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On the ring of invariants of F3,

H. E. A. CampBELL*, I. HUGHES, F. PAPPALARDI AND P. S. SELICK*

Abstract. In [1] the first and last authors studied a decomposition of H*(RP® x - - - x RP®; F,) into
modules over the Steenrod algebra obtained from an action of the cyclic group F%,. Here a minimal set
of generators for the ring of invariants is characterized and counted by analyzing the associated ring of
Laurent polynomials. A structure theorem for the ring of invariant Laurent polynomials is given and a
‘destabilisation cancels localisation’ theorem is obtained.

Introduction

This paper is intended as a sequel to [1], although it is self-contained. First of
all the title should be explained since the group F%, never makes an appearance in
the body of this paper. Choose a primitive 2" — 1-st root of unity w in F,, so that
{w°=1,0,..~,0"" "'} is a basis for F,,. Multiplication by « determines an
invertible F,-linear transformation of F,. to itself and so generates a subgroup, G,
of order 2" —1 in GI,(F,) — think .of G as F%. G acts as a group of algebra
automorphisms of the symmetric algebra of F,. over F, (the former thought of as
a vector space of dimension n over the latter). This algebra may be identified with
the mod 2 cohomology of a product of n copies of RP* with the usual action of
Steenrod’s algebra. On the other hand, a non-modular abelian group such as F,
may be diagonalized usually by extending the scalars (in this case to F,.) and taking
a basis of eigenvectors. This is made explicit in [1, Section 1]. Here the diagonalized
group is taken as the point of departure.

This paper studies the ring of polynomials left invariant under the action of this
diagonal group. The invariants of diagonal groups are particularly simple to
describe since such groups map monomials to monomials. Consequently they act
also on the associated ring of Laurent polynomials. A structure theorem for the
ring of invariant Laurent polynomials is obtained — it is again a ring of Laurent
polynomials on generators of degree 1 (see theorem 1.2). A careful study of this
ring leads to a minimal set of generators for the original ring of invariants which
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can then be counted. This is of interest to commutative algebraists, for the number
of such generators minus the Krull dimension (here the Krull dimension is #) is the
homological dimension of the ring of invariants - the length of a resolution of the
ring of invariants by syzygies. Perhaps it is worthwhile to note the rapid growth of
these generating sets with n. For example, if n =8, the ring of invariants of the
group in question of order 255 is minimally generated by 5,095,775 elements. These
questions are addressed in Section two.

The behaviour of these rings with respect to the action of Steenrod’s algebra A
is interesting. This was first noted by G. Carlsson in [3], and was independently
rediscovered by W. Singer (private communication). They point out that the
process of extending the scalars and taking a basis of eigenvectors involves twisting
the action of A. Such twisted actions play an important role in H. Miller’s proof of
the Sullivan conjecture [13], and in G. Carlsson’s proof of the Segal conjecture [2],
especially as explained by J. Lannes and his collaborators, see [10], [11], and [12],
and also by D. Davis [6]. The connections are more fully discussed in [1, Section 2].
In this paper we prove a ‘destabilization cancels localisation’ theorem (theorem
3.3), that is, the subalgebra of unstable elements in the ring of Laurent polynomials
is the original ring.

There is a well understood representation theoretic technology for decompos-
ing the classifying spaces of various groups (or rather their associated suspension
spectra) as a wedge of (perhaps indecomposable) spectra. These decompositions
begin with a decomposition of the cohomology as an 4-module into a sum of
sub-4-modules. On the other hand, such decompositions are also provided by
the relative invariants (the graded eigenspaces) of the group F%. Relations
existing between the invariant theoretic approach of [1] and the representation
theoretic approach of, say, [7] or [14], are explored by J. Harris in [8] and by J.
Harris, T. Hunter and J. Shank in [9]. In particular, [8] identifies the relative
invariants of the group F%, with the summands constructed by M. Witten in her
thesis [15].

Recall the following discussion from [1]. Let F4, be the group generated by w so
that F%, acts on the additive group F,, by multiplication. Form the semidirect
product F%, x F,.. In general, if N is a normal subgroup of a group Q with [Q/N |
relatively prime to 2, then H*(Q; F,) @ H¥(N; F,)2" (c.f. [4, pages 257-258]).
Applying this to the inclusion F,,—F3% x F,, gives H*(F, x F,; F,) =
H*(F,.; F,)¥#. This last is the ring of invariants studied here at least as an
A-module, see theorem 1 of [1] (which requires that w be chosen to provide a
normal basis for F,, — such an w exists by Davenport’s primitive normal basis
theorem [5]).

All of the results of this paper apply to the case of odd primes in a straightfor-
ward way. Some of the minor changes required are indicated in Section four.
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Section One

Let ¥ be a vector space with basis {x,_,...,xo} over F,. Let W =FQ®, V
be the corresponding vector space of dimension n over F,. with the same basis. Let
 be a primitive 2" — 1 root of unity in F,, and let g € G/(W) be the diagonal matrix
with entries (w?" ™', ..., ). Then g has order 2" — 1 and generates a cyclic group,
G, of the same order.

Consider  the  polynomial  algebras P, =F,[x,_,. .., X] and
0, =Fu®g, P, =Faulx,_\,..., x,]. These are the symmetric algebras Symg, (V)
and Symg,, (W) respectively. Each is graded by defining the degree of x;, denoted
x;], to be 1. Elements g’ of G act on Q, by extending the given action on W

multiplicatively. The ring of invariants is denoted Q¢ . LetI=(,_,,...,I) beany
sequence of non-negative integers, and let x’ = xj»-{ - - - x¢ denote the correspond-
ing monomial of degree |x/|=ZXi. Let © be the sequence (2"~',...,2,1) and

define w(I)=0 -I=Xi2; we call w(l) the weight of I or x’. Note that
g(x’) = @"x" so that g maps monomials to scalar multiples of themselves. Further
note that x/ is left fixed by all elements of G if and only if

® - I=0mod (2" - 1).

I will be called an x-exponent sequence. By abuse of notation I is often said to be
invariant if x’ is invariant.

View this equation as defining a ‘hyperplane’ in (Z/(2" — 1)Z)". Then every
invariant x-exponent sequence can be uniquely written ‘modulo 2" — I’ in terms of
the n — 1 fixed invariant x-exponent sequences

I=a,_(1,...,0)+a, »(0,3,1,..., )+ +a(0,...,0,2"" ' —1,1),

for a, € Z/(2" — 1)Z. In the language of commutative algebra, there are 2"—=nm-1!
such invariants and these are free module generators for the ring of invariants over
the homogeneous system of parameters {x2"~',..., x5 ~'}. In other words, the

x-exponent sequences of the free module generators can be written as
@,_1,a,_+3a, 5, ... Ayt a+ (2 = Day,a, 0t a);

taken modulo 2" — 1. This qualifies as a description of the ring of invariants
perhaps, but this is unsatisfactory; for example, the authors have been unable to
determine in general the number of module generators in any given degree using
this description.
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If I is invariant, write @ - I = m(I)(2" — 1); m(I) is called the multiplier of I. For
non-trivial I, m(I) 2 1. Furthermore, m(I + J) = m(I) + m(J).
For I=(in_ 19+ io) deﬁne O'(I) = (in_z, ey io, in_]).

LEMMA 1.1. If I is invariant, then o(I) is invariant and m(o(I)) =2m(I) — i, _,.
Hence m(c/(I)) = ¥m(Il) -2~ Y,_,— " —i,_;,j<n

Proof. Since I is invariant, @ - I = m(I)(2" — 1). Consequently,

O -o()=2""Y_, 4+ +2+i,_,
=22" "%, _,+ i) i,
=2m(I)(2" = 1) = 2"V, )+
=(2m(I) — i, _ )2 = 1).

The sécond statement is an easy induction. O

Let P¢ = Q% n P,. The notation is misleading — the group G does not act on
P,.
Let K, respectively L, denote the multiplicative subsets of P, respectively
Q, generated by {x,_,...,%}. Let R,=F[xE', ..., xF'] respectively
S, =Fu®p, R, =Fulx}!, ..., x§'] denote the corresponding localisations. The
rings R, and S, are called the rings of Laurent polynomials associated to P, and Q,
respectively. The action of G extends to S, and the ring of invariants is denoted S5 .
The monomials x/ form a basis for S, but now negative exponents are allowed.
Furthermore, the notions of invariance, weight and multiplier admit the obvious
extensions to S,. Lemma 1.1 is still true when applied to monomials of S,. Let
RS = 8% A R,. Again, the notation is misleading — the group G does not act on R,.

Define Q,=(2,0,...,0,—1) and Q,=0(Q,) for 1<i<n—1. Define

y;=x%=x7"x*_, fori=n—1,...,0 (the indices are read modulo » as usual).
Then y;, € S¢ and |y,.| = 1. Given a monomial y™, M is said to be a y-exponent
sequence.

Given M =(m,_,, ..., m,) with integer entries m; define I(M) =(i,_,, ..., i)
by i, =2my—m,_,,...,ig=2m —m,. An easy computation shows

O - (M) = my(2" — 1), so I(M) is invariant. Hence I(¢/(M)) = o/(I(M)) is invari-
ant, with m(¢/(I(M))) = m;. Moreover I(M + N) = I(M) + I(N). -

On the other hand, given an invariant sequence [ =(i,_,,...,) define
MI)y=(m,_,,...,my) by the rule m;= m(e’(I)). It is clear that
MUI+J)=MI)+ M({J).
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Define
. 1 1 1 nG
¢'F2”[y3:—l’-'~,yoi]QFZ"[xrf—la'--sin]

by the rule ¢(y™) =x"™ and

P :an[x,?:—lla .. ,x(gtI]G"’FZ"[yni—ll, e ,J’oi']

by the rule p(x’) = y™®. Then ¢ is the algebra map defined on generators by the
rule ¢(y;) =x;'x2_,. It is easy to check that ¢ and p are inverse to each other.
Consequently

THEOREM 1.2. S =F[yt',,...,y¢'], and RE=F,[yx', ..., y&'], as
algebras. a

Section Two — Algebra generators for PS and Q¢

A non-negative invariant non-trivial x-exponent sequence [ is said to be
decomposable if /=J + K where J and K are non-negative invariant non-trivial
x-exponent sequences. Otherwise, [ is said to be indecomposable. Note that [
decomposable implies ¢/() is decomposable. Finally, if 7 is decomposable then
m(I) = 2 since m(J), m(K) 2 1. Simple examples show this necessary condition on
the multiplier of an indecomposable is far from sufficient.

The indecomposable sequences in PS¢ and RY can be analyzed using theorem
1.2. A y-exponent sequence M =(m,_,,...,mp) is said to be admissible if
2m; 2 m;_,; otherwise M is said to be inadmissible. The admissible sequences are
the y-exponent sequences which map onto the non-negative invariant x-exponent
sequences under the map ¢. The analogous definitions of decomposable and
indecomposable sequences apply also to admissible y-exponent sequences. Further-
more, M(I) is indecomposable if and only if I(M) is indecomposable (since ¢ and
p are multiplicative and map monomials to monomials). Finally, note that if m; =0
for some / then M is inadmissible, or trivial M =(0, ..., 0).

LEMMA 2.1. Suppose I is a non-negative invariant indecomposable x-exponent
sequence. If I — Q, is non-negative, it is also, indecomposable, 0 <1 <n — 1.

Proof. Suppose not, then [ —Q,=J + K for some / and J, K non-negative

invariant non-trivial x-exponent sequences. In particular, i+ 1=j1+k 4,
and i, — 2 = j, + k,. It follows that one of j,, , or k, ., is greater than or equal to 1,

\
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say j;.; = 1. Then ©,+J is a non-negative invariant non-trivial x-exponent se-
quence and I =(J + ;) + K, contradicting the indecomposability of I. O

PROPOSITION 2.2. Let I be a non-negative invariant x-exponent sequence, and
let M = M(I) be the associated admissible y-exponent sequence. Then I is decompos-
able if and only if m; 22 for all ,0<]<n—1.

Proof. If Iis decomposable then I =J + K for non-trivial non-negative invari-
ant x-exponent sequences J and K. But then m, =m(c'(I)) =m(c'(J)) +
m(a'(K)) 2 2.

On the other hand, suppose there exists an indecomposable I with m(¢'(I)) = 2
for all . Choose such an indecomposable of lowest degree. If all the m,’s are equal
then so are all the i,’s and 7 would be decomposable. Suppose a = 2 is the smallest
integer occurring as an entry of M. Not all entries of M are equal so there is an /
with m=a and m_ ,=a+pf for some a=2 and f=1. Thus
=20+ p) —a=0a+2p 22. Consequently, L =1—£,; is a non-negative inde-
composable invariant x-exponent ‘sequencc of degree |I|—1. Furthermore

MWLYy=m,_,,...,m 0+ —1,a,m_,,...,my). Hence each entry in M(L)
is greater than or equal to 2. This contradicts the definition of 7, so no such 7 exists.
O

THEOREM 2.3. The number, G(n), of non-negative indecomposable invariant
x-exponent sequences is given by the formula

n—1 2 2”1,,*2 2m,+] 2ml 2m,
G-y ¥ 5N Y /
I=0m, _»=2m, 3=2 m=2m _=1 mg=1

Define
Z(n) ={M|m,,_,=k, and 2m,_,2m, _,,...,2m 2 my, m; 21},

and let F,(n) =|%(n)|- A sequence, M € %(n) need not be admissible since such
an M need not satisfy 2m, > m,_,. However if M € % (n) then M is admissible.
David Horrocks, a graduate student at the University of Waterloo, observed
that M e % (n) implies that I(M) is a partition of 2” — 1 using only powers of 2.
In other words, F ((n) is the coefficient d,. _, of t*" ' in the power series expansion
of

J=o ) *®
[T (1=*)""=3 dr"
Jj=0 0
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This helps to explain the phenomenal rate of growth of G(n) with n. It is not hard
to see that dy; , ; = d»; and d; = dy;_, + d;. This gives a crude estimate

(n = 1)(n —2)/2 <108, (d2n 1) = log, (Fi(n)) < log, (G(n))
by induction on n.
LEMMA 24. F(n) =3*,F(n —1) and F,(1) = 1. } O
It follows that
LEMMA 2.5. F(n) =32% __,---Z2m_, L. | 0
Define %;(n) = {M =(m,_, ..., my)|M admissible and m; =1, m; _, #1,...,
my # 1}. Set G,(n) =|9,(n)|. Then M € %,(n) = #,(n) if and only if m,=1. Note

that M € %,(n) implies m,_, = 2. The collection ¥,(n) partitions the set of indecom-
posable admissible sequences of length n. Hence X G;(n) = G(n).

LEMMA 2.6.
2 2my _ 2 2my, _ 2my ;2 2my
G,-(n)= Z Z Z Z Z 1
My _p=2m, _3=2 My i 1=2 my_;_2=1 mo=1

Proof. G;(n) counts
{M|M admissible and m, _,=1,m,_,#1,...m,_; ,# 1}

{by cyclicly permuting the entries of each sequence M €%;(n)). Let
a=(ap,...,a,_,) and a = (%, ...,®,_») be two sequences of non-negative in-
tegers. Consider the set of sequences b =(bp,...,b, 1) satisfying
bo=ay,a; < by Sagby,...,a, 1 <b, <0, ra, ,. IfCG denotes the number of
such sequences then

%94dg Op —28n -2 \
G = Z z 1

by=a, by _1=a, 1

for each term in the sum determines a sequence and vice versa. Lemma 2.6 is the
case a =(1,2,...,2,1,...,)(2s)and « =(2,...,2), O

Theorem 2.3 now follows.
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PROPOSITION 2.7. Let R= @R, be a connected finitely generated graded
algebra over a field Ry = k. Then any two minimal homogeneous generating sets for R
as an algebra have the same number of elements.

COROLLARY 2.8. The set {x'|I indecomposable} is a minimal generating set for
PS¢ and QF. » O

COROLLARY 2.9. P¢ is minimally generated by G(n) elements. So also is Q¢.
O

For example, G(2) =3, G(3) =13, G(4) =179, G(5) =681, G(6)=8,595,
G(7) =165,677 and G(8) = 5,095,775.

Proof of 2.71. This is well-known but here is a proof anyway. Let  and ¥~ be
two minimal generating sets for R. Both % and ¥~ are graded by degree % = ®%;
and ¥" = @ ¥ where, for example, %; =% n R,. It is easy to see that if R, #0 and
R; =0 for 0<j <i then %, and ¥; are bases for R,.

Let k[% .;] respectively k[7"_,] denote the subalgebras generated by %; respec-
tively ¥} for j <i. Let {%;) respectively (¥’) denote the subspaces of R; spanned
by the respective subsets %; and ¥;. Suppose by induction that |%;|=|¥;| for j < i,
and that k[#%_;])=k[v ] Since % and ¥ are minimal generating sets
R =<U>@®KU_])): =<YD K7 _,], (the sum is direct by minimality). The
result follows. O

)

Section Three — Destabilization cancels localisation

Let A4 denote Steenrod’s algebra acting on P, and @, by the rule
Sq'(x;) = x?_,, S¢/(x;) =0 if j > 1 and by the requirement that each element of 4
be F,.-linear. In fact these rules determine an action of 4 on P, and Q, in a purely
formal manner according to an argument of Thomas Hunter (unpublished). That
is, this action respects the Adem relations — this may be verified monomial by
monomial. Thus both P, and Q, receive the structure of unstable modules over 4.
On the other hand, it is shown in [1, theorem 1] that this 4-module structure on P,
is isomorphic to the more usual 4-module structure on such a polynomial algebra
obtained by identifying it as the cohomology of a product of RP*’s.

The action of Steenrod’s algebra is extended to the localised algebras R, and S,
requiring that the total Steenrod operation Sq =3,_,Sq¢' be a ring homomor-
phism. Consequently both S, and R, receive the structure of 4-modules although,
of course, they are no longer unstable.
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LEMMA 3.1. S¢(x;") = x;77~ %%, =x;"yl.

Proof. Sq(x;") =(Sq(x) ™' =(x;+x7_ )" =x7 (1 +y) ") =x7" ELoyl
Now compare terms of degree j — 1 to obtain the formula above. O

This A-action commutes with the action of G on P, so that PS becomes an
A-module. Hence so also is S¢. The subalgebras Q¢ and R¢ are closed under the
A-action, so they too receive the structure of 4-modules.

LEMMA 3.2. S¢°(y)) =»:, Sq'(y) =y?, and, for j>1, S¢(y) =
Yo\ +yioo)- .

Suppose M is a module over A which is also an algebra. Let Uns(M) denote the
A-submodule of M consisting of the unstable elements of M. That is,
Uns(M) = {f € M | Sg’(f) =0, if excess(J) > |f[}. Uns(M) is a subalgebra of M.

THEOREM 3.3. Uns(S,) = 0, and Uns(R,) = P,.

COROLLARY 3.4. Uns(S¢) = Q¢ and Uns(RE) = P5.

Proof 3.3. Note Q, < Uns(S,). If fe Uns(S,) then f=Zax’ for o;€F,.
Assume without loss of generality that f is homogeneous. Let r be the least
exponent occurring in any of the monomials x%, say, x/t = xj=f - - - xj - - - x§. That
is, - y=r and §2r for j#Il Suppose r <0 and consider
x=x7" - x;"" ' xg"€Q,. Since Uns(S,) is an algebra xf e Uns(S,). By
construction

Xf=xf'f+f"

where f, f" € Q, and no monomials in f* are divisible by x,.

But no element of the form x;'f can be unstable since
S¢(x;'f) =xi7='x¥.,f— +f€ Uns(S,) and where f has degree bigger than
—j—1 in x,. Hence no cancellation occurs, so Sg/(x; 'f) #0, for all j. This"
contradicts xf € Uns(S,). Consequently r > 0, so that /€ Q, as required.

The second statement follows from the first. O

Section Four — Extension to odd primes

[

All of the results of the previous three sections admit straightforward extensions
to odd primes p. Some of the minor changes required are indicated here. Proceed
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as above with  a primitive p" — 1-st root of unity in F,., g = diag(w” ™, ..., ®)
and @ =(p"~',...,1). Topologists will want to take |x;|=2. Define
2,=(p,0,...,0, —1) to obtain y, with |y,|=2(p — 1).

Theorem 2.3 now reads

n—1 P pmy _ 2 pmy 4y pmy pmy
Gm=3% Y ¥ ¥ X Xl
I1=0m, _,=2m,_3=2 m=2m_ =1 mg=1

In Section three the twisted action is P'(x;) = x?_,.
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