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Abstract

We establish an asymptotic formula for the number of positive integers n � x for which ϕ(n) is free of
kth powers.
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1. Introduction

Let ϕ(n) denote the Euler function, which is defined for all n ∈ N by

ϕ(n) := #(Z/nZ)× =
∏
pa‖n

pa−1(p − 1).

Here pa ‖ n means that pa | n but pa+1 � n. We recall that an integer m is called k-free if pk � m

for any prime number p. In this paper, we study the set of integers n ∈ N for which ϕ(n) is k-free.
In the special case k = 2, it is easy to see that if m = ϕ(n) is squarefree, then the following

properties hold:
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• if a prime p divides n, then p − 1 is squarefree;
• p3 � n for any prime p;
• if 4 | n, then p � n for any odd prime p (thus, n = 4);
• if 4 � n, then p | n for at most one odd prime p.

These properties imply that n ∈ {p,2p,p2,2p2} for some prime p for which p−1 is squarefree,
hence the problem of estimating the number of positive integers n � x for which ϕ(n) is square-
free reduces to that of estimating the number of primes p � x for which p − 1 is squarefree.
These questions have been previously investigated. For example, Mirsky [7] (see also [5,11]) has
shown that for any constant C > 0, the asymptotic relation

#{p � x: p − 1 is squarefree} = α2 π(x) + O

(
x

logC x

)
holds, and in [11], this fact is used to establish the formula

#
{
n � x: ϕ(n) is squarefree

} = 3α2

2
π(x) + O

(
x

logC x

)
. (1)

Here, α2 is the Artin constant:

α2 :=
∏
p

(
1 − 1

p(p − 1)

)
= 0.3739558136 . . . , (2)

and the implied constant in the Landau symbol depends only on C.
Here, we study the same question for an arbitrary (but fixed) integer k � 3. Our main result is

an asymptotic formula for the counting function #Ak(x) of the set

Ak(x) := {
n � x: ϕ(n) is k-free

}
.

Clearly, since 2k � ϕ(n) for any n ∈ Ak(x), every such n can have at most k − 1 distinct odd
prime factors. Moreover, it is natural to expect that integers with precisely k − 1 distinct prime
factors make the largest contribution to #Ak(x). In view of the well-known result of Landau [6]
on the number of integers n � x with � prime factors (stated as Theorem 2.6 below), the rough
estimate

#Ak(x) � x(log logx)k−2

logx

is not too surprising and can probably be established using simpler methods than those presented
here. The problem of determining a precise asymptotic formula for #Ak(x), however, is rather
delicate.

We remark that the tools used to derive the precise estimate (1) in the case k = 2, for which
one has a very simple description of the set Ak(x), are no longer available once k > 2. Also,
in contrast to the case k = 2, when k � 3 there is a significant contribution to #Ak(x), of order
#Ak(x)/ log logx, which comes from integers with precisely k − 2 distinct prime factors.
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In order to state our main result, let us define

βk,p :=
k−2∑
i=0

k−2−i∑
j=0

(
k − 1

i

)(
k − 1 + j

j

)(
1

p − 1

)i(
1 − 1

p − 1

)j

for every integer k � 2 and prime p � 2 (in the case p = 2, we adopt the convention that 00 = 1,
and thus βk,2 = 2k−1 − 1), and put

αk :=
∏
p

(
1 − βk,p

pk−1(p − 1)

)
.

Theorem 1.1. For every fixed integer k � 3, the asymptotic formula

#Ak(x) = 3αk

2

x(log logx)k−2

(k − 2)! logx

(
1 + o(1)

)
holds as x → ∞, where the function implied by o(1) depends only on k.

Remarks. Taking k = 2 in the statement of Theorem 1.1, one recovers the asymptotic formula (1)
(with an imprecise error term). Our proof of Theorem 1.1 uses elementary methods, and in several
instances, we have followed closely certain arguments from the book [9] by Nathanson. We
also remark that, as is clear from our proof, we do not need the full strength of some of the
known results that are recalled in Section 2. In the proof, we show that the o(1) error term in the
statement of the theorem is of size

Ok

(
(log log logx)2(k+1)2k−4−1

(log logx)1−1/k

)
,

which is reasonably close to the expected error Ek(x) �k 1/ log logx when k is large; however,
our main focus in this paper is the determination of the main term for #Ak(x). Finally, using the
method of Moree [8] and the Pari program, we have computed the fifty decimal digits of each
constant αk with 2 � k � 10:

α2 = 0.37395 58136 19202 28805 47280 54346 41641 51116 29248 60615 . . . ,

α3 = 0.18984 91224 20235 31991 66681 67621 86073 62451 02880 08604 . . . ,

α4 = 0.09671 30507 43055 56792 23408 99706 16695 80481 99713 96223 . . . ,

α5 = 0.04914 98625 18789 68323 37383 93355 96691 22084 26605 56681 . . . ,

α6 = 0.02492 28833 35419 10300 95723 08364 04557 22962 18064 16898 . . . ,

α7 = 0.01261 64236 57195 48181 66980 78776 82881 81757 58940 73078 . . . ,

α8 = 0.00637 83900 14315 82338 85155 40430 85389 84736 02454 15212 . . . ,

α9 = 0.00322 14087 53892 82515 40641 09868 03144 90880 21993 85574 . . . ,

α10 = 0.00162 56470 18001 48232 26934 50203 11279 49745 37231 54564 . . . .
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Hundreds of decimal digits can be determined using the same method.

2. Preparations

Here we collect several results that are needed in the sequel.

Theorem 2.1 (Siegel–Walfisz). There exists an absolute constant c1 > 0 such that for any con-
stant c > 0 and uniformly for

x � 3, 1 � m � logc x and (a,m) = 1,

one has ∑
n�x

n≡a (mod m)

Λ(n) = x

ϕ(m)
+ Oc

(
xe−c1

√
logx

)
,

where Λ(n) is the von Mangoldt function:

Λ(n) :=
{

logp if n is a power of the prime p,

0 otherwise.

The reader can find a detailed proof of Theorem 2.1 in the book by Huxley [4] or in that by
Ellison and Mendès-France [2].

Let P ⊂ N denote the set of prime numbers, and for any real number x � 1, let P(x) be the
set of primes such that p � x.

Corollary 2.1. There exists an absolute constant c1 > 0 such that for any constant c > 0, the
relation ∑

p∈P(x)
p≡1 (mod m)

logp = x

ϕ(m)
+ Oc

(
xe−c1

√
logx

)

holds uniformly for x � 3 and 1 � m � logc x.

Proof. If π(y) denotes the number of primes p � y, one has the estimate

∑
p∈P, a�2

pa�x

logp �
∑

p∈P(x1/2)

⌊
logx

logp

⌋
logp � π

(
x1/2) logx = O

(
x1/2),

and the result follows immediately from Theorem 2.1. �
The following result is due to Norton [10]; see also [12, Theorem 1].
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Theorem 2.2. The relation

∑
p∈P(x)

p≡1 (mod m)

1

p
= log logx

ϕ(m)
+ O(1)

holds uniformly for x � 3 and m � 1, where the implied constant is absolute.

We also need the Brun–Titchmarsh theorem; for example, see [3, Theorem 3.7, Chapter 3].
Let π(x;m,a) denote the number of primes p � x such that p ≡ a (mod m).

Theorem 2.3 (Brun–Titchmarsh). For integers m, a with m � 1 and for all x � m, the bound

π(x;m,a) � x

ϕ(m)(1 + log(x/m))

holds, where the implied constant is absolute.

We also need the following well-known result (see, for example, [13, Theorem 9, §I.1.5]):

Theorem 2.4 (Mertens). There exists an absolute constant c such that for all x � 2, one has

∑
p∈P(x)

1

p
= log logx + c + O

(
1

logx

)
.

For any integer � ∈ N, let P� denote the set of ordered �-tuples of primes. For any real number
x � 1, let P�(x) be the set of ordered �-tuples (p1, . . . , p�) in P� such that p1 · · ·p� � x.

Theorem 2.5 (Landau). For fixed � ∈ N, the estimates

S�(x) :=
∑

(p1,...,p�)∈P�(x)

1

p1 · · ·p�

∼ (log logx)�

and

ϑ�(x) :=
∑

(p1,...,p�)∈P�(x)

log(p1 · · ·p�) ∼ �x(log logx)�−1

hold as x → ∞.

For an elementary proof of Theorem 2.5, we refer the reader to Theorems 9.7 and 9.8 in the
book [9] by Nathanson.

Now let ω(n) denote the number of distinct prime divisors of an integer n ∈ N. Then we have
the following well-known result of Landau [6] (see also [9, Theorem 9.9]):
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Theorem 2.6 (Landau). For every fixed integer � ∈ N, the asymptotic formula

#
{
n � x: ω(n) = �

} ∼ x(log logx)�−1

(� − 1)! logx

holds as x → ∞.

Let μ(n) be the Möbius function, and let τ(n) be the number of positive integral divisors of
n ∈ N.

Lemma 2.1. For any positive integer t , the following estimate holds:∑
n�y

τ (n)t �t y(logy)2t−1.

For any integers t, r ∈ N, we also have

∑
n>y

μ2(n)τ (n)t

nrϕ(n)
�t

(logy)2t−1

yr
.

Proof. The first estimate is well known and follows directly from the theorem of Wirsing [14]
which states that if f (n) is a non-negative multiplicative arithmetic function such that:

(i) f (pν) � c1c
ν
2 holds for any prime p and integer ν � 2, where c1, c2 are positive constants

with c2 < 2;
(ii)

∑
p�x f (p) ∼ τx/ logx holds as x → ∞, where τ is a positive constant,

then, as x → ∞, one has

∑
n�x

f (n) ∼ e−γ τ


(τ)

x

logx

∏
p�x

(
1 + f (p)

p
+ f (p2)

p2
+ · · ·

)
,

where γ is the Euler–Mascheroni constant, and 
(s) is the Euler 
-function. Indeed, applying
Wirsing theorem with the function f (n) = τ(n)t , we obtain

∑
n�y

τ (n)t ∼ e−γ 2t


(2t )

y

logy

∏
p�y

(
1 + 2t

p
+ 3t

p2
+ · · ·

)
,

and the first estimate follows from the observation that

∏
p�y

(
1 + 2t

p
+ 3t

p2
+ · · ·

)
�

∏
p�y

(
1 − 1

p

)−2t

� (logy)2t

,

where we have used Merten’s theorem in the last step.
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For the second estimate, we first apply Wirsing’s theorem with the function

f (n) = μ2(n)nτ(n)t

ϕ(n)
,

which implies

D(x) =
∑
n�x

μ2(n)nτ(n)t

ϕ(n)
∼ e−γ 2t


(2t )

x

logx

∏
p�x

(
1 + 2t

p − 1

)
� x(logx)2t−1.

Then, by partial summation, we have

∑
n>y

μ2(n)τ (n)t

nrϕ(n)
= −D(y)

yr+1
+ (r + 1)

∞∫
y

D(s)

sr+2
ds � (logy)2t−1

yr
,

and this completes the proof. �
Finally, we need the following estimate, which is a simplified and weakened form of Lemma 2

from [1]:

Lemma 2.2. Let T (x,w,q) denote the number of positive integers n � x such that ω(n) � w

and ϕ(n) ≡ 0 (mod q). Then

T (x,w,q) �w

x(log logx)w−1

q2/5
.

Proof. By [1, Lemma 2],

T (x,w,q) � x(c log logx)w−1
(

τw(q)τ(q)

q

)1/2

for some absolute constant c > 0, where τw(q) is the number of representations of n as an ordered
product of w positive integers. It is well known that τw(q) = Oε(q

ε) for any fixed ε > 0; in
particular, τw(q)τ(q) � q1/5 for all sufficiently large values of q (depending on w), and the
lemma follows. �
3. The seven hills of Rome

The proof of Theorem 1.1 consists of seven individual steps (which, to commemorate the visit
of the first author to Rome, we chose to name after the seven hills); these results are combined in
the next section. The first step deals with the problem of expressing the constant αk as an Euler
product. The second step addresses issues related to the convergence of the series that defines αk .
The following three steps present an adaptation of the method of Landau for counting integers
with a fixed number of prime divisors, which is applicable to the present situation. The last two
steps concern our use of the inclusion–exclusion principle to eliminate integers n for which ϕ(n)

is not k-free.
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Viminal

Lemma 3.1. For every � ∈ N, let Δ�(m) be the arithmetical function defined inductively by

Δ�(m) :=
{ 1

ϕ(m)
if � = 1,∑

d|m,e|(m/d)
μ(e)
ϕ(ed)

Δ�−1
(

m
d

)
if � � 2.

Then Δ�(m) is multiplicative. For every integer a � 1 and prime p � 2, we have

Δ�

(
pa

) = 1

ϕ(pa)

�−1∑
i=0

�−1−i∑
j=0

(
a − 1

i

)(
a − 1 + j

j

)(
1

p − 1

)i(
1 − 1

p − 1

)j

. (3)

Proof. One can verify directly that if {Δ�: � ∈ N} are the multiplicative functions defined on
prime powers by (3), then these functions also satisfy the stated inductive property. In this proof,
however, we show how to deduce (3) directly from the inductive definition using the method of
generating functions since the results we obtain along the way are useful for estimating Δ� in
Lemma 3.2 below. We remark that, for the special case p = 2, formula (3) simplifies to

Δ�

(
2a

) = 1

ϕ(2a)

�−1∑
i=0

(
a − 1

i

)
.

To show that Δ�(m) is multiplicative, we use induction on �, the case � = 1 being obvious.
Suppose that Δ�−1(m) is multiplicative, and let m = m1m2, where m1 and m2 are coprime. For
any divisors d | m and e | (m/d), let dj = (d,mj ) and ej = (e,mj ), j = 1,2. Then

Δ�(m1m2) =
∑

d|m1m2
e|(m1m2/d)

μ(e)

ϕ(ed)
Δ�−1

(
m1m2

d

)

=
∑
d1|m1

e1|(m1/d1)

∑
d2|m2

e2|(m2/d2)

μ(e1e2)

ϕ(e1e2d1d2)
Δ�−1

(
m1m2

d1d2

)

=
∑
d1|m1

e1|(m1/d1)

μ(e1)

ϕ(e1d1)
Δ�−1

(
m1

d1

) ∑
d2|m2

e2|(m2/d2)

μ(e2)

ϕ(e2d2)
Δ�−1

(
m2

d2

)

= Δ�(m1)Δ�(m2),

which shows that Δ�(m) is multiplicative.
Suppose that m = pa where p is an odd prime and a � 0. Write d = pb for each divisor of m

and e = pc for each divisor of m/d . Then the inductive formula for � � 2 becomes

Δ�

(
pa

) =
a∑ a−b∑ μ(pc)

ϕ(pb+c)
Δ�−1

(
pa−b

)
.

b=0 c=0
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For the inner sum, since μ(n) is supported on squarefree integers, we see that

a−b∑
c=0

μ(pc)

ϕ(pb+c)
Δ�−1

(
pa−b

) =

⎧⎪⎪⎨⎪⎪⎩
1

ϕ(pa)
if b = a,(

1 − 1
p−1

)
Δ�−1(p

a) if b = 0,

1
pb Δ�−1(p

a−b) otherwise.

Thus, if we define D�(a) := ϕ(pa)Δ�(p
a), it follows that

D�(a) =
{

1 if a = 0 or � = 1,

− 1
p−1D�−1(a) + ∑a

b=0 D�−1(b) otherwise.
(4)

Now for each a � 0, let Ea(x) be the generating function given by

Ea(x) :=
∞∑

�=1

D�(a)x�.

Using (4) it is easy to see that

Ea(x) =
{ x

1−x
if a = 0,

x + x
(
1 − 1

p−1

)
Ea(x) + x

∑a−1
b=0 Eb(x) otherwise.

By induction on a, one immediately verifies that

Ea(x) = x(1 + x
p−1 )a−1

(1 − x)(1 + ( 1
p−1 − 1)x)a

for every a � 1. Extracting the coefficient of x� from this expression, we find that

D�(a) =
∑

i,j,m�0
i+j+m=�−1

(
a − 1

i

)(−a

j

)(
1

p − 1

)i( 1

p − 1
− 1

)j

,

and the result follows from this using standard algebraic manipulations. The case p = 2 is similar
and somewhat easier since 1 − 1/(p − 1) = 0; the details are omitted. �

Palatine

As usual, we denote by Ω(n) the number of prime factors of n � 2 counted with multiplicity,
and we denote by ω(n) the number of distinct prime divisors of n; we also put Ω(1) = ω(1) = 0.

Lemma 3.2. Let Δ�(m) be the arithmetical function defined in Lemma 3.1. Then the following
estimate holds for all m ∈ N:

Δ�(m) � 2Ω(m)+ω(m)�

.

ϕ(m)
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Furthermore, for k � 3 one has

∑
m�y

μ(m)Δk−1
(
mk

) = αk + Ok

(
(logy)22k−1−1

yk−1

)
,

where αk is the constant defined in Theorem 1.1.

Proof. We first consider the case when m = pa for some prime p � 3 and a � 1, the cases p = 2
and a = 0 being obvious. As in the proof of Lemma 3.1, we have the formal relation:

∞∑
�=1

ϕ
(
pa

)
Δ�

(
pa

)
x� = x(1 + x

p−1 )a−1

(1 − x)(1 + ( 1
p−1 − 1)x)a

,

which is an identity of analytic functions whenever |x| < (p − 1)/(p − 2). Taking x = 1/2 we
deduce that

ϕ
(
pa

)
Δ�

(
pa

)
� 2a+�,

which yields the stated bound in this case. For general m ∈ N, we have

Δ�(m) =
∏

pa‖m
Δ�

(
pa

)
�

∏
pa‖m

2a+�

ϕ(pa)
= 2Ω(m)+ω(m)�

ϕ(m)
.

For the second statement of the lemma, we first observe that

∑
m�y

μ(m)Δk−1
(
mk

) =
∞∑

m=1

μ(m)Δk−1
(
mk

) + O

( ∑
m>y

μ2(m)Δk−1
(
mk

))
.

Using the multiplicativity of Δk−1, we immediately deduce that

∞∑
m=1

μ(m)Δk−1
(
mk

) =
∏
p∈P

(
1 − Δk−1

(
pk

)) =
∏
p∈P

(
1 − βk,p

pk−1(p − 1)

)
= αk,

where {βk,p: p ∈ P} are the constants defined in Theorem 1.1. If m is squarefree, we also have
Ω(mk) = kω(m), hence by the results above:

Δk−1
(
mk

)
� 2(2k−1)ω(m)

ϕ(mk)
= τ(m)2k−1

mk−1ϕ(m)
.

Therefore, by the second part of Lemma 2.1, it follows that

∑
m>y

μ2(m)Δk−1
(
mk

)
�

∑
m>y

μ(m)2τ(m)2k−1

mk−1ϕ(m)
�k

(logy)22k−1−1

yk−1
,

which completes the proof. �
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Aventine

Let F(n) be the completely multiplicative function defined for all n ∈ N by

F(n) :=
∏
pa‖n

(p − 1)a.

Observe that F(n) = ϕ(n) whenever n is squarefree.
Recall that for any integer � ∈ N, P� denotes the set of ordered �-tuples of primes, and for any

real number x � 1, P�(x) is the set of ordered �-tuples (p1, . . . , p�) in P� such that p1 · · ·p� � x.
For every m ∈ N, we now put

P�(x;m) := {
(p1, . . . , p�) ∈P�(x): m | F(p1 · · ·p�)

}
.

The following result is not needed for our proof of Theorem 1.1, but we believe it to be of
independent interest.

Lemma 3.3. For all �,m ∈ N and x � 1, let

S�(x;m) :=
∑

(p1,...,p�)∈P�(x;m)

1

p1 · · ·p�

.

Then for any constant c > 0 and any fixed � ∈ N, and uniformly for x � e2�+1
and 1 � m � logc x,

we have

S�(x;m) = (log logx)�
(

Δ�(m) + Oc,�

(
τ(m)2�−2

log logx

))
,

where Δ�(m) is the arithmetical function considered before.

Proof. To simplify the notation, let us write L(x) := log logx in what follows.
If � = 1, then by Theorem 2.2 we have for x � 3:

S1(x;m) =
∑

p∈P(x)
p≡1 (mod m)

1

p
= L(x)

ϕ(m)
+ O(1) = L(x)

(
Δ1(m) + O

(
L(x)−1)),

and the lemma is proved in this case.
Now suppose that � � 2 and that the lemma has been proved for �−1. If (p1, . . . , p�) is any �-

tuple in P�(x;m), then m | (p1 − 1) · · · (p� − 1). Collecting together terms with (p� − 1,m) = d

for each divisor d of m, we see that

S�(x;m) =
∑
d|m

∑
p�∈P(x)

1

p�

∑
(p1,...,p�−1)∈P�−1(x/p�;m/d)

1

p1 · · ·p�−1
(p�−1,m)=d
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=
∑
d|m

∑
p∈P1(x;d)

((p−1)/d,m/d)=1

1

p
S�−1

(
x

p
; m

d

)

=
∑
d|m

∑
p∈P1(x;d)

1

p

( ∑
e|((p−1)/d,m/d)

μ(e)

)
S�−1

(
x

p
; m

d

)

=
∑
d|m

e|(m/d)

∑
p∈P1(x;de)

μ(e)

p
S�−1

(
x

p
; m

d

)
.

By induction, we can assume that

S�−1(y;n) = L(y)�−1
(

Δ�−1(n) + Oc,�

(
τ(n)2�−4

L(y)

))

holds uniformly for all y � e2�
and 1 � n � log2c y. In particular, for primes p � x1/2 we have

x/p � x1/2 � e2�
since x � e2�+1

, and

1 � m

d
� m � logc x � log2c

(
x

p

)
;

therefore,

S�−1

(
x

p
; m

d

)
= L

(
x

p

)�−1(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m/d)2�−4

L(x/p)

))
for each divisor d of m. Moreover, since

L
(

x

p

)
= L(x) + O

(
logp

logx

)
= L(x) + O(1)

for such primes p, we obtain the uniform estimate

S�−1

(
x

p
; m

d

)
= L(x)�−1

(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m)2�−4

L(x)

))
.

Consequently,

∑
d|m

e|(m/d)

∑
p∈P1(x1/2;de)

μ(e)

p
S�−1

(
x

p
; m

d

)

= L(x)�−1
∑
d|m

μ(e)S1
(
x1/2;de

)(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m)2�−4

L(x)

))
.

e|(m/d)
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Since x1/2 � e2� � e4 and

1 � de � m � logc x � log2c
(
x1/2),

we have

S1
(
x1/2;de

) = L
(
x1/2)(Δ1(de) + Oc

(
L

(
x1/2)−1))

= L(x)

(
1

ϕ(de)
+ Oc

(
L(x)−1)).

Recalling that

∑
d|m

e|(m/d)

μ(e)

ϕ(de)
Δ�−1

(
m

d

)
= Δ�(m)

and using the naive estimate

∑
d|m

e|(m/d)

1

ϕ(de)
� τ(m)2

together with the fact that Δ�−1(m/d) = O�(1) by Lemma 3.2, we obtain:

∑
d|m

e|(m/d)

∑
p∈P1(x1/2;de)

μ(e)

p
S�−1

(
x

p
; m

d

)
= L(x)�

(
Δ�(m) + Oc,�

(
τ(m)2�−2

L(x)

))
.

To complete the proof, it suffices to show that∣∣∣∣∣ ∑
d|m

e|(m/d)

∑
p∈P1(x;de)

p>x1/2

μ(e)

p
S�−1

(
x

p
; m

d

)∣∣∣∣∣ = O�

(
τ(m)2L(x)�−1). (5)

For this, we first apply Theorem 2.5 to obtain the crude estimate:

S�−1

(
x

p
; m

d

)
� S�−1(x) = O�

(
L(x)�−1).

By Theorem 2.4, we also have

∑
p∈P1(x;de)

p>x1/2

1

p
�

∑
p∈P(x)

p>x1/2

1

p
=

∑
p∈P(x)

1

p
−

∑
p∈P(x1/2)

1

p
= O(1),

and (5) follows immediately. �
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Capitoline

Lemma 3.4. For all �,m ∈ N and x � 1, let

ϑ�(x;m) :=
∑

(p1,...,p�)∈P�(x;m)

log(p1 · · ·p�).

Then for any constant c > 0 and any fixed � ∈ N, and uniformly for x � e2�+1
and 1 � m � logc x,

we have

ϑ�(x;m) = �x(log logx)�−1
(

Δ�(m) + Oc,�

(
τ(m)2�−2

log logx

))
.

Proof. By Corollary 2.1, we have for x � 3 and 1 � m � logc x:

ϑ1(x;m) =
∑

p∈P(x)
p≡1 (mod m)

logp = x

ϕ(m)
+ Oc

(
xe−c1

√
logx

)

= x
(
Δ1(m) + Oc

(
L(x)−1)),

where we use the notation L(x) := log logx as in Lemma 3.3, and the lemma is proved in this
case.

Now suppose that � � 2 and that the lemma has been proved for � − 1. We claim that

ϑ�(x;m) = �

� − 1

∑
d|m

e|(m/d)

∑
p∈P1(x;de)

μ(e)ϑ�−1

(
x

p
; m

d

)
.

Indeed, let

p1 · · · p̂j · · ·p� :=
∏

1�i��
i 
=j

pi

for j = 1, . . . , �. Then

(� − 1)ϑ�(x;m) =
∑

(p1,...,p�)∈P�(x)
m|(p1−1)···(p�−1)

(� − 1) log(p1 · · ·p�)

=
∑

(p1,...,p�)∈P�(x)
m|(p1−1)···(p�−1)

�∑
j=1

log(p1 · · · p̂j · · ·p�)

=
�∑

j=1

∑
(p1,...,p�)∈P�(x)

log(p1 · · · p̂j · · ·p�)
m|(p1−1)···(p�−1)
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=
�∑

j=1

∑
d|m

∑
pj ∈P(x)

(pj −1,m)=d

∑
(p1,...,p̂j ,...,p�)∈P�−1(x/pj ;m/d)

log(p1 · · · p̂j · · ·p�)

= �
∑
d|m

∑
p∈P1(x;d)
(p−1,m)=d

∑
(p1,...,p�−1)∈P�−1(x/p;m/d)

log(p1 · · ·p�−1)

= �
∑
d|m

∑
p∈P1(x;d)

( ∑
e|((p−1)/d,m/d)

μ(e)

)
ϑ�−1

(
x

p
; m

d

)

= �
∑
d|m

e|(m/d)

∑
p∈P1(x;de)

μ(e)ϑ�−1

(
x

p
; m

d

)
,

which proves the claim.
Now, by induction, we can assume that

ϑ�−1(y;n) = (� − 1)yL(y)�−2
(

Δ�−1(n) + Oc,�

(
τ(n)2�−4

L(y)

))

holds uniformly for all y � e2�
and 1 � n � log2c y. In particular, for primes p � x1/2 we have

x/p � x1/2 � e2�
since x � e2�+1

, and

1 � m

d
� m � logc x � log2c

(
x

p

)
.

Therefore,

ϑ�−1

(
x

p
; m

d

)
= (� − 1)

x

p
L

(
x

p

)�−2(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m/d)2�−4

L(x/p)

))
for each divisor d of m. Since

L
(

x

p

)
= L(x) + O

(
logp

logx

)
= L(x) + O(1)

for such primes p, we obtain the uniform estimate

ϑ�−1

(
x

p
; m

d

)
= (� − 1)

x

p
L(x)�−2

(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m)2�−4

L(x)

))
.

Consequently,

�

� − 1

∑
d|m

∑
p∈P1(x1/2;de)

μ(e)ϑ�−1

(
x

p
; m

d

)

e|(m/d)
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= �xL(x)�−2
∑
d|m

e|(m/d)

∑
p∈P1(x1/2;de)

μ(e)

p

(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m)2�−4

L(x)

))

= �xL(x)�−2
∑
d|m

e|(m/d)

μ(e)S1
(
x1/2;de

)(
Δ�−1

(
m

d

)
+ Oc,�

(
τ(m)2�−4

L(x)

))
.

Proceeding from here as in proof of Lemma 3.3, we obtain that

�

� − 1

∑
d|m

e|(m/d)

∑
p∈P1(x1/2;de)

μ(e)ϑ�−1

(
x

p
; m

d

)

= �xL(x)�−1
(

Δ�(m) + Oc,�

(
τ(m)2�−2

L(x)

))
.

To complete the proof, it suffices to show that∣∣∣∣∣ ∑
d|m

e|(m/d)

∑
p∈P1(x;de)

p>x1/2

μ(e)ϑ�−1

(
x

p
; m

d

)∣∣∣∣∣ = O�

(
xL(x)�−2τ(m)2). (6)

For this, we first apply Theorem 2.5 to obtain the crude estimate:

ϑ�−1

(
x

p
; m

d

)
� ϑ�−1

(
x

p

)
= O

(
xL(x)�−2

p

)
.

As in the proof of Lemma 3.3, we also have

∑
p∈P1(x;de)

p>x1/2

1

p
= O(1),

and estimate (6) follows. �
Quirinal

Lemma 3.5. For all �,m ∈ N and x � 1, let

B�(x;m) := {
n � x: Ω(n) = ω(n) = � and m | ϕ(n)

}
.

Then for any constant c > 0 and any fixed � ∈ N, and uniformly for x � e2�+1
and 1 � m � logc x,

we have

#B�(x;m) = x(log logx)�−1

(� − 1)! logx

(
Δ�(m) + Oc,�

(
τ(m)2�−2

log logx

))
.
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Proof. We recall that F(n) = ϕ(n) if n is squarefree, i.e., when Ω(n) = ω(n). In other words,

B�(x;m) = {
n � x: Ω(n) = ω(n) = � and m | F(n)

}
.

Let r�(n) denote the number of representations of n as an ordered product of � primes, i.e.,

r�(n) =
∑

(p1,...,p�)∈P�

p1···p�=n

1.

Then

ϑ�(x;m) =
∑

(p1,...,p�)∈P�(x;m)

log(p1 · · ·p�) =
∑
n�x

m|F(n)

r�(n) logn.

Since 0 � r�(n) � �! for all n ∈ N,

#P�(x;m) =
∑
n�x

m|F(n)

r�(n) = O�(x),

and we obtain by partial summation:

ϑ�(x;m) = #P�(x;m) logx −
x∫

1

#P�(t;m)

t
dt = #P�(x;m) logx + O�(x).

By Lemma 3.4, this gives

#P�(x;m) = �x(log logx)�−1

logx

(
Δ�(m) + Oc,�

(
τ(m)2�−2

log logx

))
. (7)

On the other hand, by Theorem 2.6,

#P�(x;m) =
∑
n�x

Ω(n)=ω(n)=�
m|F(n)

�! +
∑
n�x

ω(n)<Ω(n)=�
m|F(n)

O�(1)

= #B(x;m)�! + O�

(
x(log logx)�−2

logx

)
.

This estimate combined with (7) yields the desired result. �
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Esquiline

The following result may be viewed as an analogue of the Brun–Titchmarsh theorem (Theo-
rem 2.3).

Lemma 3.6. For any integers m,� ∈ N and any real constant C > 0, we have

#B�(x;m) ��,C

τ (m)2�−2

ϕ(m)

x(log logx)�−1

logx

if m � logC x and x is sufficiently large, depending only on � and A.

Proof. The proof proceeds by induction on �. First, suppose that � = 1. We have by Theorem 2.3:

#B1(x;m) = π(x;m,1) � x

ϕ(m)(1 + log(x/m))
.

Since m � logC x, the lemma follows in this case.
Now suppose the lemma is true up to � − 1, where � � 2. We remark that Ω(n) = ω(n)

implies that n is squarefree, and any squarefree n � x with ω(n) = � can be expressed in the form
n = pn′ where p is the smallest prime divisor of n, p � x1/�, n′ � x/p, and ϕ(n) = (p−1)ϕ(n′).
Therefore,

#B�(x;m) =
∑
n�x

Ω(n)=ω(n)=�
m|ϕ(n)

1 �
∑

p�x1/�

∑
n′�x/p

Ω(n′)=ω(n′)=�−1
m|(p−1)ϕ(n′)

1

�
∑
d|m

∑
p�x1/�

(m,p−1)=d

∑
n′�x/p

Ω(n′)=ω(n′)=�−1
(m/d)|ϕ(n′)

1

�
∑
d|m

∑
p�x1/�

p≡1 (mod d)

#B�−1

(
x

p
; m

d

)
.

To estimate each term #B�−1(x/p;m/d), since x/p � x1−1/�, we have

m

d
� m � logC x � �C

(� − 1)C
logC

(
x

p

)
� log2C

(
x

p

)
if x is sufficiently large; we can therefore apply the inductive hypothesis (with C replaced by 2C),
obtaining:

#B�−1

(
x

p
; m

d

)
��,C

τ (m/d)2�−4

ϕ(m/d)

(x/p)(log log(x/p))�−2

log(x/p)

��

τ (m)2�−4 x(log logx)�−2 1
.

ϕ(m/d) logx p
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Since each d � logC x, Theorem 2.2 implies that

∑
p�x1/�

p≡1 (mod d)

1

p
��,C

log logx

ϕ(d)
,

and therefore

#B�(x;m) ��,C τ (m)2�−4 x(log logx)�−1

logx

∑
d|m

1

ϕ(m/d)ϕ(d)
.

Noting that

ϕ

(
m

d

)
ϕ(d) = ϕ(m)

∏
p|(d,m/d)

(
1 − p−1) � ϕ(m)

2ω((d,m/d))
� ϕ(m)

2ω(d)
� ϕ(m)

τ(d)
� ϕ(m)

τ(m)
,

the lemma follows. �
Caelian

Lemma 3.7. For any fixed integer k � 3 and any real number x � 1, let

Ck(x) := {
odd n � x: Ω(n) = ω(n) = k − 1 and ϕ(n) is k-free

}
.

Then,

#Ck(x) = αk

x(log logx)k−2

(k − 2)! logx

(
1 + Ok

(
(log log logx)2(k+1)2k−4−1

(log logx)1−1/k

))
,

where αk is the constant defined in Theorem 1.1.

Proof. Since the set{
even n � x: Ω(n) = ω(n) = k − 1 and ϕ(n) is k-free

}
is a subset of {

n � x/2: ω(n) = k − 2
}
,

and the latter set is of size

Ok

(
x(log logx)k−3

logx

)
by Theorem 2.6, it suffices to estimate the number of elements in

Dk(x) := {
n � x: Ω(n) = ω(n) = k − 1 and ϕ(n) is k-free

}
.
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Now the characteristic function χk of k-free integers n ∈ N can be defined in terms of the Möbius
function via the formula

χk(n) :=
∑
mk |n

μ(m).

Thus for any real parameters y, z with y < z < x1/k , we have

#Dk(x) =
∑
n�x

Ω(n)=ω(n)=k−1

∑
mk |ϕ(n)

μ(m) =
∑

m�x1/k

μ(m) # Bk−1
(
x;mk

)
= Σ(0, y) + Σ(y, z) + Σ

(
z, x1/k

)
,

where

Σ(a,b) :=
∑

a<m�b

μ(m) # Bk−1
(
x;mk

)
.

To evaluate the main term Σ(0, y), we apply Lemma 3.5 with c = k and � = k − 1; for any
y � logx, we obtain that

Σ(0, y) = x(log logx)k−2

(k − 2)! logx

∑
m�y

μ(m)

(
Δk−1

(
mk

) + Ok

(
τ(mk)2k−4

log logx

))
.

By Lemma 3.2, we have

∑
m�y

μ(m)Δk−1
(
mk

) = αk + Ok

(
(logy)22k−1−1

yk−1

)
,

while by the first part of Lemma 2.1,∑
m�y

μ2(m)τ
(
mk

)2k−4 �
∑
m�y

τ (m)�(2k−4) log2(k+1)� �k y(logy)2(k+1)2k−4−1.

Therefore, if θ = 2(k + 1)2k−4 − 1, we see that

Σ(0, y) = αk

x(log logx)k−2

(k − 2)! logx

(
1 + Ok

(
logθ y

(
1

yk−1
+ y

log logx

)))
.

Choosing y = (log logx)1/k (which balances the two terms in this estimate) and noting that
y � logx if x is sufficiently large, it follows that

Σ(0, y) = αk

x(log logx)k−2

(k − 2)! logx

(
1 + Ok

(
(log log logx)2(k+1)2k−4−1

(log logx)1−1/k

))
.

Next, we take z = log6 x and estimate Σ(y, z) using Lemma 3.6 (with C = 6):
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Σ(y, z) �
∑

y<m�z

μ2(m) # Bk−1
(
x;mk

)
�k

x(log logx)k−2

logx

∑
y<m�z

μ2(m)
τ(mk)2k−4

ϕ(mk)

� x(log logx)k−2

logx

∑
y<m�z

μ2(m)
τ(m)�(2k−4) log2(k+1)�

mk−1ϕ(m)
.

By the second part of Lemma 2.1,

∑
m>y

μ2(m)
τ(m)�(2k−4) log2(k+1)�

mk−1ϕ(m)
�k

logθ y

yk−1
,

where θ is as before, and it follows that

Σ(y, z) = Ok

(
x(log logx)k−2

logx

(log log logx)2(k+1)2k−4−1

(log logx)1−1/k

)
.

Finally, we estimate Σ(z, x1/k) using Lemma 2.2:

Σ
(
z, x1/k

)
�

∑
z<m�x1/k

#Bk−1
(
x;mk

)
�

∑
z<m�x1/k

T
(
x, k − 1,mk

)

�k

∑
z<m�x1/k

x(log logx)k−2

m2k/5
� x(log logx)k−2

z(2k−5)/5
.

Since k � 3,

z(2k−5)/5 � z1/5 = (logx)6/5,

and therefore

Σ
(
z, x1/k

) = Ok

(
x(log logx)k−2

(logx)6/5

)
.

Putting together our estimates for Σ(0, y), Σ(y, z) and Σ(z, x1/k), the proof is com-
pleted. �
4. Proof of the main theorem

In view of Lemma 3.7, to prove Theorem 1.1 it suffices to show that

#Ak(x) = 3
# Ck(x) + Ok

(
x(log logx)k−3 )

.

2 logx
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Now for any real number x � 1, let us define the set

Ek(x) := {
n ∈Ak(x): n is odd and ω(n) = k − 1

}
.

If n ∈ Ak(x) is odd, then 2ω(n) | ϕ(n) since 2 | (p − 1) for each prime divisor p of n; as ϕ(n) is
k-free, it follows that ω(n) � k − 1. On the other hand, from Theorem 2.6 it follows that

#
{
n � x: ω(n) � k − 2

} = Ok

(
x(log logx)k−3

logx

)
.

Thus,

#
{
n ∈Ak(x): n is odd

} = #Ek(x) + Ok

(
x(log logx)k−3

logx

)
.

Next, suppose that n ∈ Ak(x) is even and that 2 ‖ n. Then n = 2m where m is odd, m � x/2,
and ϕ(m) = ϕ(n) is k-free; conversely, if m has these properties, then n = 2m lies in Ak(x) and
2 ‖ n. Arguing as before, we also see that ω(m) � k − 1, and therefore

#
{
n ∈Ak(x): 2 ‖ n

} = #Ek

(
x

2

)
+ Ok

(
x(log logx)k−3

logx

)
.

Finally, suppose that n ∈ Ak(x) and that 4 | n. If a � 2 is such that 2a ‖ n, then 2a−1+ω(m) | ϕ(n);
since ϕ(n) is k-free, it follows that

a − 1 + ω(m) � k − 1,

which implies that a � k and ω(m) � k − 2. Using Theorem 2.6 again, we conclude that

#
{
n ∈ Ak(x): 4 | n} = Ok

(
x(log logx)k−3

logx

)
.

Putting everything together, we see that

#Ak(x) = #Ek(x) + #Ek

(
x

2

)
+ Ok

(
x(log logx)k−3

logx

)
,

hence it suffices to show that

#Ek(x) = #Ck(x) + Ok

(
x(log logx)k−3

logx

)
. (8)

We argue as follows. First, notice that Ck(x) ⊂ Ek(x). Now if n lies in Ek(x) but not in Ck(x), then
Ω(n) > ω(n), thus n is divisible by some prime power pa with 2 � a � k. Moreover, n 
= pa

since ω(n) = k − 1 � 2. But the number of such integers is bounded above by
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∑
2<p�(x/2)1/2

k∑
a=2

#
{
odd n � x: ω(n) = k − 1, pa ‖ n

}
�k

∑
p�(x/2)1/2

#
{
m � x/p2: ω(m) = k − 2

}
�k

∑
p�(x/2)1/2

x(log logx)k−3

p2 log(x/p2)
,

where the last estimate follows from Theorem 2.6. Since the last sum is bounded above by

∑
p�x1/3

x(log logx)k−3

p2 logx
+

∑
x1/3<p�(x/2)1/2

x1/3(log logx)k−3 � x(log logx)k−3

logx
,

we obtain (8), completing the proof.
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