2} \exp \left\{ 2 \frac{(\log \log \log p)^3}{(\log \log p)^2} \right\} \right).$$

The proof is based on a uniform estimate for the size of the set

$$\mathcal{H}_{m,r}(x) = \#\left\{p \le x \mid |\Gamma_r| = \frac{p-1}{m}\right\}$$

where m and r are given integers strictly greater than one, and

$$\Gamma_r = \langle p_1, \dots, p_r \pmod{p} \rangle$$

is the subgroup of \mathbb{F}_p^* generated by the first r primes.

As a subgroup of the cyclic group \mathbb{F}_p^* with index m, Γ_r is the subgroup of m-th powers (mod p). Hence

$$\mathcal{H}_{m,r}(x) = \{ p \le x \mid p \equiv 1 \pmod{m} \text{ and } p_i \text{ is an } m\text{-th power } \pmod{p} \ \forall i = 1, \dots, r \}.$$

If $n_m(p)$ is the least prime which is not congruent to an m-th power \pmod{p} , then we can also write:

$$\mathcal{H}_{m,r}(x) = \{ p \le x \mid p \equiv 1 \pmod{m} \text{ and } n_m(p) > p_r \}.$$

We will need to use the large sieve inequality, the proof of which can be found in [1]. That is:

LEMMA 2 (THE LARGE SIEVE). Let $\mathcal N$ be a set of integers contained in the interval $\{1,\ldots,z\}$ and for any prime $p\leq x$, let $\Omega_p=\{h\pmod p\mid \forall n\in \mathcal N, n\not\equiv h\pmod p\}$ and

$$L = \sum_{q \le x} \mu^2(q) \prod_{p|q} \frac{|\Omega_p|}{p - |\Omega_p|},$$

then

$$|\mathcal{N}| \le \frac{z + 3x^2}{L}.$$

In our case, let $\mathcal{N} = \{ n \leq z \mid \forall q | n, q < p_r \}$ and note that if $p \in \mathcal{H}_{m,r}(x)$, then

$$\Omega_p \supset \{h \pmod{p} \mid h \text{ is not an } m\text{-th power} \pmod{p}\}$$

therefore, for such p's, $|\Omega_p| \ge p - 1 - (p-1)/m$ and

$$L \geq \sum_{p \in \mathcal{H}_{m,r}(x)} \frac{|\Omega_p|}{p - |\Omega_p|} \geq \frac{m - 1}{2} |\mathcal{H}_{m,r}(x)|.$$

If we let $\Psi(s,t)$ denote the number of integers $n \leq s$ free of prime factors exceeding t, then

$$\mathcal{H}_{m,r}(x) \leq \frac{8x^2}{(m-1)\Psi(x^2, p_r)}.$$

Estimating the function $\Psi(z, y)$ is a classical problem in Number Theory. In 1983, R. Canfield, P. Erdős and C. Pomerance (see [4]) proved the following:

LEMMA 3. Let $u = \frac{\log z}{\log y}$. There exists an absolute constant c_1 such that

$$\Psi(z,y) \ge z \exp\left\{-u\left(\log u + \log\log u - 1 + \frac{(\log\log u) - 1}{\log u} + c_1 \frac{(\log\log u)^2}{\log^2 u}\right)\right\},\,$$

for all $z \ge 1$ and $u \ge e^e$.

Applying Lemma 3 with $z = x^2$ and $y = p_r$, we get the following:

LEMMA 4. Let $u = 2 \log x / \log p_r$. There exists an absolute constant c_1 such that

$$\mathcal{H}_{m,r}(x) \leq \frac{8}{m} \exp\left\{u\left(\log u + \log\log u - 1 + \frac{(\log\log u) - 1}{\log u} + c_1 \frac{(\log\log u)^2}{\log^2 u}\right)\right\},\,$$

for all $x \ge 1$ and $u \ge e^e$.

PROOF OF THEOREM 1. Let us take p_r is the range

(1)
$$\log^2 x \ge p_r \ge \frac{\log^2 x}{e^2} \exp\left\{\frac{(\log\log\log x)^3}{(\log\log x)^2}\right\}.$$

If we set $\log_2 x = \log \log x$, $\log_3 x = \log \log \log x$ and $u = 2 \frac{\log x}{\log p_r}$, then we can write the estimates:

$$\frac{\log x}{\log_2 x} \le u \le \frac{\log x}{\log_2 x - 1 + \log_3^3 x / 2 \log_2^2 x};$$

$$\log_2 x - \log_3 x \le \log u \le \log_2 x - \log_3 x + \frac{1}{\log_2 x};$$

$$\log_2 u \le \log_3 x - \frac{\log_3 x}{\log_2 x} + c_2 \frac{\log_3^2 x}{\log_2^2 x};$$

$$\frac{1}{\log_2 x} - \frac{2}{\log_3^2 x} \le \frac{1}{\log u} \le \frac{1}{\log_2 x} + c_3 \frac{\log_3 x}{\log_2^2 x}.$$

where c_2 and c_3 are absolute constants.

Now let us apply Lemma 4 and deduce that

$$m\mathcal{H}_{m,r}(x) \ll \exp\left\{\log x \frac{\log_2 x - 1 + c_4 \frac{\log_2^2 x}{\log_2^2 x}}{\log_2 x - 1 + \log_3^2 x / 2 \log_2^2 x}\right\}$$

$$\ll \exp\left\{\log x \left(1 - \frac{\log_3^3 x}{2 \log_2^3 x} + c_5 \left(\frac{\log_3^3 x}{\log_2^3 x}\right)\right)\right\}$$

where c_4 and c_5 are absolute constants.

Now we are ready to estimate

$$\#\{p\leq x\mid [\mathbb{F}_p^*:\Gamma_r]>1\}.$$

We note that the index $[\mathbb{F}_p^* : \Gamma_r]$ is at most x as it is a divisor of p-1.

Since for all but $O(x/\exp \frac{\log x}{\log \log x})$ primes p, we may assume that

$$p > x/\exp(2\log x/\log\log x)$$
,

if we set $p_r \ge \frac{\log^2 p}{e^2} \exp(2\log_3^3 p / \log_2^2 p)$ then p_r is in the range of (1) and by (2) the number of such primes p for which $[\mathbb{F}_p^* : \Gamma_r] > 1$ is

$$\ll \sum_{m=2}^{x} \mathcal{H}_{m,r}(x) \leq \left(\sum_{m=2}^{x} \frac{1}{m}\right) \exp\left\{\log x \left(1 - \frac{\log_{3}^{3} x}{2 \log_{2}^{3} x} + c_{5} \left(\frac{\log_{3}^{2} x}{\log_{2}^{3} x}\right)\right)\right\} = O\left(\frac{x}{\exp\left\{\frac{\log x \log_{3}^{3} x}{4 \log_{2}^{3} x}\right\}}\right)$$

and this completes the proof.

ACKNOWLEDGMENTS. A version of Lemma 4 has been proven recently also by S. Konyagin and C. Pomerance in [5].

I would like to thank Professor Ram Murty for his suggestions and for a number of interesting observations.

REFERENCES

- 1. E. Bombieri, Le grande crible dans la théorie analytique des nombres, Astérisque 18(1974).
- 2. H. Brown and H. Zassenhaus, Some empirical observation on primitive roots, J. Number Theory 3(1971) 306-309.
- 3. D. A. Burgess and P. D. T. A. Elliott, *The average of the least primitive root*, Mathematika 15(1968), 39-50.
- 4. E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning "Factorization Numerorum", J. Number Theory 17(1983), 1-28.
- 5. S. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time, preprint.

Dipartimento di Matematica Terza Università degli Studi di Roma Via Corrado Segre, 4 Roma 00146-Italia e-mail: pappa@mat.uniroma3.it