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Abstract

We investigate a certain condition for isomorphism between circulant graphs (known as the
�Ad�am property) in a stronger form by referring to isospectrality rather than to isomorphism of
graphs. We describe a wide class of graphs for which the �Ad�am conjecture holds. We apply these
results to establish an asymptotic formula for the number of non-isomorphic circulant graphs and
connected circulant graphs.
Circulant graphs arise in many applications including telecommunication networks, VLSI

design and distributed computation and have been extensively studied in the literature. In the
important case of double loops (particular circulant graphs of degree 4) we give a complete
classi9cation of all possible isospectral graphs.
Our method is based on studying the graph spectra with the aid of some deep results of

algebraic number theory. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we study the condition for isomorphism between circulant graphs. Such
graphs have a vast number of applications to telecommunication networks, VLSI design
and distributed computation [4,17,19,20,22] (they are usually used as topologies and
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are called loop networks or chordal rings). The relative independence of link length
from delay time opens up the possibility of distinguishing among isomorphic networks
on the basis of their algorithmic performance. A network that does provide labelled
edges should be able to exploit the same properties as one with diFerent labelling if
the underlying graphs are isomorphic.
For general graphs the isomorphism problem is known to be in NP, not known to

be in P, and probably is not NP-complete, see the book of Babai [3, Section 6]. It
has been conjectured by �Ad�am [1] that for circulant graphs there is a very simple rule
to decide the isomorphism of two graphs. Although this rule is known to be false in
general, even for undirected graphs (see [10]), for several special cases it holds (see
in particular [23,24], and other references such as [5,19,20,26]).
The purpose of this paper is to extend essentially the class of graphs having the

�Ad�am property and having the (even more general) spectral �Ad�am property. In partic-
ular, we settle the aforementioned �Ad�am conjecture [1] for a wide class of circulant
graphs which are not covered by the previously known results. We introduce a new
technique based on the combination of the spectral techniques from [8,10,20,25] with
some deep results of algebraic number theory on linear equations in roots of unity
[6,9,11,21,28–30]. It can be extended to other graph problems such as weighted cir-
culant graphs and general Cayley graphs (see [26]). Indeed, at least in the case of
Cayley graphs generated by an Abelian group, the corresponding eigenvalues are lin-
ear combinations of group characters, that is, they are linear combinations of roots of
unity (see [3, Section 3:12] or [13, Lemma 9:2]).
We recall that an n-vertex circulant graph G is a graph whose adjacency matrix

A=(aij)ni; j= 1 is a circulant. That is, the ith rows of A is the cyclic shift of the 9rst
row by i − 1,

aij = a1; j−i+1; i; j=1; : : : ; n:

Hereafter, the subscripts are taken modulo n, that is ai; j = ai+n; j = ai; j+n for all integers
i and j (it is more convenient to keep the interval [1; n] as our main working range).
We also assume that aii=0; i=1; : : : ; n.
Therefore with every circulant graph, one can associate a set S ⊆Zn of the positions

of non-zero entries of the 9rst row of the adjacency matrix of the graph. Respectively,
we denote by 〈S〉n the corresponding graph.
We also recall that two graphs G1; G2 are isomorphic, and write G1�G2, if their

adjacency matrices diFer by a permutation of their rows and columns.
We say that two sets S; T ⊆Zn are proportional, and write S ∼T , if for some integer

l with gcd(l; n)= 1, S = lT where the multiplication is taken over Zn.
Obviously, S ∼T implies 〈S〉n�〈T 〉n. For example, in Fig. 1 (S = {± 1; ± 5};

T = {±1;±9}, and n=23), 〈S〉n�〈T 〉n since S ∼T (l=5).
�Ad�am [1] conjectured that the inverse statement is true as well. We say that a

set S ⊆Zn has the 8Ad8am property if for any other set T ⊆Zn of the same cardi-
nality #T =#S, the isomorphism 〈S〉n�〈T 〉n implies the proportionality S ∼T . Thus,
the 8Ad8am conjecture is equivalent to the statement that all sets S ⊆Zn have �Ad�am
property.



B. Mans et al. / Discrete Mathematics 254 (2002) 309–329 311

0

1

2

3

4

5 6

7

8

9

10

11
12

13

14

15

16

171819

20

21

22
0

5

10

15

20

2 7

12

17

22

4

9
14

19

1

6

11

1621

3

8

13

18

0

1

2

3

4

5 6

7

8

9

10

11
12

13

14

15

16

171819

20

21

22

<
1.

5>
_2

3
<

1.
9>

_2
3

Fi
g.
1.



312 B. Mans et al. / Discrete Mathematics 254 (2002) 309–329

In [10], Elspas and Turner give a counterexample of 6-element sets

S1 = {±1;±2;±7}⊆Z16; S2 = {±1;±6;±7}⊆Z16;
that shows that the �Ad�am conjecture is false. It is easy to verify that the isomorphism
〈S1〉16�〈S2〉16 is given by the following permutation on Z16:

i 
→
{−5i if i≡ 0 (mod 2);
−5i − 4 if i 
≡ 0 (mod 2); i∈Z16;

but S1 
∼ S2.
In fact, counterexamples exist for any values of n except, maybe, n of the

form n=2�3
m, where �∈{0; 1; 2; 3}; 
∈{0; 1; 2}, gcd(m; 6)=1 and m is squarefree
(see [2]).
Nevertheless, there are several very important families of circulant graphs for which

the �Ad�am conjecture holds. In particular, Muzychuk has obtained substantial results
by showing that the �Ad�am conjecture is true for circulant graphs with a squarefree
number of vertices [23] and with a twice squarefree number of vertices [24].
The conjecture also holds for 4-element sets S (see [7,12,18]). The corresponding

graphs, known as double loops, have many applications to computer science.
In fact, it has been discovered in several papers that, under some additional restric-

tions, the isomorphism property of graphs can be replaced by the property of their
isospectrality.
We recall that the spectrum SpecG of a graph G is the set of eigenvalues with

multiplicities of its adjacency matrix. In particular, isomorphic graphs have the same
spectra (although the inverse statement is obviously false, see [15]).
Respectively, we say that a set S ⊆Zn has the spectral 8Ad8am property if for any

other set T ⊆Zn the isospectrality Spec S �SpecT implies the proportionality S ∼T .
Here we describe a general class of sets having the spectral �Ad�am property.
For example, it is shown in [20] that any 4-element set S = {±1;±d}⊆Zn (an

important sub-family of double loop circulant graphs), has the spectral �Ad�am prop-
erty, provided that 26d¡min{n=4; ’(n)=2}, where ’(n) is the Euler function. Here,
we settle the question completely and give a complete classi9cation of all possible
isospectral graphs.
We also show that for any 9xed m the probability that a random m-element set

S ⊆Zn does not have the spectral �Ad�am property, is O(n−1).

2. Auxiliary results

Let us de9ne �=exp(2��=n) where �=
√−1.

We consider the equation

a0 +
k−1∑
j=1

aj�wj =0 (w1; : : : ; wk−1)∈Nk−1; (1)

where a0; : : : ; ak−1 are non-zero integers.
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We call a solution (w1; : : : ; wk−1) of (1) irreducible if∑
j∈J

aj�wj 
=0

for any proper subset J ⊂{1; : : : ; k − 1}.
Such equations and their various generalizations have been studied in the literature

a great deal [6,9,11,21,28–30].
We summarize the results of [6,21] in the following lemma.

Lemma 1. For any irreducible solution of Eq. (1) the ratio

Q=
n

gcd(n; w1; : : : ; wk−1)

is squarefree and∑
p|Q

(p− 2)6k − 2;

where the sum is taken over all prime divisors of Q.

In particular, one can see that Q=1 if all prime divisors of n are greater than k
and that Q∈{1; 2} if n is a power of 2.
Let us denote

Qk = max


m |m is square free and

∑
p|m

(p− 2)6k − 2

 ;

where both, the product and the sum, are taken over distinct prime numbers. Thus for
the quantity Q of Lemma 1 we have Q6Qk .
From the known results on the distribution of prime numbers one easily derives that

Qk6 exp((1 + o(1))k1=2 log1=2 k);

see [6,29,30].
There are also generalizations of Lemma 1 to equations with coeMcients from

algebraic number 9elds, see [9,29,30]. We do not present these results in the full gen-
erality but just formulate the following statement which we need for the classi9cation
double loop graphs and which can easily be derived from [9,29,30].
To prove Lemma 8 we need the following:

Lemma 2. Suppose that (w1; w2; w3) is an irreducible solution of the equation
a0 + a1�w1 + a2�w2 + a3�w3 = 0, with a0; a1; a2; a3 ∈Q(–

√
3). Then

n
gcd(n; w1; w2; w3)

∣∣∣∣ 6:
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If (w1; w2; w3; w4) is an irreducible solution of the equation a0 + a1�w1 + a2�w2 +
a3�w3 + a4�w4 = 0, with a0; a1; a2; a3; a4 ∈Q(–

√
3). Then

n
gcd(n; w1; w2; w3; w4)

∣∣∣∣ 30:
This is a particular case of a result due to Zannier [29, Theorem 1], see also [9,30].
It is easy to verify that for S ⊂Zn,

Spec 〈S〉n=
{∑

s∈S
�ls | l=0; 1; : : : ; n− 1

}
:

The following result is based on the previous representation and provides a connection
between circulant graphs and equations roots of unity. It extends the approach of [20]
(see the proof of Theorem 2).

Lemma 3. Let S; T ⊆Zn be such that Spec 〈S〉n=Spec 〈T 〉n but S 
∼T . Then there
exists l, 16l6n− 1, such that the polynomial

F(X )=
∑
s∈S

X s −
∑
t∈T

X lt

is not identical to zero modulo X n − 1 and F(�)= 0.

We remark that, in other words, the polynomial F(X ) does not vanish if one replaces
the exponents lt; t ∈T , by its smallest positive residues modulo n.

3. General estimates

Here we obtain a general condition under which a set S ⊆Zn has the spectral �Ad�am
property.
Let us denote

 m= min
26k6m

max
{
1
Q2k

;
k − 1

Qm+k−�m=k�+1

}
:

Obviously  m¿1=Q2m thus we have the asymptotic inequality

 m¿exp(−(21=2 + o(1))m1=2 log1=2 m);

which can be shown to be tight in the sense log  m∼ − log Q2m; m→∞. However,
for smaller values of m one can obtain numerical estimates which are better than
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 m¿1=Q2m. For example:

m  m 1=Q2m m  m 1=Q2m

2 1=6 1=6 7 2=105 1=210
3 1=15 1=30 8 2=105 1=330
4 1=15 1=42 9 4=231 1=462
5 2=35 1=70 10 3=770 1=2310
6 1=42 1=210

Theorem 4. Let S = {s1; : : : ; sm}⊆Zn be an m-element set which does not satisfy the
spectral 8Ad8am property. Then the bound

max
16i¡j6m

| si − sj |¿ mn

holds.

Proof. From Lemma 3 we conclude that for some non-empty subsets U ⊆ S and
V ⊆ lT with U ∩V = ∅ we have∑

u∈U
�u −

∑
v∈V

�v=0:

We split this equation into the largest possible set of r; m¿r¿1, subequations∑
u∈U&

�u −
∑
v∈V&

�v=0; &=1; : : : ; r

with a non-empty set U&; 16&6r, where

U=
r⋃

&=1

U&; V=
r⋃

&=1

V&

and

U& ∩U'=V& ∩V'= ∅; 16&¡'6r:

Let R be the set of &=1; : : : ; r for which #U&¿2. We put

L=#R; M =
∑
&∈R

#U&:

Because #U&=#V&=1 is not possible, &=1; : : : ; r, we see that there are r−L=m−M
values of &=1; : : : ; r with & =∈R and #V&¿2 for each such &. Therefore for any &∈R

#V&6m− L− 2(m−M) + 1=2M − m− L+ 1: (2)

First of all let us select a pair (U&; V&), &∈R, for which the total cardinality
N =#U& + #V& is minimal.
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Denote

,= max
16i¡j6m

| si − sj|:

Select two arbitrary distinct elements u1; u2 ∈U& with 0¡ | u1 − u2 |6,. Dividing out
the corresponding equation by �u1 we obtain the equation

1 + �u2−u1 +
∑

u∈U\{u1 ;u2}
�u −

∑
v∈V

�v=0:

Applying Lemma 1 we derive

,¿gcd(| u1 − u2 |; n)¿ n
QN

: (3)

Now we select a pair (U-; V-) for which the 9rst set has the largest cardinality

K =#U-¿#U'; ' 
= -:

Then the selected subset U-⊆ S contains at least one pair u1; u2 ∈U- with
0¡| u1 − u2 |6(, − 1)=(K − 1). Dividing out the corresponding equation by �u1 ,
using bound (2) and applying Lemma 1 we obtain that

,¿
n(K − 1)

Q2M+K−m−L+1
+ 1:

We have K¿M=L, thus L¿�M=K� and we derive
Q2M+K−m−L+16QM+K−�M=K�+16Qm+K−�m=K�+1

hence

,¿
n(K − 1)

Qm+K−�m=K�+1
+ 1: (4)

Obviously∑
&∈R

#V&=m−
∑
& =∈R

#V&6m−
∑
& =∈R

1=
∑
&∈R

#U&=M:

Since N62M=L62K , combining bounds (3) and (4) we derive the desired
estimate.

Similar arguments show that if the smallest prime divisor of n is greater than m then
the spectral �Ad�am property holds for all m-element sets S = {s1; : : : ; sm}⊆Zn.
It also easy to see that, when n is a power of 2 (a popular application case), the

sets S = {s1; : : : ; sm}⊆Zn, satisfy the �Ad�am property if

max
16i¡j6m

| si − sj |¡n=2:

Denote by Am(n) the number of m-element sets S = {s1; : : : ; sm}⊆Zn which do not
satisfy the spectral �Ad�am property.
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Theorem 5. For any >xed m, the bound

Am(n)=O(nm−1)

holds.

Proof. Let S = {s1; : : : ; sm}⊆Zn be an m-element set which does not satisfy the spectral
�Ad�am property. We use the same notations as in the proof of Theorem 4.
Then for every pair u1; u2 ∈U& we have gcd(| u1−u2 |; n)¿n=Q2m. Therefore if u1 is

9xed then u2 can take at most Q2m=O(1) possible values. It is easy to see that there
are at most O(nm−1) m-element sets S ⊆Zn satisfying this condition.

We can easily deduce from Theorem 5 that, for any 9xed m, the probability that a
random m-element set S ⊆Zn does not have the spectral �Ad�am property, is O(n−1).
In fact, Theorem 5 can be used to obtain an asymptotic formula for the number of
non-isomorphic circulant graphs.
For an integer r¿1; &(r) denotes the MOobius function. We recall that &(1)=1;

&(r)= 0 if r¿2 is not square-free and &(r)= (−1)'(r) otherwise, where '(r) denotes
the number of prime divisors of r.
We also de9ne

’m(n)= nm
∑
d|n

&(d)
dm

:

In particular, ’1(n)=’(n) is the Euler function of n. It is well known that

’(n)¿c
n

log(log n+ 2)
(5)

for some absolute constant c¿0 and, see [27, Theorem 5:1 of Chapter 1]. It is easy
to see that the same considerations show that

nm¿’m(n)¿Cnm; m¿2

for some absolute constant C¿0.
Let Im(n) denote the number of non-isomorphic circulant graphs and let Jm(n) denote

the number of non-isomorphic connected circulant graphs.

Theorem 6. For any >xed m¿2 and su?ciently large n the asymptotic formulas

Im(n)=
nm

’(n)
+ O(nm−1) and Jm(n)=

’m(n)
’(n)

+ O(nm−1)

hold.

Proof. First of all, we remark that for any 9xed l such that gcd(l; n)= 1 and l
=1
there are at most O(nm=2) sets S = {s1; : : : ; sm}⊆Zn with S = lS. Indeed, if l if or
multiplicative order t modulo n then any such set S consists of conjunction or subsets
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of the form {s; sl; : : : ; slt−1}∈Zn. Thus at each such set S has no more than m=t6m=2
“free” elements.
Therefore, there are at most O(nm=2’(n)) sets S ⊆Zn for which S = lS with some

l∈Zn such that gcd(l; n)= 1 and l 
=1.
From all other sets we select the collection S1; : : : ; SA⊆Zn of pairwise non-

proportional sets which do not satisfy the spectral �Ad�am property and a collection
S1; : : : ; SB⊆Zn of pairwise nonproportional sets which satisfy the spectral �Ad�am
property.
It is clear that

(A+ B)’(n)=
(
n
m

)
+O(nm=2’(n))

and that A’(n)6Am(n). Therefore,

Im(n)=B+O(A)=
1

’(n)

((
n
m

)
+O(nm=2 + Am(n))

)
:

Applying Theorem 5 we obtain the desired asymptotic formula for Im(n).
To obtain an asymptotic formula for Jm(n) we estimate the number Nm(n) of sets

S = {s1; : : : ; sm}⊆Zn with gcd(s1; : : : ; sm; n)= 1. Indeed, using the same considerations
as above, we obtain

Jm(n)=
1

’(n)
Nm(n) + O(nm−1):

Let Mm(d; n) be the number of sets S = {s1; : : : ; sm}⊆Zn with

gcd(s1; : : : ; sm; n)≡ 0 (mod d):

Obviously,

Mm(d; n)=
(
n=d
m

)
=
( n
d

)m
+O

(( n
d

)m−1)
:

From the inclusion–exclusion principle we see

Nm(n)=
∑
d|n

&(d)Mm(d; n)=’m(n) + O


nm−1

∑
d|n

d−m+1


 :

Using that the bound

∑
d|n

d−m+16
∑
d|n

d−1 =
1
n

∑
d|n

d=O(log log n)

see [16, Theorem 323] and bound (5), we obtain the desired result.



B. Mans et al. / Discrete Mathematics 254 (2002) 309–329 319

4. Double loops

In this section we concentrate on double-loop circulant graphs. They are generated
by sets S = {±a;±b}∈Zn with the condition that 16a¡b¡n=2.
Assuming that the graphs are connected is equivalent to the solvability of the con-

gruence ax + by≡ 1 (mod n), thus to the condition gcd(a; b; n)= 1.

Lemma 7. Any set S = {±a;±b}⊆Zn with gcd(a; b; n)= 1 which is not of the form

We={±e;±(n=2− e)}; Xh= {±h;±n=4}; (6)

Yf ={±f;±(n=3− f)}; Zg= {±g;±(n=6− g)} (7)

satis>es the spectral 8Ad8am property. Furthermore, the only graphs that have to be
considered, among the four special cases, are those for which the involved fractions
are integers.

Proof. Without loss of generality, we assume that

0¡a; b¡n=2: (8)

We start by noticing that the eigenvalues of 〈{±a;±b}〉 are

>k = �ka + �−ka + �kb + �−kb=4 cos
(
�k
n
(a+ b)

)
cos

(
�k
n
(a− b)

)

where k =1; : : : ; n:
We can assume that >1 
=0 since if >1 = 0 then we would have that 2 | n and either

a − b= n=2 which is impossible by (8) or a + b= n=2 which implies (again by (8))
that {±a;±b}=Wa.
We can also assume that �b + �−b 
=0 and since if �b + �−b=2 cos(2�b=n)= 0 then

we would have b= n=4. This implies that {±a;±b}=Xa. For the same reason we can
assume that �a + �−a 
=0.
Let us now suppose that Spec〈S〉n=Spec〈T 〉n, where T = {±c;±d}⊆Zn.
We know that there exists k; 16k6n, such that

�a + �−a + �b + �−b − �kc − �−kc − �kd − �−kd=0: (9)

We claim that either n is a divisor of 420 (and for these values Lemma 7 can be
veri9ed via extensive calculations) or the sum in (9) must have a subsum of length 2
that vanishes.
So assume that (9) does not have any subsum of length two that vanishes, then there

are 3 possibilities:

(1) The sum in (9) does not have any proper subsum that vanishes. In this case
Lemma 1 implies that n=gcd(n; 2a; b−a; b+a) has to be a factor of 210 and by an
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easy argument we have that gcd(n; 2a; b−a; b+a) divides 2, since gcd(n; a; b)= 1.
Therefore n is a divisor of 420.

(2) The sum in (9) splits as the sum of two terms of length four each vanishing and
no other subsum vanishing. Here we have to distinguish between two subcases
according to where �a, �−a, �b and �−b lie relatively to these two terms (note that
they cannot all lie in one sum otherwise we would have >1 = 0):
(a) If one of the two terms contains at the same time �a and �−a and the other

term contains at the same time �b and �−b, then by Lemma 1 we would
conclude that n=gcd(n; 2a) divides 6 and also n=gcd(n; 2b) divides 6 and this
implies that n | 12. Indeed, if

n
gcd(n; 2a)

∣∣∣∣ 6
then a= cn=12 for some 16c612. Similarly b=dn=12 for some 16d612.
Since gcd(a; b; n)= 1, for some l1; l2; l3 ∈Z we have the identity 1= l1a+l2b+
l3n from which we get 12= (l1c + l2d+ 12l3)n, thus, n | 12.

(b) If one of the two terms contains at the same time three elements out of �a,
�−a, �b, �−b (say the 9rst three), then by Lemma 1, n=gcd(n; 2a; b−a) divides
6 and this again implies that n | 12.

(c) If one of the two terms contains a and b or a and −b then by Lemma 1
we see that n=gcd(n; a ± b) divides 6. Therefore b= cn=6 ± a and therefore
{±a;±b}=Y±a or {±a;±b}=Z±a.

(3) The sum in (9) splits as the sum of two terms, one of length 5 and one of length 3,
each one vanishing and no other subsum vanishes. If the sum of length 5 contains
at least three elements of {±a;±b} then we immediately deduce that n | 60 and
we have already ruled out these possibilities. If the sum of length 3 contains three
elements of {±a;±b}, then we come to the same conclusion. Therefore, we assume
that both the sums of length 3 and the one of length 5 contains two elements of
{±a;±b}. Note that the two elements in the term of length three have to be �a

and �−a or �b and �−b since if it is not the case, by conjugating this term, we
obtain a subsum of the term of length 5 that vanishes. Finally by Lemma 1 applied
to the sum of length 3 we obtain

n
gcd(n; 2a)

∣∣∣∣ 6
and by Lemma 1 applied to the sum of length 5, we obtain

n
gcd(n; 2b)

∣∣∣∣ 30:
These two conditions imply (by the same argument as in (2)(a) above, since
gcd(n; a; b)= 1) that n | 60.

This proves the claim that there is a subsum of (9) of length two that vanishes.
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Now, we aMrm that the condition >1 
=0 implies that if the sum in (9) contains a
subsum of length 2 that vanishes of the form

�t + �s=0:

Then we must have s=−t and therefore t= n=4 or 3n=4.
Indeed, if �t + �s=0 for some t 
=−s, then either t; s∈{±a;±b} or

t; s∈{±kc;±kd}. In both case, by taking the conjugates, we deduce that �−t+�−s=0.
This implies that >1 = 0 which contradicts our assumption.
So, if t=± n=4∈{±a;±b}, then we are left with S =Xs which we had excluded. If

t=±n=4∈{±kc;±kd}, then the sum in (9) splits as a sum of length two that vanishes
plus a sum of length 6 that vanishes. Three cases may occur for the latter sum:

(1) It does not have any subsum that vanishes. In this case

n
gcd(n; 2a; b− a; b+ a)

∣∣∣∣ 30
and so n | 60 (as before, we remark that gcd(n; 2a; b− a; b+ a) divides 2).

(2) It splits as the sum of two subsums of length three that vanish. In this case we
proceed as above and conclude that S is be one of the exceptional sets Yf or Zg.

(3) It contains a subsum of length two that vanishes. This subsum cannot be again
of the form �s + �t since this implies that >1 = 0.

Finally, the only subsums that can possibly vanish are of the form �t − �s for some
t; s. Then {±a;±b} and {±ck;±kd} have at least two elements in common. It is
now easy to deduce that the two sets have to coincide and that (k; n)= 1. Therefore
S = kT .

The next step consists in classi9cation of the special graphs. Note that we only need
to show that: if any two graphs of the special cases have the same spectra then they
are obtained with proportional sets.
The graphs Xh will be considered separately. We 9rst prove the following.

Lemma 8. If S and T are two sets among We, Yf and Zg with e; f; g∈Zn, with
Spec〈S〉n=Spec〈T 〉n, then S ∼T .

Proof. We can write the eigenvalues of the special graphs in Lemma 8 as

Spec〈We〉= {(1 + (−1)k)(�ke + �−ke)| k =1; : : : ; n};
Spec〈Yf〉= {(1 + !k)�kf + (1 + !−k)�−kf | k =1; : : : ; n};
Spec〈Zg〉= {(1 + #k)�kg + (1 + #−k)�−kg | k =1; : : : ; n};

where

!= �−n=3 = exp(−2��=3)=−(1 + �
√
3)=2;

#= �−n=6 = exp(−��=3)= (1− �
√
3)=2:
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Note that

|1 + !k |=
{
2 if k ≡ 0 (mod 3);
1 if k ≡ ± 1 (mod 3) (10)

and

|1 + #k |=



2 if k ≡ 0 (mod 6);
0 if k ≡ 3 (mod 6);√
3 if k ≡ ± 1 (mod 6);

1 if k ≡ ± 2 (mod 6):
(11)

Suppose that S and T are sets in the families of statement of Lemma 8 with Spec 〈S〉n=
Spec 〈T 〉n. Then we have the equation

��x + S��−x − 
�ky − S
�−ky =0; (12)

where we take x=f (respectively x= g) if S =Yf (respectively S =Zg) and x=2e if
S =We. Note that �; 
∈Q(�

√
3), � 
=0 and so 
 
=0, y∈T and 16k6n.

There are two possibilities.

(1) The sum in (12) does not have any proper subsum that vanishes. In this case we
immediately deduce from Lemma 2 that

n
gcd(n; 4x)

∣∣∣∣ 6:
Since the condition that 〈S〉n is connected implies that gcd(n; 4x) divides 24, we
deduce that n divides 6× 24=144. For these values of n the claimed result has
been veri9ed numerically.

(2) The sum in (12) has two subsums of length two that vanish. We remark that one
of the subsums of length two that vanish has to be of the form

��x = 
�ky or ��x = S
�−ky:

Let us assume, without loss of generality, that the 9rst one holds. Taking absolute
values, we obtain

|� |= | 
|:
Now, using (10) and (11), we obtain:
(a) if S =Yf (for some f) then �=(1− �

√
3)=2= �−n=6, | � |=1. Since T cannot

be We because (1+(±1)k)∈{0; 2}, only the following two cases are possible.
(i) T =Yf′ (for some f′), k ≡ ± 1 (mod 3) and we lead to the identities:

�f−n=6 =

{
�kf

′−n=6 if k ≡ 1 (mod 3);
�kf

′+n=6 if k ≡−1 (mod 3):
In the 9rst case we deduce that f= kf′ and since k ≡ 1 (mod 3);
n=6 − f= k(n=6 − f′). In the second case we deduce that f= kf′ +
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n=3= k(f − n=3) (since k ≡−1 (mod 3)) and n=3 − f=−kf′. In both
cases S = kT:

(ii) T =Zg (for some g), k ≡± 2 (mod 6), we are lead to the identities

�f−n=6 =
{
�kg−n=6 if k ≡ 2 (mod 6);
�kg+n=6 if k ≡−2 (mod 6):

In the 9rst case we deduce that f=kg and since k ≡ 2mod 6), n=3 −
f= k(n=6−g). In the second case we deduce that f= kg+n=3= k(g−n=6)
(since k ≡−2 (mod 6)) and n=3− f=−kg. In both cases S = kT:

(b) if S =Zg, then |� |=√
3 and therefore we can exclude T =Yf or T =We. The

only condition to check is that if Spec〈Zg〉n=Spec〈Zg′〉n, then Zg∼Zg′ . Indeed
�= �

√
3!. So, either we have

�
√
3�g−n=3 = �

√
3�kg

′−n=3

(with k ≡ 1 (mod 6)) or we have
�
√
3�g−n=3 = �

√
3�kg

′−n=6

(with k ≡−1 (mod 6)). In the 9rst case g= kg′ and n=6 − g= n=6 − kg′=
k(n=6 − g′) so S = kT , in the second case g= kg′ + n=6=−k(n=6 − g′) and
n=6− g=−kg′ so S =−kT .

(c) if S =We then, since �=2 and since we have already excluded the possibility
that T =Yf and T =Zg, let us assume T =We′ (for some e′). Note that since
the graphs are connected, we have (n=2; e)= 1= (n=2; e′). Therefore, up to
proportional sets, we can assume that e=1 and e′=2. Furthermore e′=2 is
only possible when 4-n. This implies that (n=2 + 2)W1 =W2.

This completes the proof of Lemma 8.

We are now prepared to prove the following:

Theorem 9. Any set S ={±a;±b}⊆Zn with gcd(a; b; n)= 1 satis>es the spectral 8Ad8am
property.

Proof. It follows from Lemmas 7 and 8 that it is enough to show that Xh in never
isospectral to any of Yf; Xh′ ; We, Zg unless Xh is proportional to one of them.
Note that, by simple trigonometric properties, we have that, if &0(S) is the

multiplicity of the eigenvalue 0 in Spec〈S〉n, then &0(We)¿n=2, &0(Zg)¿n=6 and
&0(Yf)≡ 0 (mod 2) while

&0(Xh)=
{
2 if n≡ 4 (mod 8) and 2 - h;
1 otherwise:

So the only possibility for 〈Xh〉n to be isospectral to one of the others is either n¡6
or n≡ 4 (mod 8), 2 - h, and the possible exception is 〈Yf〉n. The case 〈Xh〉n isospectral
to 〈Xh′〉n needs also to be considered separately.
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Note that

Spec 〈Xh〉n= {�l + �−l + �lh + �−lh | l=1; : : : ; n}:
Take l=4 and consider the eigenvalue

2 + �4h + �−4h=2 + 2 cos(8�h=n)

We can assume that 2+ �4h+ �−4h 
=0 and that �4h+ �−4h 
=0 since if is not the case,
then h is a multiple of n=16, which in virtue of the fact that (h; n=4)=1, implies n=16
that we have already excluded.
If 〈Xh〉n and 〈Yf〉n are isospectral, we obtain the equation

2 + �4h + �−4h=(1 + !k)�kf + (1 + !−k)�−kf:

It cannot happen that a term of the left-hand side equals one on the right-hand side. If
for example �4h=(1+!k)�kf then 2+�−4h=(1+!−k)�−kf and taking the conjugates
of this last identity we would obtain �4h=(1+!k)�kf =2+ �4h that is a contradiction.
Therefore, the above is an irreducible sum of roots of unity and by

Lemma 2 we conclude that

n
gcd(n; 4h)

∣∣∣∣ 30
and since gcd(n; 4h) | 4 we obtain n | 120.
The last case when 〈Xh〉n and 〈Xh′〉n are isospectral can be dealt in a similar way.

Consider the eigenvalue �h+ �−h=2 cos(2�h=n) of 〈Xh〉n which again can be assumed
to be not zero. If 〈Xh〉n and 〈Xh′〉n are isospectral, we obtain the equation

�h + �−h= �l + �−l + �lh
′
+ �−lh′ :

If 2 | l then we would again obtain an irreducible sum of roots of unity and by Lemma
1 we conclude that

n
gcd(n; h)

∣∣∣∣ 30
and thus n | 120. If 2 - l, then �l + �−l=0 and therefore h≡ ± lh′mod n and Xh and
Xh′ would be proportional.

5. Triple loops

The example of a triple loop given at the beginning of this paper (to disprove the
�Ad�am conjecture) can be generalized to the following. Suppose that 8 | n and

S1(n)= {±1;±2;±(n=2− 1)}
and

S2(n)= {±1;±(n=2− 2);±(n=2− 1)}:
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Then is easy to verify that the map

i 
→
{−5i if i≡ 0 (mod 2);
−5i − n=2 if i 
≡ 0 (mod 2); i∈Zn

provides an isomorphism of 〈S1(n)〉n onto 〈S2(n)〉n. On the other hand, if S1(n)∼ S2(n)
with S1(n)= k S2(n) then necessarily k =± (n=2− 1) and immediately one veri9es that
this leads to a contradiction. The authors wonder whether these are the only possible
exceptions to the �Ad�am property.

Open Question 10. Is it true that the 8Ad8am property holds for all triple loops in Zn

if and only if n 
≡ 0 (mod 8)?

Note that the methods of the previous sections, if applied to triple loops, imply that
the n is coprime to 210 then the �Ad�am property holds (with at most a 9nite number of
exceptions that can be veri9ed by extensive computations). The authors might consider
this problem in a future paper.
It is very important to notice that the spectral �Ad�am property is weaker than the

�Ad�am property in the sense that there are isospectral circulant graphs which are not
isomorphic. Such graphs (isospectral but not isomorphic) are called cospectral and
have been studied extensively for other particular cases (for example, see [15,14]).
To show this we assume that 12 divides n and de9ne the sets

S−(n) ={±1;±(n=6− 1);±(n=3 + 1)};
S+(n) ={±1;±(n=6 + 1);±(n=3− 1)}:

Then one can easily show that

Spec〈S−(n)〉n=Spec〈S+(n)〉n:
Indeed, let

>±m =2
(
cos

(
2�m
n

)
+ cos

(
2�m
n
(n=6∓ 1)

)
+ cos

(
2�m
n
(n=3± 1)

))
:

Then Spec〈S±(n)〉= {>±m |m=1; : : : ; n} and we can write

>±m = 2
(
cos

2�m
n

(
1 + cos

�m
3
+ cos

2�m
3

)

± sin
2�m
n

(
sin

�m
3

− sin 2�m
3

))
:

Now note that 1 + cos �m=3 + cos 2�m=3=0 for m≡ ± 2 (mod 6) while sin �m=3 −
sin 2�m=3=0 for m≡ 0;±1; 3 (mod 6). We deduce that for m≡ 0;±1; 3 (mod 6),
>+m= >−m . while for m≡± 2 (mod 6),

>+m=−>−m and >+m=
{
2
√
3 sin(2�m=n) if m≡ 2 (mod 6);

−2
√
3 sin(2�m=n) if m≡ − 2 (mod 6)
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and since 4 divides n, >±m+n=2 =−>±m so that >+m= >−m+n=2 for these values of m. This
proves the claim.
On the other hand, numerical computation for n≡ 0 (mod 12) (n6180) shows that

these graphs are not isomorphic.
Moreover, for n=24 and 36 it is easy to provide simple combinatorial proofs of

this statement which do not refer to extensive numerical computation.
First of all we show that, for Z24, with S−(24)= {±1;±3;±9} and

S+(24)= {±1; ±5;±7},
〈S−(24)〉24 
� 〈S+(24)〉24:

To prove this, we build the surroundings T−
24 (0) and T

+
24(0) for each graph, respectively,

and show that they are not isomorphic. We recall that the surrounding Tn(u) of a node
u of a given graph G of order n is a rooted graph isomorphic to G such that an
appropriate isomorphism maps the children of the node u to the children of the root,
and recursively the children of a node to the, not yet reached, neighbors of that node
(until all nodes have been mapped). Since these graphs are bipartite, we can de9ne
Au(v) (Du(v)) as the set of ancestors (respectively, the set of descendants) of the node v
in the surrounding Tn(u). By de9nition, Au(u)= ∅ and Du(u) is the set of all neighbors
of u.
In our cases, since the graphs are vertex transitive, without loss of generality, it is

suMcient to compare Tn(0)− and T+n (0).
For T−

24 , we have D
−
0 (0)= {1; 3; 9; 15; 21; 23}, and hence

D−
0 (1) = { 2; 4; 10; 16; 22 };

D−
0 (3) = { 2; 4; 6; 12; 18; };

D−
0 (9) = { 6; 8; 10; 12; 18; };

D−
0 (15) = { 6; 12; 14; 16; 18; };

D−
0 (21) = { 6; 12; 18; 20; 22 };

D−
0 (23) = { 2; 8; 14; 20; 22 }:

Similarly, for T+24, we have D
+
0 (0) = {1; 5; 7; 17; 19; 23}, and hence

D+0 (1) = { 2; 6; 8; 18; 20; };
D+0 (5) = { 4; 6; 10; 12; 22 };
D+0 (7) = { 2; 6; 8; 12; 14; };
D+0 (17) = { 10; 12; 16; 18; 22 };
D+0 (19) = { 2; 12; 14; 18; 20; };
D+0 (23) = { 4; 6; 16; 18; 22 }:

In both surroundings, at distance 2 from node 0, only node 2 and node 22 have 3
ancestors. To prove that these two graphs are not isomorphic, it is suMcient to prove
that a mapping between the two surroundings sets for nodes 2 and 22 cannot exist.
For the surrounding T−

24 we have A
−
0 (2)= {1; 3; 23} and A−

0 (22)= {1; 21; 23}, hence
A−
0 (2)∩A−

0 (22)= {1; 23}, that is, nodes 2 and 22 have two common ancestors.
Whereas, for T+24 we have A+0 (2)= {1; 7; 19} and A+0 (22)= {5; 17; 23}, hence

A+0 (2)∩A+0 (22)= ∅, that is, nodes 2 and 22 have no common ancestors.
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Clearly, since |A−
0 (2)∩A−

0 (22)| 
= |A+0 (2)∩A+0 (22)|, the surroundings cannot map
which proves that 〈S−(24)〉24 
� 〈S+(24)〉24.
A similar study can be done for Z36, with S−(36)= {±1;±5;±13} and

S+(36)= {±1;±7;±11}. To prove that
〈S−(36)〉36 
� 〈S+(36)〉36

we proceed as before, building surroundings T−
36 and T+36.

In both surroundings, at distance 3 from node 0, only two nodes have 4 ancestors
(nodes 15 and 21 for T−

36 , and nodes 9 and 27 for T
+
36).

For T−
36 , A

−
0 (15)= {2; 10; 14; 28} and A−

0 (21)= {8; 22; 26; 34}, hence nodes 15 and
21 have no common ancestors.
Whereas, for T+36, A+0 (9)= {2; 8; 10; 34} and A+0 (27)= {2; 10; 26; 28}, hence

A+0 (9)∩A+0 (27)= {2; 10}, that is, two common ancestors. Clearly, this proves that the
surroundings cannot map, and thus, that the two graphs are not isomorphic.
As the computational results, and the simple combinatorial arguments for cases

n=24 and 36, suggest, the authors believe that, in fact, these graphs are never iso-
morphic.

Open Question 11. Prove that S−(n) 
� S+(n) for all n≡ 0 (mod 12).

One can also construct similar examples of cospectral triple loops on n vertices with
n≡ 6 (mod 12).

6. Remarks

Here instead of using the isomorphism property of graphs our method is based on
a weaker property of their spectral identity. Thus, our results are more general than
the original �Ad�am conjecture. On the other hand, this is an obvious weakness of our
approach which does not use all the available information.
One can probably extend our results to the case of weighted circulant graphs. Indeed,

in this case, the question can be reduced to the equation of the form (1) where instead
of ±1-coeMcients it has coeMcient depending on the weights. For integer weights one
can use Lemma 1 and obtain essentially the same results. For graphs with algebraic
weights one can use more general results of [9,29,30]. This case can also be considered
without introducing any new ideas.
For equations with roots of unity with complex coeMcients very general and strong

results applicable to equations with arbitrary complex coeMcients are available [11,28],
however, it is still not quite clear how to extract analogies of Theorems 4, 5 and 9.
One more possible generalization we can be approached by our method is studying

circulant graphs for which spectra have large intersection. It seems that for any B¿0
one can obtain some non-trivial conclusions about sets S; T ⊆Zn such that the spectra
of 〈S〉n and 〈T 〉n have at least nB common elements, that is

# Spec〈S〉n ∩Spec〈T 〉n¿nB:
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Finally we remark, that we hope that our approach will be useful for some other
types of graphs, including Cayley graphs.
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