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ON MINIMAL SETS OF GENERATORS
! FOR PRIMITIVE ROOTS

FRANCESCO PAPPALARDI

ABSTRACT. A conjecture of Brown and Zassenhaus (see [2]) states that the firstlog p

primes generate a primitive root (mod p) for almost all primes p. As a consequence of
4+¢

aTheorem of Burgess and Elliott (see [3]) it is easy to see that the first log? ploglog** p
primes generate a primitive root (mod p) for almost all primes p. We improve this -
showing that the first log?p / loglog p primes generate a primitive root (mod p) for
almost all primes p.

For a given odd prime number p, we define thé function « as
k(p) = min{r | the first  primes generate F;}.

In 1969, H. Brown and H. Zassenhaus conjectured in [2] that k(p) < [logp] with
probability almost equal to one.

If we denote by g(p) the least primitive root modulo p, then a Theorem of D. A. Burgess
and P. D. T. A. Elliott states that

x)"' 3 gp) € log? x(log log x)*.
p<x

If U is the number of primes up to x for which g(p) > T, then

UT K ) glp) K 71'(Jc)klog2 x(log log x)*.
pPx

For any e > 0, we choose T = log? x(log logx)**¢/2 so that U = o(n(x)) and since
g(p) < T is product of primes less that T, we deduce that for almost all primes p < x,

k(p) < log x(log logx)***/? < log? p(loglog p)*™.

We will prove the following:

 THEOREM 1. Let 7 be the prime counting function. For all but

X
O( exp{ (log log log x)° log x })

4(log logx)
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primes p < x, we have that

) < n{ L exp[p LSBT )

The proof is based on a uniform estimate for the size of the set

o) = #{p < x| 11/ = 27

where m and r are given integers strictly greater than one, and

I, ={pi,...,pr (mod p))

is the subgroup of F, generated by the first 7 primes.

As a subgroup of the cyclic group F; with index m, I'; is the subgroup of m-th powers
(mod p). Hence

H(x)={p <x|p=1 (mod m) and p; is an m-th power (mod p)Vi=1,... ,r}

If nm(p) is the least prime which is not congruent to an m-th power (mod p), then we

can also write: T
Hyrx)={p <x|p=1 (mod m)and nn(p) > pr}.

We will need to use the large sieve inequality, the proof of which can be found in [1].

That is:

LEMMA 2 (THE LARGE SIEVE). Let A( be a set of integers contained in the interval
{1,...,z} and for any prime p < x, let QO = {h (mod p) | Vn € A,n # h (mod p)}
and

L=3 2 @I
<x

19y
plaP~ I

|
Q|
then
z+3x?

g < 225 .

In our case, let AL = {n <z | Vg|n,q < p,} and note that if p € %, -(x), then

Q, D {h (mod p) | h is not an m-th power (mod )}
therefore, for suchp’s, |Q,| > p—1—(p — 1)/mand
Q|

m—1
> !%r(x)l
pEH )P 12|

>
L=z 2

If we let W(s, ) denote the number of integers n < s free of prime factors exceeding

t, then

8x?
Hnr(X) < DY)

Estimating the function W(z,y) is a classical problem in Number Theory. In 1983,
R. Canfield, P. Erd6s and C. Pomerance (see [4]) proved the following:
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LEMMA 3. Letu = :io’gf,. There exists an absolute constant ¢, such that

(loglogu) — 1 (loglog u)Z) }
+cy )
logu log2 u

forallz>1andu > €. .

Y(z,y) > zexp{——u(logu +loglogu — 1+

Applying Lemma 3 with z = x* and y = p,, we get the following:

LEMMA 4. Letu=2logx / log p,. There exists an absolute constant ¢ such that

(loglogu) —1 . (log log u)z) }
logu " log?u

Hn r(x) < % exp{u(logu +loglogu — 1+

forallx > 1andu > €. =

PROOF OF THEOREM 1. Let us take p; is the range

) log2x > p, > ‘°§  exp

(log loglogx)® }
(loglogxy |
If we set log, x = loglogx, log; x = log loglogx and u = 2%, then we can write the
estimates:
logx <u< logx :
log,x =~ log,x— 1 +logix/2logsx

1
log, x — logy x < logu < log, x — logz x + ;

log, x
log, u <logyx log, x +c log%x.
1 2 < 1 < 1 + log; x

- c .
log;x loggx ~ logu ™ logyx 3log§x

where ¢, and c3 are absolute constants.
Now let us apply Lemma 4 and deduce that

log? x

log,x —1+cq

2 X
log,x—1 +log§x/2log§x}

logs x log3 x )}
2 1 - +
@ < C‘XP{ ogx( 2logy x Cs(loggx)

m¥Hnm ,(x) K exp{ logx

where ¢, and ¢s are absolute constants.
Now we are ready to estimate

#{p<x|[F,:T,]>1}.

We note that the index [F, : I';] is at most x as itis a divisorof p — 1.
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Since for all but O(x/ exp Elgi’%‘;—;) primes p, we may assume that

p > x/ exp(2log x/ loglogx),

if we set p, 2> ’—°§;1 exp2log3 p/ log3 p) then p, is in the range of (1) and by (2) the

number of such primes p for which [F : I';] > 1is

x x ] log3 x log3 x )} ( x
o< (3= logx| 1— + =0 — X2 —
<3 ) < (:;2 m)exp{ ogx( T cs(log%x) exp{,ogx,og,,})

4log, x

and this completes the proof. ]
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